3d принтер для изделий из металла. Au, Ag - Золото, серебро и другие драгоценные металлы

Эти филаменты содержат значительный процент металлических порошков, но и достаточно пластика - для печати при низкой температуре любым 3D-принтером. В то же время, они содержат достаточное количество металла, чтобы соответственно выглядеть, ощущаться и иметь вес близкий к весу металлического предмета.

Изделия из филамента содержащего железо даже покрываются ржавчиной в определенных условиях, что добавляет правдоподобности, а вот проржаветь насквозь и испортиться от этого не смогут - и в этом их преимущество перед настоящими металлическими предметами.

Плюсы таких материалов:

  • Уникальный внешний вид распечаток
  • Идеально подходит для бижутерии, статуэток, предметов домашнего обихода и декора
  • Высокая прочность
  • Очень малая усадка во время охлаждения
  • Подогреваемый стол не обязателен
Минусы:
  • Низкая гибкость изделий, зависит от конструкции распечатки
  • Не считается безопасным при контакте с пищей
  • Требует тонкой настройки температуры сопла и скорости подачи филамента
  • Необходима постобработка изделий - шлифовка, полировка
  • Быстрый износ сопла экструдера - филамент с металлом очень абразивен, по сравнению с обычными материалами
Общий температурный диапазон печати обычно составляет 195°C - 220°C.

3D-печать металлом в промышленности


Если вы хотите приобрести 3D-принтер печатающий настоящим металлом, для использования на предприятии, то тут для вас две новости - хорошая и плохая.

Хорошая новость состоит в том, что их ассортимент достаточно широк и продолжает расширяться - можно будет выбрать такой аппарат, который соответствует любым техническим требованиям. Далее в статье можно убедиться в этом.

Плохая же новость одна - цены. Стоимость профессиональных печатающих металлом принтеров начинается где-то от $200000 и растет до бесконечности. Кроме того, даже если вы выберете и приобретете самый недорогой из них, отдельным ударом станет покупка расходников, плановое обслуживание с заменой узлов, ремонт. Не забываем и о персонале, и расходах на постобработку изделий. А на стадии подготовки к печати понадобится специальное ПО и умеющие обращаться с ним люди.

Если вы готовы ко всем этим тратам и трудностям - читайте дальше, мы представим несколько очень интересных образцов.

3D-печать металлом - применение


В некоторых промышленных секторах уже используют металлические 3D-принтеры, они стали неотъемлемой частью производственного процесса, о чем обычный потребитель может и не подозревать:

Наиболее распространенным примером являются медицинские импланты и стоматологические коронки, мосты, протезы, которые уже считаются наиболее оптимальным вариантом для пациентов. Причина: Они могут быть быстрее и дешевле изготовлены на 3D-принтере и адаптированы к индивидуальным потребностям каждого пациента.

Второй, столь же часто встречающийся пример: ювелирное дело. Большинство крупных производителей постепенно переходит от 3D-печати форм и восковок к непосредственной 3D-печати металлом, а печать из титана позволяет ювелирам создавать изделия невозможного ранее дизайна.


Кроме того, аэрокосмическая промышленность становится все более и более зависима от 3D-печатных металлических изделий. Ge-AvioAero в Италии - первая в мире полностью 3D-печатная фабрика, которая выпускает компоненты для реактивных двигателей LEAP.

Следующая отрасль использующая 3D-принтеры по металлу - автопром. BMW, Audi, FCA уже серьезно рассматривают применение технологии в серийном производстве, а не только в прототипировании, где они используют 3D-печать уже многие годы.

Казалось бы - зачем изобретать велосипед? Но и здесь 3D-печать металлом нашла применение. Уже несколько лет производители велосипедных компонентов и рам применяют 3D печать. Не только в мире, но и в России это получило распространение. Производитель эксклюзивных велосипедов Triton заканчивает проект с 3D-печатным элементом титановой рамы, это позволило снизить ее вес без ущерба прочности.


Но прежде, чем 3D-печать металлами действительно захватит мир, необходимо будет преодолеть несколько серьезных проблем. В первую очередь - это высокая стоимость и низкая скорость производства больших серий этим методом.

3D-печать металлом - технологии


Многое можно сказать о применении печатающих металлом 3D-принтеров. Есть своя специфика, но основные вопросы такие же, как и с любыми другими 3D-принтерами: программное обеспечение и аппаратные ограничения, оптимизация материалов и печать несколькими материалами. Мы не будем говорить о программном обеспечении много, упомянем лишь, что наиболее крупные издатели, такие как Autodesk, SolidWorks и SolidThinking - все разрабатывают программные продукты для использования в объемной печати металлами, чтобы пользователи могли воплотить в жизнь изделие любой вообразимой формы.

В последнее время появились примеры того, что 3D-детали напечатанные металлом могут быть столь же прочными, как традиционно производимые металлические компоненты, а в некоторых случаях и превосходят их. Созданные с помощью DMLS, изделия имеют механические свойства такие же, как у цельнолитых аналогов.

Посмотрим же на имеющиеся металлические технологии 3D-печати:

Процесс # 1: Послойное сплавление порошка


Процесс 3D-печати металлами, которым наиболее крупные компании пользуются в наши дни, известен как сплавление или спекание порошкового слоя. Это означает, что лазерный или другой высокоэнергетический луч сплавляет в единое целое частицы равномерно распределенного металлического порошка, создавая слои изделия, один за другим.

В мире есть восемь основных производителей 3D-принтеров для печати металлом, большинство из них расположены в Германии. Их технологии идут под аббревиатурой SLM (выборочное лазерное плавление) или DMLS (прямое спекание металла лазером).

Процесс # 2: Binder Jetting


Еще один профессиональный метод с послойным соединением - склеивание частиц металла для последующего обжига в высокотемпературной печи, где частицы сплавляются под давлением, составляя единое металлическое целое. Печатная головка наносит соединительный раствор на порошковую подложку послойно, как обычный принтер на листы бумаги, после чего изделие отправляется в обжиг.

Еще одна похожая, но отличающаяся технология, в основе которой лежит FDM печать - замешивание металлического порошка в металлическую пасту. С помощью пневматической экструзии, 3D-принтер выдавливает ее, подобно тому, как строительный 3D-принтер делает это с цементом, чтобы сформировать 3D-объекты. После того, как нужная форма напечатана, объекты также спекают в печи. Эту технологию использует Mini Metal Maker - возможно, единственный более-менее доступный 3D-принтер для печати металлом ($1600). Прибавьте стоимость небольшой печки для обжига.

