Какой ракетный двигатель самый лучший? Скорость истечения газов. Химические ракетные двигатели

Химические ракетные двигатели

В качестве пары горючее + окислитель могут использоваться различные компоненты. В современных криогенных двигателях используется пара жидкий кислород + жидкий водород (наиболее эффективные компоненты для ЖРД). Другой группой компонентов являются самовоспламеняющиеся при контакте друг с другом, пример такой схемы - азотный тетраоксид + несимметричный диметилгидразин. Довольно часто применяется пара жидкий кислород + керосин. Существенно соотношение компонентов: на 1 часть горючего может подаваться от 1 части окислителя (топливная пара кислород + монометилгидразин) до 5 и даже 19 частей окислителя (топливные пары азотная кислота + керосин и фтор + водород соответственно).

Обладая сравнительно невысоким удельным импульсом (в сравнении с электрическими ракетными двигателями), химические ракетные двигатели позволяют развивать большую тягу, что особенно важно при создании средств выведения полезной нагрузки на орбиту или для осуществления межпланетных полётов в относительно короткие сроки.

На конец 1-го десятиления XXI в. все, без исключения, ракетные двигатели, применяемые в ракетах военного назначения, и все, без исключения, двигатели ракет-носителей космических аппаратов - химические.

Следует так же отметить, что в настоящее время для химических ракетных двигателей практически достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса , а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

  • 1. Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).
  • 2. Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер ,Галилео , Кассини-Гюйгенс ,Улисс).

Если кратковременная пилотируемая экспедиция к Марсу или Венере с использованием химических двигателей ещё представляется возможной (хотя существуют сомнения в целесообразности такого рода полётов), то для путешествия к более далёким объектам Солнечной системы размеры необходимой для этого ракеты и длительность полёта выглядят нереалистично.

Для ряда случаев выгодно применять гибридные ракетные двигатели , в котором один компонент ракетного топлива хранится в твёрдом состоянии, а другой (как правило - окислитель) - в жидком. Такие двигатели обладают меньшей стоимостью, чем жидкостные, более надёжны. В отличие от твёрдотопливных, допускают многократное включение. При длительном хранении заряда его характеристики ухудшаются незначительно.

Ядерные ракетные двигатели

Ядерный ракетный двигатель - реактивный двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза). Различают радиоизотопные, ядерные и термоядерные ракетные двигатели .

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными.Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных - см. ниже), на ступенях ракет-носителей, работающих в пределах земной атмосферы.Впрочем, конструктивно совершеный ГФЯРД -исходя из его расчётных тяговых характеристик- может легко решить проблему создания полностью многоразовой одноступенчатой ракеты-носителя.

ЯРД по агрегатному состоянию ядерного топлива в них подразделяются на твёрдо, жидко- и газофазные. В твёрдофазных ЯРД делящееся вещество, как и в обычных ядерных реакторах , размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать (лучистой энергией в данном случае можно пренебречь) газообразное рабочее тело (обычно - водород , реже - аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура РТ ограничена максимальной допустимой температурой элементов конструкции (не более 3 000 °К), что ограничивает скорость истечения. Удельный импульс твердофазного ЯРД,по современным оценкам, составит 800-900 м/с, что вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Такие ядерные ракетные двигатели были созданы и успешно испытаны на стендах (программа NERVA в США, ядерный ракетный двигатель РД-0410 в СССР).Жидкофазные ЯРД являются более эффективными: ядерное топливо в их активной зоне находится в виде расплава, и, соответственно, тяговые параметры таких двигателей выше (удельный импульс может достигать величин порядка 1500 с.)

В газофазных ЯРД (ГФЯРД) делящееся вещество, (например-уран), также как и рабочее тело, находится в газообразном состоянии и удерживается в рабочей зоне электромагнитным полем (один из многих предложенных вариантов конструкции). Существует также конструкция ГФЯРД, в которой ядерное топливо (раскаленный урановый газ или плазма) заключено в термоустойчивую оптически прозрачную капсулу, т. н. ядерную лампу (light bulb) и таким образом полностью изолировано от омывающего «лампу» потока рабочего тела- нагрев последнего происходит за счет излучения «лампы». В некоторых разработках для материала ядерной лампы предлагалось использовать искусственный сапфир или подобные материалы. В случае же удержания ядерной плазмы электромагнитным полем существует небольшая утечка делящегося вещества во внешнюю среду и в конструкции предусмотрена подача ядерного топлива в активную зону для восполнения его количества.

