Новый космический двигатель. Детонационный ракетный двигатель стал новым прорывом россии

Российские ученые приступили к разработке нового ракетного двигателя на принципиально новом топливе - смеси ацетилена и аммиака (ацетаме), рассказал «Известиям» директор центра по инновационным разработкам НПО «Энергомаш» Анатолий Лихванцев.

«Смесь ацетилена и аммиака, даже по самым грубым подсчетам, в 20 раз дешевле водорода - килограмм водорода стоит около 2 тыс. рублей, а килограмм ацетама - максимум 100 рублей. При расходе в пять - семь тонн можно будет сэкономить значительную сумму. Кроме того,компоненты, входящие в ацетам можно без проблем хранить и перевозитьвысокие охлаждающие способности, а у аммиака они блестящие (его даже используют в холодильниках в качестве хладагента)». - сказал Лихванцев.

Новый двигатель на ацетаме будут делать на базе кислород керосинового двигателя РД-161, который получит индекс «АЦ». По сравнению с предшественником ацетамовый будет на 30% энергоэффективнее. Точные параметры будут определены в ходе испытаний смеси, которые начнутся в этом году и будут длиться около трех лет.

После того как оптимальное соотношение ацетилена и аммиака найдут (топливо станет достаточно эффективным и при этом не будет взрываться от каждого удара), конструкторы уточнят параметры двигателя, по предварительным рассчетам, он не потребует серьезных конструктивных изменений, поскольку физические свойства ацетама не намного отличаются от керосина. Благодаря этому разгонный блок с новым двигателем можно будет ставить на уже существующие ракеты-носители - это опять же выгоднее, чем разрабатывать под него новую ракету.

Разработчики планируют запустить ракеты с новым двигателем в космос уже в 2017-2018 годах. Однако сроки будут зависеть от объемов финансирования - чем больше стендовых экземпляров двигателя удастся изготовить, тем быстрее удастся проверить все режимы. Первый стендовый образец планируется смонтировать на стендовой базе под Сергиевым Посадом.

Директор по развитию космического кластера фонда «Сколково» Дмитрий Пайсон в свою очередь отметил, что, несмотря на не поражающие воображения стоимостные показатели, замена керосина и водорода в ракетных ступенях новым горючим может оказаться экономически эффективным проектом.

«Водород очень громоздкий - его нужно защищать от тепла, из-за этого его сложно возить. Поэтому проще его производить прямо на космодроме перед заправкой. Ацетам можно перевозить при комнатной температуре, как обычный керосин. При этом его энергоэфективность выше, чем у кислород-керосина, а опасность для экологии ниже, чем у того же гептила, - пояснил Пайсон. - К тому же он существенно плотнее, можно делать баки меньшего объема».

Он добавил, что с точки зрения совершенствования конструкции традиционных жидкостных ракетных двигателей современные КБ, по всей видимости, подошли к некоему барьеру. Поиски новых решений в ракетостроении сегодня ведутся в части новых материалов, топлив, производственных технологий, пишут «Известия».

Издание "Военно-промышленный Курьер" сообщает великолепную новость из области прорывных ракетных технологий. Детонационный ракетный двигатель испытан в России, сообщил в пятницу вице-премьер Дмитрий Рогозин на своей странице в Facebook.

«Прошли успешные испытания так называемых детонационных ракетных двигателей, разработанных в рамках программы Фонда перспективных исследований», - цитирует вице-премьера Интерфакс-АВН.

Считается, что детонационный ракетный двигатель - один из путей реализации концепции так называемого моторного гиперзвука, то есть создания гиперзвуковых летательных аппаратов, способных за счет собственного двигателя достигать скорости в 4 - 6 Махов (Мах - скорость звука).

Портал russia-reborn.ru приводит интервью одного из ведущих профильных двигателистов России по поводу детонационных ракетных двигателей.

Интервью с Петром Левочкиным, главным конструктором "НПО Энергомаш им. академика В.П. Глушко".

Создаются двигатели для гиперзвуковых ракет будущего
Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука
Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК "Энергия" мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

На каких двигателях человек полетит к дальним планетам?

Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД - удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

Досье "RG":
"Научно-производственное объединение Энергомаш" основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях "Энергомаша" был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат "Луноход-1". Сегодня на двигателях, разработанных и произведенных в НПО "Энергомаш", взлетает более девяноста процентов ракет-носителей в России.