Процесс # 3: Наплавление


Можно подумать, что среди технологий печатью металлом отсутствует похожая на обычную FDM, однако, это не совсем так. Вы не сможете плавить металлическую нить в хот-энде своего 3D-принтера, а вот крупные производители владеют такой технологией и пользуются ею. Есть два основных способа печатать цельнометаллическим материалом.

Один из них называется DED (Directed Energy Deposition), или лазерная наплавка. Он использует лазерный луч для сплавления металлического порошка, который медленно высвобождается и осаждается из экструдера, формируя слои объекта с помощью промышленного манипулятора.

Обычно это делается внутри закрытой камеры, однако, на примере компании MX3D , мы видим возможность реализации подобной технологии в сооружении настоящего полноразмерного моста, который должен быть распечатан в 2017 году в Амстердаме.


Другой называется EBM (Electron Beam Manufacturing - производство электронным лучом), это технология формирования слоев из металлического сырья под воздействием мощного электронного луча, с ее помощью создают крупные и очень крупные конструкции. Если вы не работаете в оборонном комплексе РФ или США, то вряд ли увидите эту технологию живьем.

Еще парочка новых, едва появившихся технологий, используемых пока только их создателями, представлена ниже - в разделе о принтерах.

Используемые металлы

Ti - Титан


Чистый титан (Ti64 или TiAl4V) является одним из наиболее часто используемых металлов для 3D-печати, и безусловно - одним из самых универсальных, так как он является одновременно прочным и легким. Он используется как в медицинской промышленности (в персонализированом протезировании), так и в аэрокосмической и автомобильной отрасли (для изготовления деталей и прототипов), и в других областях. Единственная загвоздка - он обладает высокой реакционной способностью, что означает - он может легко взорваться, когда находится в форме порошка, и обязательно должен применяться для печати лишь в среде инертного газа Аргона.

SS - Нержавеющая сталь


Нержавеющая сталь является одним из самых доступных металлов для 3D-печати. В то же время, она очень прочна и может быть использована в широком спектре промышленных и художественных производств. Этот тип стального сплава, содержащий кобальт и никель, обладает высокой упругостью и прочностью на разрыв. 3D-печать нержавейкой используется, в основном, лишь в тяжелой промышленности.

Inconel - Инконель


Инконель - современный суперсплав. Он производится компанией Special Metals Corporation и является запатентованным товарным знаком. Состоит, по большей части, из никеля и хрома, имеет высокую жаропрочность. Используется в нефтяной, химической и аэрокосмической промышленности (например: для создания распределительных форсунок, бортовых “черных ящиков”).

Al - Алюминий


Из-за присущей ему легкости и универсальности, алюминий является очень популярным металлом для применения в 3D-печати. Он используется обычно в виде различных сплавов, составляя их основу. Порошок алюминия взрывоопасен и применяется в печати в среде инертного газа Аргона.

CoCr - Кобальт-хром


Этот металлический сплав имеет очень высокую удельную прочность. Используется как в стоматологии - для 3D-печати зубных коронок, мостов и бюгельных протезов, так и в других областях.

Cu - Медь


За редким исключением, медь и ее сплавы - бронза, латунь - используются для литья с использованием выжигаемых моделей, а не для прямой печати металлом. Это потому, что их свойства далеко не идеальны для применения в промышленной 3D-печати, они чаще используются в декоративно-прикладном искусстве. С большим успехом они добавляются в пластиковый филамент - для 3D-печати на обычных 3D-принтерах.

Fe - Железо


Железо и магнитный железняк также, в основном, используются в качестве добавки к PLA-филаменту. В крупной промышленности чистое железо редко находит применение, а о стали мы написали выше.

Au, Ag - Золото, серебро и другие драгоценные металлы


Большинство сплавляющих слои порошка 3D-принтеров могут работать с драгоценными металлами, такими как золото, серебро и платина. Главная задача при работе с ними - убедиться в оптимальном расходе дорогостоящего материала. Драгоценные металлы применяются в 3D-печати ювелирных и медицинских изделий, а также при производстве электроники.

3D принтеры печатающие металлом

# 1: Sciaky EBAM 300 - титановый прут


Для печати действительно больших металлических конструкций лучшим выбором будет EBAM от Sciaky. Этот аппарат может быть любого размера, на заказ. Он используется, в основном, в аэрокосмической и оборонной промышленности США.

Как серийную модель, Sciaky продает EBAM 300. Он имеет размер рабочей области со сторонами 5791 х 1219 х 1219 мм.

Компания утверждает, что EBAM 300 является одним из самых быстрых коммерчески доступных промышленных 3D-принтеров. Конструкционные элементы самолетов, производство которых, по традиционным технологиям, могло занимать до полугода, теперь печатаются в течение 48 часов.

Уникальная технология Sciaky использует электронно-лучевую пушку высокой мощности для плавки титанового филамента толщиной 3мм, со стандартной скоростью осаждения около 3-9 кг/час.

# 2: Fabrisonic UAM - ультразвуковой


Другой способ 3D-печати больших металлических деталей - Ultrasound Additive Manufacturing Technology (UAM - технология ультразвукового аддитивного производства) от Fabrisonic. Детище Fabrisonic является трехосевым ЧПУ-станком, имеющим дополнительную сварочную головку. Металлические слои сначала разрезают, а затем сваривают друг с другом с помощью ультразвука. Крупнейший 3D-принтер Fabrisonic - “7200”, имеет объем сборки 2 х 2 х 1,5 м.

# 3: Laser XLine 1000 - металлический порошок


Одним из самых крупных, на рынке 3D-принтеров печатающих с помощью металлического порошка, долго являлся XLine 1000 производства Concept Laser. Он имеет область сборки размером 630 х 400 х 500 мм, а места занимает как небольшой дом.

Изготовившая его немецкая компания, которая является одним из поставщиков 3D-принтеров для аэрокосмических компаний-гигантов, таких как Airbus, недавно представила новый принтер - XLine 2000.