Строго говоря, в случае газофазного ЯРД лишь часть активной зоны должна находиться в газообразном состоянии, так как периферийные части активной зоны могут, за счёт предварительного контактного подогрева водорода, выделять до 25 % нейтронной мощности и обеспечивать критическую конфигурацию активной зоны при относительно небольшом размере собственно газообразного ТВЭЛа. Использование, например, бериллиевого, также охлаждаемого, вытеснителя нейтронов, позволяет повысить концентрацию нейтронов в нейтронодефицитном газофазном ТВЭЛе, в 2-2,5 раза по сравнению с показателем для твердофазной части зоны. Без такого «трюка» размеры газофазного ЯРД стали бы неприемлемо большими, так как для достижения критичности газофазный ТВЭЛ должен иметь очень большой размер, из-за низкой плотности высокотемпературного газа.

Рабочее тело (водород) содержит частицы углерода для эффективного нагрева за счёт поглощения лучистой энергии. Термостойкость элементов конструкции в ЯРД этого типа не является сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 000 м/с (удельный импульс порядка 3000 м/с.) при температуре рабочего тела на выходе из сопла до 12000 К. В качестве ядерного топлива для ГФЯРД предлагается, в частности, уран-233.Существуют варианты ГФЯРД закрытой (в том числе с «ядерной лампой») и открытой схемы (с частичным смешением ядерного топлива и рабочего тела).Считается, что газофазные ЯРД могут быть использованы в качестве двигателей первой ступени, несмотря на утечку делящегося вещества. В случае же использования закрытой схемы ГФЯРД с «ядерной лампой» факел тяги двигателя может иметь относительно невысокую радиоактивность.

Первые исследования в области ЯРД были начаты еще в 1950-х гг. На настоящий момент ядерные ракетные двигатели с делящимся веществом в твердой фазе находятся на стадии экспериментальной отработки. В Советском Союзе и в США твердофазные ЯРД активно испытывались в 70-х годах XX века . Реактор «Nerva » был готов к использованию в качестве двигателя третьей ступени ракеты-носителя «Сатурн V », (см. Сатурн C-5N) однако лунную программу к этому времени закрыли, а других задач для этих РН не было. В СССР к концу 1970-х гг был создан и активно проходил испытания на стендовой базе в районе Семипалатинска ядерный ракетный двигатель РД- 0410 . Основу этого двигателя с тягой 3,6 т составлял ядерный реактор ИР-100 с топливными элементами из твердого раствора карбида урана и карбида циркония. Температура водорода достигала 3000 оК при мощности реактора ~ 170 МВт.

Газофазные ЯРД в настоящий момент находятся на стадии теоретической отработки, однако и в СССР, и в США проводились также и экспериментальные исследования. В СССР, в частности, был разработан действующий тепловыделяющий элемент для ГФЯРД. Ожидается, что новый толчок к работам над газофазными двигателями дадут результаты эксперимента «Плазменный кристалл», проводившегося на орбитальных космических станциях «МИР » и МКС .

На конец 1-го десятиления XXI в. нет ни одного случая практического применения ядерных ракетных двигателей, несмотря на то, что основные технические проблемы создания такого двигателя были решены ещё полвека тому назад. Основным препятствием на пути практического применения ЯРД являются оправданные опасения того, что авария летательного аппарата с ЯРД может создать значительное радиационное загрязнение атмосферы и некоторого участка поверхности Земли, нанеся как прямой вред, так и осложнив геополитическую ситуацию. Вместе с тем очевидно, что дальнейшее развитие космонавтики, приняв масштабный характер, не сможет обойтись без применения схем с ЯРД, так как химические ракетные двигатели уже достигли практического предела своей эффективности и их потенциал развития весьма ограничен- а для создания скоростного, долговременно работающего и экономически оправданного межпланетного транспорта химические двигатели по ряду причин непригодны.

Электрические ракетные двигатели

Плазменные ракетные двигатели

Плазменный двигатель (далее ПД) - ракетный двигатель, в котором рабочее тело ускоряется, находясь в состоянии плазмы. Скорости истечения рабочего тела, достижимые в ПД, существенно выше скоростей, предельных для обычных газодинамических (химических или тепловых) двигателей. Увеличение скорости истечения позволяет получать данную тягу при меньшем расходе рабочего тела, что облегчает массу ракетной системы.Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение - в качестве двигателей для поддержания точек стояния геостационарных спутников связи - получили СПД (стационарные плазменные двигатели), идея которых была предложена А.И.Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1968 г.Плазменные двигатели не следует путать с ионными.ПД не предназначен для вывода грузов на орбиту, он может эффективно работать только в вакууме. Принцип работы заключается в том, что нейтральный газ, обычно водород (азот), подается в передний отсек и ионизируется. Образующаяся плазма разогревается электромагнитным полем в центральной камере посредством ионного циклотронного резонансного нагрева. В ходе этого процесса радиоволны передают свою энергию плазме, нагревая ее, подобно тому, как это происходит в микроволновой печи.После нагревания плазма направляется магнитным полем в последний отсек для создания модулированной тяги. Последний отсек - это магнитное сопло, преобразующее энергию плазмы в скорость истечения струи, обеспечивающее при этом защиту конструкции и эффективный выход плазмы из магнитного поля. Выше описан принцип работы двигателя VASIMR