Подумать только - люди собрались лететь на Марс на ракетном двигателе... А кто-нибудь из вас представляет сколько это надо брать ракетного топлива с собой? Для пилотируемого аппарата запас топлива в десятки раз больше чем для разведывательного зонда. Это будет неоправданный перерасход денежных средств налогоплательщиков, потому что коэффициент полезного действия ракетного двигателя менее 1%. Но есть вариант проще, дешевле и мощнее!

Предистория эффекта Баскакова.

Вcем привет! Я Алексей Баскаков, физик по образованию, всю сознательную жизнь занимаюсь изучением явлений, игнорируемых официальной наукой. Еще в середине 90-х, будучи студентом, мной был поставлен эксперимент с жидким ротором. За счет его несимметричности создавался градиент центробежной силы, что приводило к тяге всей установки. Опыт доказал возможность безопорного движения - установка облегчала свой вес до 30%. Теоретически возможно было бы и больше, но побоялся повредить хрупкое устройство самодельного двигателя.

Хоть эксперимент и был удачным, но в установке не хватало различных датчиков (студенческий бюджет не позволял) для проверки теоретических расчетов на практике.

Увидев наличие эффекта меня культурно выгнали из университетской лаборатории. Рабочую модель двигателя пришлось отнести к себе в общежитие. А потом я начал искать заинтересованных людей - ходил по заводам связанными с оборонкой, писал письма в конструкторские бюро. Как результат - все впустую. В начале лета 2000 года написал письмо в администрацию нового президента нашей страны, а примерно через месяц пришли люди в штатском с обыском, изъяли установку, все материалы и записи... И жестко строго-настрого запретили заниматься этой темой...

Почти 17 лет было очень страшно возвращаться к разработке двигателя. Я надеялся самостоятельно заработать достаточно денег чтобы организовать свою небольшую лабораторию и собрать новую установку. Но практика показала, что бизнесмен из меня плохой - я не чувствую личной выгоды, и даже склонен отдавать безвозмездно. Собравшись с духом я решил опять обратиться к президенту на прямой линии 15 июня 2017, подготовил видео, писал туда текстом, звонил... Но меня проигнорировали.

Я понимаю что ученых, бизнесменов и власти без демонстрации рабочей установки очень трудно заинтересовать. Поэтому я решил обратиться ко всем людям для сбора средств на новую экспериментальную установку двигателя. Я надеюсь на вашу поддержку, хоть из доказательств работоспособности есть только мои воспоминания - мое честное слово. Я предлагаю всем встать у истоков новой эры космонавтики и технической революции в транспорте!

Кому-нибудь нужен доступный Космос?

Возникает вопрос: а кроме меня есть ли желающие путешествовать по Солнечной системе свободно и недорого как на машине по городу? А также можно будет добывать полезные ископаемые на астероидах и других планетах. И каждый сможет самостоятельно убедиться круглая Земля или плоская)) Кстати, этот двигатель позволит создать новый вид транспорта для путешествий и перевозки грузов не только в космосе, но также в пределах атмосферы и под водой. Любопытно что для такого универсального транспортного средства лучшей формой будет "летающая тарелка".

К сведению корпораций сильно не заинтересованных в моей разработке хочу сообщить, что в случае, если со мной что-то случится, то информация с описанием эффекта двигателя автоматически всплывет в разных частях Интернета. Я об этом уже позаботился;) И многие неглупые люди смогут собрать новый универсальный двигатель для космических кораблей. Так что вместо противодействия лучше подключайтесь к прогрессу - будущее наступает неумолимо. И всем людям необходимо определиться, в каком будущем они хотят жить - полным ужаса или полным радости бытия.

Я за мир во всем Мире!

Я категорически против использования этого двигателя в военных целях! Ибо люди слишком быстро поубивают друг друга, либо потащат свою агрессивность за пределы планеты. Что бы не допустить такого развития событий я занимаюсь еще одной разработкой (в области психологии человека) - повышение разумности и просветления сознания. В этом плане есть превосходная перспектива развития Человечества.

Очень хочется чтобы мой двигатель был запущен именно в Росси. И что бы оздоровление социума началось именно из нашей страны.