2000 имеет два лазера и еще больший объем сборки - 800 х 400 х 500 мм. Эта машина, которая использует патентованную технологию LaserCUSING (тип селективного лазерного плавления), может создавать объекты из сплавов стали, алюминия, никеля, титана, драгоценных металлов и из некоторых чистых материалов (титана и сортовых сталей.)

Подобные машины есть у всех основных игроков на рынке 3D-печати металлом: у EOS, SLM, Renishaw, Realizer и 3D Systems, а также у Shining 3D - стремительно развивающейся компании из Китая.

# 4: M Line Factory - модульная 3D-фабрика


Рабочий объем: 398,78 х 398,78 х 424,18 мм
От 1 до 4 лазеров, 400 - 1000 Вт мощности каждый.

Концепция M Line Factory основана на принципах автоматизации и взаимодействия.

M Line Factory, от той же Concept Laser, и работающий по той же технологии, делает акцент не на размере рабочей области, а на удобстве производства - он представляет собой аппарат модульной архитектуры, который разделяет производство на отдельные процессы таким образом, что эти процессы могут происходить одновременно, а не последовательно.

Эта новая архитектура состоит из 2 независимых узлов машины:


M Line Factory PRD (Production Unit - производственная единица)

Production Unit состоит из 3-х типов модулей: модуль дозирования, печатный модуль и модуль переполнения (лоток для готовой продукции). Все они могут быть индивидуально активированы и не образуют одну непрерывную единицу аппаратуры. Эти модули транспортируются через систему туннелей внутри машины. Например, когда новый порошок подается, пустой модуль хранения порошка может быть автоматически заменен на новый, без прерывания процесса печати. Готовые детали могут быть перемещены за пределы машины и немедленно автоматически заменяются следующими заданиями.

M Line Factory PCG (Processing Unit - процессинговая единица)

Это независимый блок обработки данных, который имеет встроенную станцию просеивания и подготовки порошка. Распаковка, подготовка к следующему заданию печати и просеивание происходят в замкнутой системе, без участия оператора.

# 5: ORLAS CREATOR - 3D-принтер готовый к работе


Создатели ORLAS CREATOR позиционируют этот 3D-принтер как максимально доступный, простой в обращении и готовый к работе, не требующий установки никаких дополнительных комплектующих и программ сторонних производителей, способный печатать прямо из файла комплектной CAD/CAM их собственной разработки.


Все необходимые компоненты установлены в относительно компактном корпусе, которому необходимо пространство 90х90х200 см. Много места он не займет, хоть и выглядит внушительно, да и весит 350 кг.


Как можно понять из приведенной производителем таблицы, металлический порошок спекается вращающейся лазерной системой, слоями 20-100 мкм толщиной и с размером “пикселя” всего в 40 мкм, в атмосфере азота или аргона. Подключить его можно к обычной бытовой электросети, если ваша проводка выдержит нагрузку в 10 ампер. Что, впрочем, не превышает требований средней стиральной машины.


Мощность лазера - 250 Ватт. Рабочая область составляет цилиндр 100 мм в диаметре и 110 в высоту.

# 6: FormUp 350 - Powder Machine Part Method (PMPM)


FormUp 350, работающий в системе Powder Machine Part Method (PMPM), создан компанией AddUp - совместным проектом Fives и Michelin. Это новейший аппарат для 3D-печати металлами, впервые представленный в ноябре на Formnext2016.

Принцип работы у этого 3D-принтера тот же, что и у приведенных выше коллег, но его главная особенность в другом - она заключается в его включенности в PMPM.

Принтер предназначен именно для промышленного использования, в режиме 24/7, и рассчитан именно на такой темп работы. Система PMPM включает в себя контроль качества всех комплектующих и материалов, на всех стадиях их производства и распространения, что должно гарантировать стабильно высокие показатели качества работы, в чем у Мишлена огромный многолетний опыт.

Технология Зака Вейдера MagnetoJet основана на изучении магнитной гидродинамики, а конкретнее - возможности управлять расплавленным металлом с помощью магнитных полей. Суть разработки в том, что из расплавленного алюминия формируется капля строго контролируемого размера, этими каплями и осуществляется печать.

Размер такой капельки - от 200 до 500 микрон, печать происходит со скоростью 1000 капель в секунду. Рабочая область принтера: 300 мм х 300 мм х 300 мм

Рабочий материал: Алюминий и его сплавы (4043, 6061, 7075). И, пусть пока это только алюминий, но принтер в 2 раза быстрее порошковых и до 10 раз дешевле.

В 2018 году планируется выпуск Mk2, он будет оснащен 10 печатающими головками, что должно дать прирост скорости печати в 30 раз.

# 9: METAL X - ADAM - атомная диффузия


Компания Markforged представила новую технологию 3D-печати металлом - ADAM, и 3D-принтер работающий по этой технологии - Metal X.

ADAM (Atomic Diffusion Additive Manufacturing) - технология атомной диффузии. Печать производится металлическим порошком, где частицы металла покрыты синтетическим связующим веществом, которое удаляется после печати, позволяя металлу соединиться в единое целое.


Главное преимущество технологии - отсутствие необходимости применения сверхвысоких температур непосредственно в процессе печати, а значит - отсутствие ограничений по тугоплавкости используемых для печати материалов. Теоретически, принтер может создавать 3D-модели из сверхпрочных инструментальных сталей - сейчас он уже печатает нержавейкой, а в разработке титан, Инконель и стали D2 и A2.


Технология позволяет создавать детали со сложной внутренней структурой, такой как в пчелиных сотах или в пористых тканях костей, что затруднительно при других технологиях 3D-печати, даже для DMLS.

Размер изделий: до 250мм х 220мм х 200мм. Высота слоя - 50 микрон.

Того гляди, скоро можно будет распечатать высококачественный нож - с нуля, за пару часов, придав ему любой самый замысловатый дизайн.

Хотите больше интересных новостей из мира 3D-технологий?

В современной жизни уже ни кого не удивишь 3D принтером, который способен создавать объемные модели из пластика. Однако в тех случаях, когда необходимо создать модель, обладающую высокой прочностью, то такой принтер не поможет. Для этих целей существует промышленный 3D принтер по металлу, который отличается высокой точностью и скоростью создания моделей из металла.