Разработка проекта действующей модели ракеты тесно связана с вопросом о двигателе. Какой двигатель лучше поставить на модель? Какие из его характеристик являются главными? В чем их сущность? Разбираться в этих вопросах моделисту необходимо.

В этой главе по возможности элементарно рассказывается о характеристиках двигателя, т. е. тех факторах, которые определяют его особенности. Ясное представление о значении тяги двигателя, времени его работы, суммарном и удельном импульсе и их влиянии на качество полета модели ракеты поможет модели-сту-конструктору правильно выбрать двигатель для модели ракеты, а значит, обеспечит успех в соревнованиях.

Основными характеристиками ракетного двигателя являются:

  • 1. Тяга двигателя Р (кг)
  • 2. Время работы t (сек)
  • 3. Удельная тяга Р уд (кг·сек/кг)
  • 4. Суммарный (общий) импульс J ∑ (10 н·сек ≈ 1 кг·сек)
  • 5. Вес топлива G T (кг)
  • 6. Секундный расход топлива ω (кг)
  • 7. Скорость истечения газов W (м/сек)
  • 8. Вес двигателя G дв (кг)
  • 9. Размеры двигателя l, d (мм)

1. Тяга двигателя

Рассмотрим схему возникновения тяги в ракетном двигателе.
В процессе работы двигателя в камере сгорания непрерывно образуются газы, являющиеся продуктами сгорания топлива. Допустим, что камера, в которой находятся под давлением газы, представляет собой замкнутый сосуд (рис. 11, а), тогда легко понять, что никакой тяги в этой камере возникнуть не может, так как давление распределяется одинаково по всей внутренней поверхности замкнутого сосуда и все силы давления взаимно уравновешены.

В случае же открытого сопла (рис. 11, б) газы, находящиеся в камере сгорания под давлением, устремляются с большой скоростью через сопло. При этом часть камеры напротив сопла оказывается неуравновешенной. Силы давления, действующие на ту часть площади дна камеры, которая находится против отверстия сопла, тоже неуравновешены, в результате чего и возникает тяга.

Если рассматривать только поступательное движение газов вдоль камеры сгорания и сопла, то распределение скорости газов на этом пути можно охарактеризовать кривой (рис. 12, а). Давление на элементы поверхности камеры и сопла распределяются так, как показано на рис. 12, б.

Величина нескомпенсированной площади дна камеры сгорания равна площади наименьшего сечения сопла. Очевидно, чем больше площадь этого сечения, тем большее количество газов сможет покинуть камеру сгорания в единицу времени.

Таким образом, можно сделать вывод: тяга двигателя зависит от количества газов, покидающих камеру сгорания в единицу времени в результате нескомпенсированной площади и скорости истечения газов, обусловленной неуравновешенностью давлений.

Для получения количественной зависимости рассмотрим изменение количества движения газов при их истечении из камеры сгорания. Допустим, что в течение времени t камеру сгорания двигателя покидает некоторое количество газа, массу которого обозначим т. Если предположить, что поступательная скорость газов в камере сгорания равна нулю, а на выходе из сопла достигает значения W м/сек, то изменение скорости газа будет равно W м/сек. В этом случае изменение количества движения упомянутой массы газа запишется в виде равенства:


Однако изменение количества движения газов может произойти только в том случае, если на газ будет действовать некоторая сила Р на протяжении некоторого времени t, тогда


где J ∑ =P·t - импульс силы, действующий на газ.

Заменив в формуле (1) значение ΔQ на равное J ∑ =P·t, получим:


отсюда

Мы получили выражение силы, с которой стенки камеры сгорания и сопла действуют на газ, вызывая изменение его скорости от 0 до W м/сек.

В соответствии с законами механики сила, с которой стенки камеры и сопла действуют на газ, равна по величине силе Р, с которой в свою очередь газ действует на стенки камеры и сопла. Эта сила Р и есть тяга двигателя.


Известно, что масса любого тела связана с его весом (в данном случае с весом топлива в двигателе) соотношением:
где G T - вес топлива;
g - ускорение силы земного тяготения.