Расходы и планы.

Собранные средства пойдут:

Изготовление деталей двигателя (по заказу на производстве);

Покупку датчиков для экспериментальной установки двигателя;

Покупку контрольно-измерительных приборов;

Покупку дополнительного оборудования;

Налоги и процент сервиса сайт

После стендовых испытаний двигателя я планирую собрать демонстрационный беспилотный аппарат. А также собрать генератор электроэнергии использующий принцип работы этого двигателя. Если удастся собрать средств больше чем запланировано, то смогу приступить к реализации планов без организации нового проекта краудфандинга.

Человечество всегда стремилось к звездам, но только в XX веке, с развитием науки и технологий, смогло достичь безвоздушного пространства. Предолеть земное притяжение сложно, и для достижения цели было необходимо изобрести что-то особенное. В качестве такого средства передвижения выступили ракетные двигатели. И если рассматривать то, что есть сейчас, и что может появиться в ближайшее время, то какие перспективы на дальний космос имеет человечество?

Что такое ракетный двигатель, и какие его виды существуют?

Под ракетным двигателем понимают механизм, в котором рабочее тело и источник энергии для работы расположены в самом средстве передвижения. Он является единственным средством вывода полезных грузов на орбиту Земли, а также может работать в безвоздушном космическом пространстве. Основная ставка сделана на преобразование потенциальной энергии топлива в кинетическую, которая используется в виде реактивной струи. Исходя из вида источника энергии различают химические, ядерные и электрические ракетные двигатели.

В качестве характеристики эффективности используется понятие удельного импульса (или тяги): отношение количества движения к расходу массы рабочего тела. Рассчитывается в м/с. Но даже если ракетные двигатели имеют значительный импульс, это не значит, что они используются. Почему так происходит, вы узнаете, прочитав о ядерном и электрическом механизмах.

Химический ракетный двигатель

В их основе находится химическая реакция, в которую вступают горючее и окислитель. Во время реакции продукты сгорания нагреваются до значительных температур, при этом они расширяются и разгоняются в соплах, чтобы затем покинуть двигатель. Тепло, выделяемое таким двигателем, используется на расширение рабочего тела, имеющего газообразный вид. Существует два типа механизмов такого типа.

Твердотопливные двигатели имеют простую конструкцию, они дешевы в изготовлении и не требуют значительных затрат на хранение и подготовку к эксплуатации. Это обуславливает их надёжность и желанность в использовании. Но одновременно такой тип имеет существенный недостаток - очень высокий расход топлива. Также оно состоит здесь из смеси горючего и окислителя. Более эффективным, но одновременно и сложным является жидкостный ракетный двигатель. В нём горючее и окислитель находятся в разных резервуарах и дозированно подаются в сопло. Важным преимуществом является то, что можно регулировать уровень подачи и, соответственно, скорость космического корабля. Несмотря на то что такие ракетные двигатели обладают невысоким удельным импульсом, они развивают сильную тягу. Такое их свойство привело к тому, что сейчас на практике используются исключительно они.

Ядерный ракетный двигатель

Это один из вероятных аналогов для современных систем движения. В ядерном ракетном двигателе рабочее тело нагревается благодаря энергии, которая выделяется при радиоактивном распаде или термоядерном синтезе. Такие механизмы позволяют достигать значительного удельного импульса. А их общая тяга сравнима с этим показателем у химических двигателей. Но сколько типов механизмов на основе ядерной энергии различают? Всего 3:

  1. Радиоизотопные.
  2. Ядерные.
  3. Термоядерные.

Использование ядерных ракетных двигателей в атмосфере Земли довольно проблематично из-за радиационного загрязнения. Возможным решением этой проблемы станет газофазный тип.

Электрический ракетный двигатель

Этот тип имеет самый большой потенциал развития и использования в будущем. Электрические ракетные двигатели подают большие надежды. Так, их удельный импульс может достигать значений 210 км/с. Различают 3 типа двигателей:

  1. Электротермические.
  2. Электростатические (ионный ракетный двигатель, например).
  3. Электромагнитные.