1. Что такое 3D принтер

Трехмерная печать – это последнее слово техники. Все мы знакомы с обычным принтером, на котором можно распечатать текст или изображение. Принцип работы 3D принтера схож с устройством для двухмерной печати. Разница заключается только в том, что 3Д принтер печатает в трех плоскостях. Другими словами трехмерный принтер способен распечатать практически любой объемный предмет. Для получения нужной детали вам потребуется смоделировать ее при помощи специального программного обеспечения.

1.1. Принцип работы 3D принтера по металлу

Принцип работы трехмерного принтера по металлу заключается в сплавлении лазером гранул специального металлического порошка.

Стоит отметить, что 3Д принтер по металлу существенно сокращает сроки изготовления деталей, ведь для получения моделей, имеющих сложную форму традиционным способом, потребуется достаточно много времени. Помимо этого потребуется применение специальных форм для литья либо высокоточная обработка. Очевидно, что все это требует достаточно больших затрат времени, а также финансов. Это и есть основная задача трехмерного принтера – ускорить и упростить производство деталей из металла.

В процессе изготовления нужной детали 3D принтеры по металлу используют большое количество слоев из металлической пудры. При дальнейшей обработке эта пудра сплавляется в одно целое изделие под воздействием высоких температур.

Как вы уже знаете, изготовление детали начинается с изготовления ее модели на компьютере. После того как деталь смоделирована, работник приступает к подготовке принтера. Для начала запускается электронагреватель, после чего специальный металлический порошок засыпается в форму. Далее форма устанавливается на свое место, после чего металлическим порошком заполняется питающая коробка.

Далее 3Д принтер для металла разравнивает верхний слой порошка, который расположен в форме. Для того чтобы придать будущей детали требуемую форму используется специальное связующее вещество, которое подается на печатающие головки по трубкам. Печатные головки, выполняя команды компьютера, движутся по заданной траектории, распыляя тончайший слой связывающего вещества строго в тех местах, где это необходимо.

После того, как очередной слой закончен, металлическая пудра высушивается при помощи специальных нагревателей, которые расположены над формой. После этого вал наносит тонкий слой металлического порошка, и печатающая головка накладывает очередной слой связующего вещества. Стоит отметить, что слой металлической пудры составляет доли миллиметра.

Таким образом, формируется требуемый объект. После завершения печати потребуется провести укладочный процесс – форма с распечатанной деталью помещается в особую печь. Температура в этой печи держится на уровне 180˚С. По прошествии некоторого времени (до 24 часов), жидкость испаряется, а связующее вещество затвердевает. Излишки пудры, оставшиеся на поверхности, убираются путем обдува. После этого все еще хрупкие и пористые детали подвергаются процессу насыщения бронзой. В специальном контейнере, который заполнен оксидом алюминия. Оксид необходим для поддерживания детали в процессе насыщения. После этого в контейнер засыпается бронзовая пудра, и все это помещается в печь на сутки.

Конечно, такой процесс требует достаточно много времени. Однако все же этот метод изготовления деталей из металла существенно быстрее традиционных.

2. 3D принтер печатает металлом: Видео

2.1. Металлический порошок для 3D принтера

Как вы уже знаете, для работы 3D принтеры по металлу используют специальный металлический порошок. Это специальная измельченная пудра из нержавеющей стали. Для того чтобы гранулы не слипались, пудра постоянно подогревается. Однако для трехмерной печати могут использовать и другие порошки – от олова и алюминия, до титана. Для запекания и сплавления гранул пудры между собой промышленный 3D принтер по металлу оснащен специальным лазером, который способен разогревать порошок до достаточно высокой температуры.

Вид порошка выбирается в зависимости от того, в каких условиях будет использоваться готовая деталь. Так, не все модели, которые были изготовлены на 3D принтере по металлу, являются на 100% металлическими.

2.2. 3D принтер печатающий металлом и его преимущества

Современная технология трехмерной печати – это оптимальное решение для реализации многих задач. Во-первых, как уже говорилось, данная технология позволяет существенно экономить время для производства деталей. Кроме этого итоговые детали имеют высокую точность. Помимо всего прочего к преимуществам 3D печати можно отнести следующее:

  • 3D принтер для печати металлом одинаково легко изготавливает детали любой сложности;
  • Низкая стоимость расходных материалов (металлических порошков);
  • Работе с принтером для печати металлом достаточно просто научиться, для этого требуется минимальное количество времени;
  • Наладка и диагностика 3D принтера осуществляется в автоматическом режиме;
  • Принтер для трехмерной печати крайне просто в управлении. Кроме этого в процессе работы не выделяется никаких запахов или шумов;
  • 3D принтер для металла способен выполнять цветную печать. При этом качество и глубина цвета абсолютно не уступают обычным принтерам;
  • Для изготовления деталей используются только экологичные и безопасные материалы.

Кроме приведенного списка современные 3Д принтеры по металлу имеют еще массу преимуществ. Это объясняет весьма высокий спрос. Стоит учитывать, что технологии не стоят на месте, трехмерная печать постоянно развивается и улучшается, и в некоторых случаях уже сегодня она способна заменить традиционные методы изготовления деталей из металла.

3D-печать металлом становится все более популярной. И это не удивляет: каждый металлический материал для печати предлагает уникальное сочетание практических и эстетических свойств, чтобы удовлетворить требования предъявляемые к различным продуктам, будь то прототипы, миниатюры, украшения, функциональные детали или даже кухонные принадлежности.

Причины печатать металлами настолько веские, что 3D-печать металлами уже внедряется в серийное производство. На самом деле, некоторые 3D-печатные детали уже догнали, а какие-то и превзошли своими свойствами те, что производятся традиционными методами.
Традиционное производство из металлов и пластиков очень расточительно - в авиапромышленности, например, до 90% материалов уходит в отходы, а выход продукции, лежащей в пределах допусков, в некоторых отраслях составляет не более 30%.

3D-печать металлами потребляет меньше энергии и сокращает количество отходов до минимума. Кроме того, готовое 3D-печатное изделие может быть до 60% легче, по сравнению с фрезерованной или литой деталью. Одна лишь авиационная промышленность сэкономит миллиарды долларов на топливе, за счет снижения веса конструкций, а ведь прочность и легкость нужны и в других отраслях. Да и экономичность тоже.

3D-печать металлом дома


Что можно сделать, если появилось желание попробовать 3D-печать металлом в домашних условиях? Для печати металлом необходимы чрезвычайно высокие температуры, вряд ли вы сможете использовать обычный FDM 3D-принтер для этого, по крайней мере пока. Ситуация может измениться лет через 15-20, но сейчас домашней 3D-технике это недоступно.

Если вы хотите сделать выглядящие металлическими распечатки у себя дома, лучший вариант - использование пластика содержащего частицы металла.

Такого например, как Colorfabb Bronzefill или Bestfilament Bronze .

Эти филаменты содержат значительный процент металлических порошков, но и достаточно пластика для печати при низкой температуре любым 3D-принтером. В то же время, они содержат достаточное количество металла, чтобы соответственно выглядеть, ощущаться и даже иметь вес близкий к весу металлического предмета.

Изделия из филамента с содержанием железа даже покрываются ржавчиной в определенных условиях, что добавляет правдоподобности, а вот проржаветь насквозь и испортиться от этого не смогут - и в этом их преимущество перед настоящими металлическими предметами.
Плюсы таких материалов:

  • Уникальный внешний вид распечаток
  • Идеально подходит для бижутерии, статуэток, предметов домашнего обихода и декора
  • Высокая прочность
  • Очень малая усадка во время охлаждения
  • Подогреваемый стол не обязателен
Минусы:
  • Низкая гибкость изделий, зависит от конструкции распечатки
  • Не считается безопасным при контакте с пищей
  • Требует тонкой настройки температуры сопла и скорости подачи филамента
  • Необходима постобработка изделий - шлифовка, полировка
  • Быстрый износ сопла экструдера - филамент с металлом очень абразивен, по сравнению с обычными материалами
Общий температурный диапазон печати обычно составляет 195°C - 220°C.

3D-печать металлом в промышленности Если вы хотите приобрести 3D-принтер печатающий настоящим металлом, для использования на предприятии, то тут для вас две новости - хорошая и плохая.
Хорошая новость состоит в том, что их ассортимент достаточно широк и продолжает расширяться, и можно будет выбрать такой аппарат, который соответствует любым техническим требованиям. Далее в статье можно убедиться в этом.
Плохая же новость одна - цены. Стоимость профессиональных печатающих металлом принтеров начинается где-то от $200000 и растет до бесконечности. Кроме того, даже если вы выберете и приобретете самый недорогой из них, отдельным ударом станет покупка расходников, плановое обслуживание с заменой узлов, ремонт. Не забываем также о персонале и расходах на постобработку изделий. Да, и на стадии подготовки к печати понадобится специальное ПО и умеющие обращаться с ним люди.
Если вы готовы ко всем этим тратам и трудностям - читайте дальше, мы представим несколько очень интересных образцов.
3D-печать металлом - применение

Части реактивного двигателя GE’s LEAP напечатаны в 3D на фабрике аддитивного производства AvioAero (изображение: GE)

В некоторых промышленных секторах уже используют металлические 3D-принтеры, сделав их неотъемлемой частью производственного процесса, о чем обычный потребитель может и не подозревать:

  • Наиболее распространенным примером являются медицинские импланты и стоматологические коронки, мосты, протезы, которые уже считаются наиболее оптимальным вариантом для пациентов. Причина: Они могут быть быстрее и дешевле изготовлены на 3D-принтере и адаптированы к индивидуальным потребностям каждого пациента.
  • Второй столь же часто встречающийся пример: ювелирное дело. Большинство крупных производителей постепенно переходит от 3D-печати форм и восковок к непосредственной 3D-печати металлом, а печать из титана позволяет ювелирам создавать изделия невозможного ранее дизайна.

  • Кроме того, аэрокосмическая промышленность становится все более и более зависима от 3D-печатных металлических изделий. Ge-AvioAero в Италии - первая в мире полностью 3D-печатная фабрика, которая выпускает компоненты для реактивных двигателей LEAP .
  • Следующая отрасль использующая металлические 3D-принтеры будет находиться в автомобильном секторе. BMW, Audi, FCA уже серьезно рассматривают применение технологии в серийном производстве, а не только в прототипировании (где они используют 3D-печать уже многие годы).
  • Казалось бы - зачем изобретать велосипед? Но и здесь 3D-печать металлом нашла применение. Уже несколько лет производители велосипедных компонентов и рам применяют 3D печать. Не только в мире, но и в России это получило распространение. Производитель эксклюзивных велосипедов Triton заканчивает проект с элементом титановой рамы, напечатанным на 3д принтере для снижения веса без ущерба прочности.
Но прежде, чем 3D-печать металлами действительно захватит мир, необходимо будет преодолеть несколько серьезных проблем. В первую очередь - это высокая стоимость и низкая скорость производства больших серий этим методом.

3D-печать металлом - технологии

Большинство процессов 3D-печати металлом начинаются с порошка

Многое можно сказать о применении печатающих металлом 3D-принтеров. Тем не менее, основные вопросы такие же, как и с любыми другими 3D-принтерами: программное обеспечение и аппаратные ограничения, оптимизация материалов и печать несколькими материалами. Мы не будем говорить о программном обеспечении много, упомянем лишь, что наиболее крупные издатели, такие как Autodesk , SolidWorks и - все разрабатывают программные продукты для использования в объемной печати металлами, чтобы пользователи могли воплотить в жизнь изделие любой вообразимой формы.

В последнее время появились примеры того, что 3D-детали напечатанные металлом могут быть столь же прочными, как традиционно производимые металлические компоненты, а в некоторых случаях и превосходят их. Созданные с помощью DMLS изделия имеют механические свойства эквивалентные цельнолитым.

Посмотрим же на имеющиеся металлические технологии 3D-печати:

Процесс # 1: Послойное сплавление порошка Процесс 3D-печати металлами, которым наиболее крупные компании пользуются в наши дни, известен как сплавление или спекание порошкового слоя. Это означает, что лазерный или другой высокоэнергетический луч сплавляет в единое целое частицы равномерно распределенного металлического порошка, создавая тем самым слои изделия, один за другим.

В мире есть восемь основных производителей 3D-принтеров для печати металлом, большинство из них расположены в Германии. Их технологии идут под аббревиатурой SLM (выборочное лазерное плавление) или DMLS (прямое спекание металла лазером).