Особенностью (про которую можно сказать, что она является и преимуществом, и недостатком) является то, что при увеличении удельного импульса необходимо меньше горючего, но больше энергии. С этой точки зрения неплохие шансы имеет ионный ракетный двигатель, который работает на газе. На данный момент он применяется на практике для корректировки траектории орбитальных станций и спутников. Ограниченность источников электроэнергии в космическом пространстве, а также проблемы с работоспособностью на высоте свыше 100 километров пока мешают их широкой эксплуатации. Большой потенциал использования имеют плазменные ракетные двигатели, в которых рабочее тело имеет состояние плазмы, но находящиеся пока только в стадии эксперимента.

Стоимость запуска ракеты-носителя в современной космонавтике остается довольно высокой, достигая порой нескольких сотен миллионов долларов. Чтобы существенно снизить ее, конструкторы из разных стран мира разрабатывают принципиально новые виды ракетных двигателей, способные выводить полезный груз на орбиту при меньших энергозатратах по сравнению с обычными силовыми установками. На сегодня из различных перспективных проектов такого рода наиболее близки к реализации три. Мы решили разобраться в их особенностях.

Во всем мире в 2015 году были произведены 87 запусков ракет-носителей с различной полезной нагрузкой: 29 запусков пришлись на Россию, 20 - на США, 19 - на Китай, девять - на Европейское космическое агентство, пять - на Индию, четыре - на Японию и один - на Иран. Из этого количества пять запусков были неудачными и окончились потерей двух автоматических космических кораблей и десяти спутников. В 2014 году страны осуществили 92 запуска ракет-носителей, а годом ранее - 80. Сегодня стоимость выведения полезного груза на орбиту составляет от 15 до 25 тысяч долларов за один килограмм при выводе спутников на геопереходную орбиту, откуда они переходят на геостационарную. Запуск космического аппарата на низкую орбиту обходится дешевле, но все равно достаточно дорого - от 2,4 до 6 тысяч долларов на килограмм.

Неудивительно поэтому, что во многих странах ведутся работы по созданию технологий, способных существенно снизить стоимость космических запусков. При этом разные разработчики идут разными путями. Например, американская компания SpaceX занимается созданием ракет-носителей Falcon Heavy с возвращаемой первой ступенью. В компании уверены, что многоразовость первой ступени Falcon Heavy позволит снизить стоимость запуска полезного груза на низкую орбиту Земли до двух тысяч долларов за килограмм и до 9–11 тысяч при запуске на геопереходную орбиту. А американская же компания JP Aerospace занимается созданием многоступенчатой системы запуска, в которой первые две ступени будут представлены дирижаблями.

Словом, различных технологий, нацеленных на снижение стоимости запусков, сегодня разрабатывается много. К ним относятся и ракеты-носители с корпусами из современных материалов, и способные на самолетные взлет и посадку ракетопланы, и навигационные системы возвращаемых ступеней ракет. Но главное место среди них занимают новые двигатели. Правда, в этой области чаще всего речь идет об усовершенствовании конструкций уже существующих ракетных двигателей. Например, двигатель Merlin компании SpaceX обладает значительной мощностью, но при этом относится к традиционным жидкостным ракетным двигателям. Впрочем, есть и оригинальные решения, прежде не применявшиеся для ракет-носителей. О трех наиболее интересных из них, с точки зрения конструкции и потенциальной выгоды, мы расскажем ниже.

Гибридный двигатель

В начале 1990-х годов британская компания Reaction Engines занялась разработкой нового типа ракетного двигателя, который потреблял бы существенно меньше жидкого окислителя, но был бы эффективен на всех высотах полета. Предполагалось, что он будет совмещать в себе качества воздушного турбореактивного и ракетного двигателей. Новый проект получил название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Принцип силовой установки относительно прост: при полете в атмосфере для сжигания топлива используется атмосферный кислород, а при выходе в безвоздушное пространство двигатель переключается на использование жидкого кислорода из баков.

Согласно проекту, двигатель SABRE получит универсальную камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель. В полете воздух будет поступать в воздухозаборник, а дальше по специальным обводным каналам - в охладитель и камеру сгорания. В зоне охладителя предусмотрена установка турбины и компрессора: при выходе реактивной струи из сопла воздух будет затягиваться в двигатель и раскручивать турбину, которая в свою очередь будет раскручивать компрессор. Последний станет сжимать охлажденный воздух, что позволит увеличить его подачу в камеру сгорания, а следовательно и полноту сгорания топлива и его энергетическую отдачу.