Процесс # 2: Binder Jetting

ExOne производит 3D-печать металлических частей нанося связующее вещество перед обжигом в печи (изображение: ExOne)

Еще один профессиональный метод с послойным соединением - склеивание частиц металла для последующего обжига в высокотемпературной печи, где частицы сплавляются под давлением, составляя единое металлическое целое. Печатная головка наносит соединительный раствор на порошковую подложку послойно, как обычный принтер на листы бумаги, после чего изделие отправляется в обжиг.

Еще одна похожая, но в отдельных деталях разительно отличающаяся технология, в основе которой лежит FDM печать - замешивание металлического порошка в металлическую пасту. С помощью пневматической экструзии 3D-принтер выдавливает ее, подобно тому, как строительный 3D-принтер делает это с цементом, чтобы сформировать 3D-объекты. После того, как нужная форма напечатана, объекты также спекают в печи.

Эту технологию использует Mini Metal Maker - возможно, единственный более-менее доступный 3D-принтер для печати металлом ($1600). Прибавьте стоимость небольшой печки для обжига.
Процесс # 3: Наплавление Можно подумать, что среди технологий печатью металлом отсутствует похожая на обычную FDM, но это не совсем так. Конечно, вы не сможете плавить металлическую нить в хот-энде своего 3D-принтера, а вот крупные производители владеют такой технологией и пользуются ею. Есть два основных способа печатать цельнометаллическим материалом.

Один из них называется DED (Directed Energy Deposition) или лазерная наплавка. Он использует лазерный луч для сплавления металлического порошка, который медленно высвобождается и осаждается из экструдера формируя слои объекта с помощью промышленного манипулятора.

Обычно это делается внутри закрытой камеры, однако, недавний проект MX3D реализовал аналогичный подход к 3D-печати в сооружении настоящего полноразмерного моста.

Другой называется EBM (Electron Beam Manufacturing - производство электронным лучом), это технология формирования слоев из металлического сырья под воздействием мощного электронного луча, с ее помощью создают крупные и очень крупные конструкции. Если вы не работаете в оборонном комплексе РФ или США, то вряд ли увидите эту технологию живьем.
Еще парочка новых, едва появившихся технологий, используемых пока только их создателями, представлена ниже - в разделе о принтерах.

Используемые металлы

Ti - Титан Чистый титан (Ti64 или TiAl4V) является одним из наиболее часто используемых металлов для 3D-печати, и безусловно - одним из самых универсальных, так как он является одновременно прочным и легким. Он используется как в спекании слоев порошка, главным образом в медицинской промышленности (в персонализированом протезировании), так и в аэрокосмической и автомобильной отрасли (для изготовления деталей и прототипов), и в других областях. Единственная загвоздка - он обладает высокой реакционной способностью, что означает - он может легко взорваться, когда находится в форме порошка, поэтому обязательно должен применяться для печати лишь в среде инертного газа Аргона.

SS - Нержавеющая сталь Нержавеющая сталь является одним из самых доступных металлов для 3D-печати. В то же время, она очень прочна и может быть использована в широком спектре промышленных и даже художественных производств. Этот тип стального сплава, содержащий кобальт и никель, обладает высокой упругостью и прочностью на разрыв. 3D-печать нержавейкой используется в основном лишь в тяжелой промышленности.

Inconel - Инконель Инконель - суперсплав производимый компанией Special Metals Corporation, запатентованный товарный знак. Он состоит в основном из никеля и хрома и имеет высокую жаропрочность. Именно поэтому он используется в основном в нефтяной, химической и аэрокосмической промышленности (например: для создания распределительных форсунок, бортовых “черных ящиков”).

Al - Алюминий Из-за присущей ему легкости и универсальности, алюминий в настоящее время является очень популярным металлом для применения в 3D-печати. Он используется обычно в виде различных сплавов, составляя их основу. Но порошок алюминия взрывоопасен и применяется в печати также в среде инертного газа Аргона.

CoCr - Кобальт-хром

Этот металлический сплав имеет очень высокую удельную прочность. Чаще всего он используется для 3D-печати зубных коронок, мостов и бюгельных протезов.

Cu - Медь За редким исключением, медь и ее сплавы - бронза, латунь - используются для литья с использованием выжигаемых моделей, а не для прямой печати металлом. Это потому, что их свойства далеко не идеальны для применения в промышленной 3D-печати, они чаще используются в декоративно-прикладном искусстве. Однако, с большим успехом они добавляются в пластиковый филамент для 3D-печати на обычных 3D-принтерах.

Fe - Железо Железо и магнитный железняк также, в основном, используются в качестве добавки к PLA-филаменту. В крупной промышленности чистое железо редко находит применение, а о стали мы написали выше.

Au, Ag - Золото, серебро и другие драгоценные металлыБольшинство сплавляющих слои порошка 3D-принтеров могут работать с драгоценными металлами, такими как золото, серебро и платина. Главная задача при работе с ними - убедиться в оптимальном расходе дорогостоящего материала. Драгоценные металлы применяются в 3D-печати ювелирных и медицинских изделий, а также при производстве электроники.

3D принтеры печатающие металлом

# 1: Sciaky EBAM 300 - титановый прутДля печати действительно больших металлических конструкций лучшим выбором будет EBAM от Sciaky . Этот аппарат может быть любого размера, на заказ. Он используется, в основном, в аэрокосмической и оборонной промышленности США.

Как серийную модель, Sciaky продает EBAM 300. Он имеет размер рабочей области со сторонами 5791 х 1219 х 1219 мм.

Компания утверждает, что EBAM 300 также является одним из самых быстрых коммерчески доступных промышленных 3D-принтеров. Конструкционные элементы самолетов, производство которых по традиционным технологиям могло занимать до полугода, теперь печатаются в течение 48 часов.
Уникальная технология Sciaky использует электронно-лучевую пушку высокой мощности для плавки титанового филамента толщиной 3мм, со стандартной скоростью осаждения около 3-9 кг/час.

# 2: Fabrisonic UAM - ультразвуковой

Другой способ 3D-печати больших металлических деталей - Ultrasound Additive Manufacturing Technology (UAM - технология ультразвукового аддитивного производства) от Fabrisonic. Детище Fabrisonic является трехосевым ЧПУ-станком, имеющим дополнительную сварочную головку. Металлические слои сначала разрезают, а затем сваривают друг с другом с помощью ультразвука. Крупнейший 3D-принтер Fabrisonic - “7200”, имеет объем сборки 2 х 2 х 1,5 м.

# 3: Laser XLine 1000 - металлический порошок

Одним из самых крупных на рынке 3D-принтеров печатающих с помощью металлического порошка долго являлся XLine 1000 производства Concept Laser. Он имеет область сборки размером 630 х 400 х 500 мм, а места занимает как небольшой дом.

Изготовившая его немецкая компания, которая является одним из поставщиков 3D-принтеров для аэрокосмических компаний-гигантов, таких как Airbus, недавно представила новый принтер - XLine 2000.

2000 имеет два лазера и еще больший объем сборки - 800 х 400 х 500 мм. Эта машина, которая использует патентованную технологию LaserCUSING (тип селективного лазерного плавления), может создавать объекты из сплавов стали, алюминия, никеля, титана, драгоценных металлов и из некоторых чистых материалов (титана и сортовых сталей.)

Машины, подобные этой, есть у всех основных игроков на рынке 3D-печати металлом: у EOS, SLM, Renishaw, Realizer и 3D Systems, а также у Shining 3D - стремительно развивающейся компании из Китая.

# 4: M Line Factory - модульная 3D-фабрика


Рабочий объем: 398,78 х 398,78 х 424,18 мм
От 1 до 4 лазеров, 400 - 1000 Вт мощности каждый.

Концепция M Line Factory основана на принципах автоматизации и взаимодействия.

M Line Factory, от той же Concept Laser и работающий по той же технологии, делает акцент не на размере рабочей области, а на удобстве производства - он представляет собой аппарат модульной архитектуры, который разделяет производство на отдельные процессы таким образом, что эти процессы могут происходить одновременно, а не последовательно.

Эта новая архитектура состоит из 2 независимых узлов машины:

M Line Factory PRD (Production Unit - производственная единица)

Production Unit состоит из 3-х типов модулей: модуль дозирования, печатный модуль и модуль переполнения (лоток для готовой продукции). Все они могут быть индивидуально активированы и не образуют одну непрерывную единицу аппаратуры. Эти модули транспортируются через систему туннелей внутри машины. Например, когда новый порошок подается, пустой модуль хранения порошка может быть автоматически заменен на новый модуль, без прерывания процесса печати. Готовые детали могут быть перемещены за пределы машины и немедленно автоматически заменяются следующими заданиями.

M Line Factory PCG (Processing Unit - процессинговая единица)

Это независимый блок обработки данных, который имеет встроенную станцию просеивания и подготовки порошка. Распаковка, подготовка к следующему заданию печати и просеивание происходят в замкнутой системе, без участия оператора.

# 5: ORLAS CREATOR - 3D-принтер готовый к работе


Создатели ORLAS CREATOR позиционируют этот 3D-принтер как максимально доступный, простой в обращении и готовый к работе, не требующий установки никаких дополнительных комплектующих и программ сторонних производителей, способный печатать прямо из файла комплектной CAD/CAM их собственной разработки.
# 6: FormUp 350 - Powder Machine Part Method (PMPM)


FormUp 350, работающий в системе Powder Machine Part Method (PMPM) создан компанией AddUp - совместным проектом Fives и Michelin. Это новейший аппарат для 3D-печати металлами, впервые представленный в ноябре на Formnext2016.

Принцип работы у этого 3D-принтера тот же, что и у приведенных выше коллег, но его главная особенность в другом - она заключается в его включенности в PMPM.

Принтер предназначен именно для промышленного использования в режиме 24/7 и рассчитан именно на такой темп работы. Система PMPM включает в себя контроль качества всех комплектующих и материалов на всех стадиях их производства и распространения, что должно гарантировать стабильно высокие показатели качества работы, в чем у Мишлена огромный многолетний опыт.

# 7: XJET - NanoParticle Jetting - струйная печать металлом


Технология впрыска наночастиц предполагает использование специальных герметичных катриджей с раствором, в котором находится взвесь наночастиц металла.
Наночастицы осаждаются и образуют собой материал печатаемого изделия.
Учитывая заявленные особенности технологии (применение металлических частиц наноразмера) несложно поверить создателям аппарата, когда они утверждают о его беспрецедентных точности и разрешении печати по всем трем геометрическим осям.

# 8: VADER Mk1 - MagnetoJet - струйная печать металлом

Технология Зака Вейдера MagnetoJet основана на изучении магнитной гидродинамики, а конкретнее - возможности управлять расплавленным металлом с помощью магнитных полей. Суть разработки в том, что из расплавленного алюминия формируется капля строго контролируемого размера, этими каплями и осуществляется печать.

Размер такой капельки - от 200 до 500 микрон, печать происходит со скоростью 1000 капель в секунду.
Рабочая область принтера: 300 мм х 300 мм х 300 мм
Рабочий материал: Алюминий и его сплавы (4043, 6061, 7075)

И пусть пока это только алюминий, но принтер в 2 раза быстрее порошковых и до 10 раз дешевле.
В 2018 году планируется выпуск Mk2 с 10 печатающими головками, что должно дать прирост скорости печати до 30 раз.
Что ж, посмотрим как они справятся.

# 9: METAL X - ADAM - атомная диффузия


Компания Markforged представила новую технологию 3D-печати металлом - ADAM, и 3D-принтер работающий по этой технологии - Metal X.

ADAM (Atomic Diffusion Additive Manufacturing) - технология атомной диффузии . Печать производится металлическим порошком, где частицы металла покрыты синтетическим связующим веществом, которое удаляется после печати, позволяя металлу соединиться в единое целое.


Главное преимущество технологии - отсутствие необходимости применения сверхвысоких температур непосредственно в процессе печати, а значит - отсутствие ограничений по тугоплавкости используемых для печати материалов. Теоретически, принтер может создавать 3D-модели из сверхпрочных инструментальных сталей - сейчас он уже печатает нержавейкой, а в разработке титан, Инконель и стали D2 и A2.


Технология позволяет создавать детали со сложной внутренней структурой, такой как в пчелиных сотах или в пористых тканях костей, что затруднительно при других технологиях 3D-печати, даже для DMLS.