Предполагается, что в атмосферном режиме новый гибридный ракетный двигатель будет работать на скоростях полета до пяти чисел Маха (6,2 тысячи километров в час). По мере увеличения скорости воздух в воздухозаборнике - из-за его резкого торможения и сжатия - будет становиться все горячее и горячее. Это ухудшит его компрессию, а значит, и общую эффективность двигателя. Поэтому для охлаждения поступающего воздуха предполагается использовать специальную сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Их установят в воздуховоде. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя.

По расчетам разработчиков, система позволит охлаждать поступающий воздух с более чем одной тысячи градусов Цельсия до минус 150 градусов Цельсия за одну сотую секунды. При этом сжижения воздуха, способного резко снизить эффективность двигателя, не произойдет. После превышения скорости в пять чисел Маха воздухозаборник будет перекрыт, а двигатель переключится на потребление жидкого кислорода из бака. В таком варианте он сможет функционировать в разреженных верхних слоях атмосферы и в безвоздушном пространстве. В качестве топлива планируется использовать жидкий водород. Испытания отдельных узлов SABRE проводились Reaction Engines с 2012 года и признаны успешными.

В настоящее время британская компания занимается сборкой демонстратора технологий двигателя, испытания которого на конец 2017-го - первую половину 2018 года. В атмосферном режиме этот аппарат сможет развивать тягу в 196 килоньютонов. По своим размерам прототип силовой установки будет соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135. Такие двигатели ставятся на американские истребители F-35 Lightning II. Длина F135 составляет 5,6 метра, а диаметр - 1,2 метра. Эта силовая установка способна развивать тягу до 191 килоньютона в режиме форсажа. Полноценная установка SABRE будет немного крупнее и в атмосферном режиме сможет развивать тягу в 667 килоньютонов. Ее испытания запланированы на 2020–2021 годы.

В британской компании полагают, что благодаря ее двигателю ракету-носитель можно будет сделать одноступенчатой. Причем эта единственная ступень станет возвращаемой. Новая силовая установка будет потреблять топлива и особенно окислителя гораздо меньше обычного ракетного двигателя, ведь для полета на атмосферном участке кислород для сжигания горючего предполагается брать из воздуха. Британские двигатели планируется использовать в перспективных американских многоразовых двухступенчатых космических кораблях, которые, по предварительным расчетам, позволят выводить полезную нагрузку на низкую околоземную орбиту по 1,1–1,4 тысячи долларов за килограмм.


Гиперзвуковой двигатель

Запуск ракеты с гиперзвуковым прямоточным воздушно-реактивным двигателем в Индии на полигоне Шрихарихота

В конце августа 2016 года индийская Организация космических исследований первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Успешное испытание силовых установок состоялось на полигоне Шрихарихота на востоке страны. Для проверки разработчики использовали обычную твердопливную двухступенчатую ракету-носитель ATV, ко второй ступени которой и были прикреплены гиперзвуковые двигатели. Во время летных испытаний силовых установок исследователи проверили зажигание на сверхзвуковой скорости, устойчивое горение топлива, механизм забора воздуха и систему впрыска топлива. Общая продолжительность полета второй ступени составила 300 секунд, из которых пять секунд работали гиперзвуковые двигатели.

Индийские силовые установки, создаваемые в рамках проекта SRE (Scramjet Rocket Engine, гиперзвуковой прямоточный воздушно-реактивный ракетный двигатель), работали на скорости полета чуть больше шести чисел Маха. Ступень с двигателями поднялась на высоту 70 километров. Целью первого испытания гиперзвуковых двигателей была проверка стабильности их работы, а не возможности этих силовых установок разгонять носители до гиперзвуковых скоростей. В ближайшее время разработчики планируют завершить обработку данных, полученных во время первого запуска силовых установок, и провести еще серию их испытаний. Предполагается, что гиперзвуковые двигатели будут разгонять вторую ступень ракет-носителей до восьми-девяти чисел Маха.

Технические подробности о своих гиперзвуковых установках индийцы не раскрывают. Однако общая схема таких двигателей, разрабатываемых в нескольких странах мира с 1970-х годов, известна. Гиперзвуковой прямоточный воздушно-реактивный двигатель отличается от обычных тем, что топливо в его камере сгорает в сверхзвуковом воздушном потоке. При этом воздух для процесса горения подается в камеру прямотоком без использования дополнительных компрессоров. Выглядит это так: набегающий воздушный поток попадает в воздухозаборник, а затем в заужающуюся компрессорную камеру, где сжимается и откуда поступает в камеру сгорания. Что самое интересное, такие гиперзвуковые двигатели могут вообще не иметь никаких подвижных частей.

Гиперзвуковые силовые установки способны работать при скорости полета не менее четырех-пяти чисел Маха - именно при такой скорости обеспечивается необходимое сжатие воздуха и стабильное сгорание топлива. Теоретическим верхним пределом скорости гиперзвукового двигателя считаются 24 числа Маха. При этом силовая установка сможет развивать и большие скорости, если в камеру сгорания будет дополнительно впрыскиваться жидкий окислитель. Максимальная высота полета, на которой гиперзвуковые двигатели могут работать без потребности в дополнительном впрыске окислителя, составляет 75 километров. Для сравнения, низкая околоземная орбита начинается с отметки в 160 километров.

Помимо Индии, активными работами по созданию гиперзвуковых ракетных двигателей сегодня занимаются США, Россия, Китай и Австралия. США и Россия планируют устанавливать новые силовые установки на гиперзвуковые боевые ракеты, разведывательные аппараты и истребители шестого поколения. Австралия, ведущая разработки совместно с американцами, тоже намерена оснастить новыми двигателями ракеты. Китай, помимо боевого применения силовых установок, намерен использовать их и в ракетах-носителях. По неподтвержденным данным, гиперзвуковые двигатели будут разгонять китайские ракеты-носители до 10–12 чисел Маха, а боевые ракеты - до 20 чисел Маха. Первые испытания китайской гиперзвуковой ракеты состоялись в июне прошлого года.

В США и России полагают, что использование гиперзвуковых двигателей в ракетах-носителях усложнит, а не упростит их конструкцию. Кроме того, исследователи считают, что такие силовые установки не смогут развивать достаточную для запуска больших грузов тягу. Индийские же и китайские разработчики уверены, что использование гиперзвуковых прямоточных воздушно-реактивных двигателей в ракетах-носителях позволит отказаться от большей части жидкого окислителя, который будет необходим лишь на заатмосферном участке полета. А проблему возможной недостаточности тяги можно будет решить установкой нескольких гиперзвуковых силовых установок, причем выгода от отказа от окислителя нивелирована не будет - совокупная масса двигателей благодаря простой конструкции будет невелика.

Детонационный двигатель

Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.

В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.


В спиновых детонационных двигателях используется кольцевая камера сгорания. В ней топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает, пока подаются топливо и окислитель. Во время работы двигателя детонационная волна «обегает» кольцевую камеру сгорания, причем топливная смесь за ней успевает обновиться. При этом, если в импульсном двигателе в камеру сгорания следует подавать предварительно подготовленную смесь топлива и окислителя, то в спиновом двигателе этого делать не нужно - фронт высокого давления, движущийся перед детонационной волной, вполне эффективно смешивает необходимые компоненты. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

В новом российском спиновом детонационном ракетном двигателе частота спиновой детонации составляет 20 килогерц, то есть за одну секунду детонационная волна успевает «обежать» кольцевую камеру сгорания 20 тысяч раз. Теоретически, детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха, а при использовании дополнительных агрегатов, например компрессора, верхний предел можно поднять до семи-восьми чисел Маха. Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в базовом варианте в них отсутствует компрессор и многие движущиеся части.

Благодаря своей экономичности при высокой выдаваемой мощности спиновые детонационные двигатели в ракетах-носителях позволят существенно сократить объемы топлива и окислителя, необходимые для вывода полезного груза на орбиту. На практике (и это свойственно всем уже перечисленным проектам), уменьшение массы двигателя (а силовая установка будет весить меньше обычной ракетной), топлива и окислителя позволит либо увеличить забрасываемый вес носителя при сохранении его габаритов, либо оставить забрасываемый вес неизменным при уменьшении габаритов ракеты. Забрасываемый вес ракеты-носителя - это масса последней ступени, ее топлива и полезного груза.

В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.



Василий Сычёв