Размер изделий: до 250мм х 220мм х 200мм.
Высота слоя - 50 микрон.

Того гляди, скоро можно будет распечатать высококачественный нож, например, с нуля, за пару часов, придав ему любой самый замысловатый дизайн.

Хотите больше интересных новостей из мира 3D-технологий?

Фото Desktop Metal

Компания Desktop Metal создала новую технологию и первый компактный принтер для 3D-печати металлом. Первые поставки систем начнутся уже осенью этого года. Один принтер будет компактным, благодаря чему его можно будет разместить даже на столе.

В 2015 году четыре профессора из MIT основали компанию Desktop Metal. Среди них был и знаменитый Эмануил Сакс – тот самый изобретатель, который и придумал в 1989 году первый 3D-принтер. В прошлом году они в первые представили устройства для печати металлом. Всего их на данный момент будет два. Компактный комплект DM Studio по цене 120 000$ и DM Production (420 000$), предназначенный для использования промышленными компаниями. Production способна печатать 8200 кубических сантиметров изделия за час, что в 100 раз быстрее нынешних способов изготовления.

Технология

Суть заключается в использовании аддитивной технологии 3D-печати, позволяющей выращивать заготовку из металлического порошка с использованием связующего вещества. Один слой печати по толщине равен человеческому волосу. После нанесения слоя принтер его подсушивает и наносит следующий слой за слоем.


После того, как заготовка готова, она для спекания помещается в миниатюрную плавильную печь, использующую дополнительно микроволны, благодаря которым ускоряется процесс и сама деталь существенно усиливается. Сама заготовка не плавится, так как нагрев происходит при температуре ниже точки плавления металла, во время которой из детали удаляется связующее вещество.

Видео как работает такой принтер:

Оба устройства способны использовать на данный момент чуть более 200 сплавов.

Почему технология 3D-печати от DM является подрывной? Минусом всех подобных других устройств является то, что скорость печати металлом очень низкая и сам процесс настолько неудобный, что их использование в промышленных целях было нецелесообразным. Причем детали, получаемые из них, чаще всего, либо просто не подходят для использования в каких-то серьезных целях, либо еще и требуют существенной дополнительной обработки.

Пример работы 3D-принтера ExOne:

ExOne до появления принтеров от DM считался одним из самых передовых и инновационных.

Также существуют и другие технологии печати, путем выращивания детали из расплава, а также наплавки, но точность их очень низкая и, как говорилось выше, требует последующей обработки.

Благодаря своим инновациям, подтвержденным 138 патентами, компании Desktop Metal удалось в октябре 2015 года привлечь инвестиций размером в 97 000 000$ от Google, BMW Group, GE, Lowe’s, NEA, Kleiner Perkins Caufield & Byers, Lux Capital, Saudi Aramco и лидера в сфере 3D-печати Stratasys.

3D печать является одним из наиболее успешно и динамично развивающихся направлений в промышленном производстве. Аддитивные технологии позволили полностью реорганизовать производственный процесс, применяемый на промышленных предприятиях. В традиционном технологическом процессе конечное изделие формировалось, в основном, на этапе механической обработки, за счет удаления (съема) лишнего материала из заготовки. Прямое цифровое производство предполагает формирование физических объектов путем последовательного наращивания материала слой за слоем, что позволяет изготавливать детали с любой геометрией сложности непосредственно по математическим моделям CAD систем проектирования. Таким образом, технологии послойного синтеза изделий имеют ряд существенных преимуществ перед классическим производством:

  1. Сокращение циклов НИОКР . Время вывода готового товара на рынок является важнейшей составляющей успеха современного предприятия, которое, в свою очередь, зависит от скорости прохождения этапов технологической подготовки производства. Традиционные методы чрезвычайно дороги и затратны по времени. Применения быстрого прототипирования позволяет в сжатые сроки отработать конструкцию конечных изделий за счет возможности быстрого изготовления тестовых образцов.
  2. Расширение границ производства . Классический конфликт «Конструктора и Технолога» долгое время тормозил развития машиностроительных предприятий России. Технологии послойного синтеза изделий позволяют устранить технологические ограничения и вывести производство на новый уровень, за счет воплощения в жизнь ранее не реализованных задумок конструкторов.
  3. Сокращение отходов производства . 3Д печать позволяет получать изделия максимально близкие по форме к конечным деталям и уменьшать уровень расхода дорогостоящих материалов, за счет сокращения припусков на этапы механической обработки. Также, в производственном цикле послойной печати может повторно использоваться до 99% закупленных расходников.
  4. Снижение длительности производственного цикла. Прямое цифровое производство повышает уровень производительности труда на предприятиях, позволяя снизить количество технологических этапов обработки детали и, следовательно, сократить парк оборудования и обсуживающего персонала.

Современный этап развития аддитивных технологий, позволяет использовать установки не только для целей быстрого прототипирования, но и выпускать конечную продукцию и налаживать серийное производство. Компания «НеоВейтус» поставляет промышленные 3D принтеры по металлу, пластику, керамике и песку, которые позволяют решать различные технологические проблемы в следующих областях:

  • Литейное производство
  • Производство металлических изделий
  • Ремонт и Реконфигурация металлических изделий
  • Быстрое Прототипирование

ООО «НеоВейтус» предлагает установки, работающие по различным технологиям, таким как: Выборочная лазерная плавка металлических порошков (SLM), Лазерная наплавка металлических порошков (DMT, LSF или LMD), Выборочное лазерное спекание полимерных материалов (SLS), УФ отверждение фотополимеров (DLP) и стереолитография (SLA).

Также, компания «НеоВейтус» занимается поставками расходных материалов к промышленным 3Dпринтерам: полиамидные порошки (PA12, стеклонаполненный и с углеволокном), металлические порошки (Al, Ti, Steel, Inconel, Co-Cr) и фотополимеры (выжигаемые и для создания твердотельных моделей).

Аддитивные технологии нашли широкое применение в различных отраслях промышленности, таких как машиностроение, энергетика, авиастроение, ракетостроение, радиоэлектроника, автомобилестроение и медицина.

Аддитивные технологии успешно используются в Российской промышленности повышая конкурентоспособность предприятий, за счет предоставления неограниченных возможностей для развития производства.