Подставив в формулу (5) вместо массы газа m ее аналогичное значение из формулы (6), получим:


Величина G T /t представляет собой весовое количество топлива (газа), покидающего камеру сгорания двигателя за единицу времени (1 сек). Эту величину называют весовым секундным расходом и обозначают ω. Тогда
Итак, мы вывели формулу тяги двигателя. Необходимо заметить, что такой вид формула может иметь лишь в том случае, когда давление газа в момент прохождения его через выходной срез сопла равно окружающему давлению. В противном случае в правую часть формулы добавляется еще один член:
где f - площадь выходного сечения сопла (см 2);
р к - давление газа в выходном сечении сопла (кг/см 2);
р о - окружающее (атмосферное) давление (кг/см 2).

Таким образом, окончательно формула тяги ракетного двигателя имеет вид:


Первый член правой части ω/g·W носит название динамической составляющей тяги, а второй f(р к -р о) - статической составляющей. Последняя составляет около 15% от общей тяги, поэтому для простоты изложения в расчет приниматься не будет.

Для расчета тяги можно использовать формулу, имеющую аналогичное значение с формулой (5), при Р=const:


где Р ср - средняя тяга двигателя (кг);
J ∑ - суммарный импульс двигателя (кг·сек);
t - время действия двигателя (сек).

При постоянном значении тяги часто используется формула


где Р уд - удельная тяга двигателя (кг·сек/кг);
Υ - удельный вес топлива (г/см 3);
U - скорость горения топлива (см/сек);
F - площадь горения (см 2);
Р - тяга двигателя (кг).

В случаях непостоянной тяги, например при определении начальной, максимальной, средней тяги и тяги в любой момент времени действия двигателя, в эту формулу необходимо вводить истинные значения U и F данного двигателя.

Итак, тяга является произведением эффективной скорости истечения газов W на массовый секундный расход топлива ω/g.

Задача 1 . Определить тягу ракетного двигателя типа ДБ-З-СМ-10, имея следующие данные: Р уд =45,5 кг·сек/кг; G T =0,022 кг; t=4 сек.

Решение . Эффективная скорость истечения газов из сопла:


Секундный расход топлива:

Тяга двигателя:

Примечание . Для двигателя ДБ-З-СМ-10 - это средняя тяга.

Задача 2 . Определить тягу ракетного двигателя типа ДБ-З-СМ-10, имея следующие данные: 1 кг·сек; G T =0,022 кг; t=4 сек.

Решение . Используем формулу (11):

2. Скорость истечения газов

Скорость истечения газов из сопла двигателя, так же как и секундный расход топлива, имеет непосредственное влияние на величину тяги. Тяга двигателя, как усматривается из формулы (8), прямо пропорциональна скорости истечения газов. Таким образом, скорость истечения является важнейшим параметром ракетного двигателя.

Скорость истечения газов зависит от разных факторов. Важнейшим параметром, характеризующим состояние газов в камере сгорания, является температура (Т°К). Скорость истечения прямо пропорциональна квадратному корню из температуры газов в камере. Температура в свою очередь зависит от количества тепла, выделяемого при сгорании топлива. Таким образом, скорость истечения зависит прежде всего от качества топлива, его энергетического ресурса.

3. Удельная тяга и удельный импульс

Совершенство двигателя и эффективность его работы характеризуются удельной тягой. Удельной тягой называют отношение силы тяги к секундно-весовому расходу топлива.


Размерность удельной тяги будет (кг силы·сек/кг расхода) или кг·сек/кг. В зарубежной печати размерность Руд часто записывают в виде (сек). Но физический смысл значения при такой размерности теряется.

Современные модельные РДТТ имеют низкие значения удельной тяги: от 28 до 50 кг·сек/кг. Имеются и новые двигатели с удельной тягой 160 кг·сек/кг и выше, с нижним пределом давления не выше 3 кг/см 2 и сравнительно высоким удельным весом топлива - более 2 г/см 3 .

Удельная тяга показывает эффективность использования одного килограмма топлива в данном двигателе. Чем выше удельная тяга двигателя, тем меньше топлива затрачивается для получения одного и того же суммарного импульса двигателя. Значит, при одинаковом весе топлива и размерах двигателей предпочтительнее будет тот, у которого удельная тяга выше.

Задача 3 . Определить вес топлива в каждом из четырех двигателей с суммарным импульсом 1 кг·сек, но с разными удельными тягами: а) Р уд =28 кг-сек/кг; б) Р уд =45,5 кг·сек/кг; в) Р уд =70 кг·сек/кг; г) Р уд =160 кг·сек/кг.

Решение . Вес топлива определим из формулы:


Полученные результаты наглядно показывают, что для моделей ракет выгоднее применять двигатели с более высокой удельной тягой (с целью уменьшения стартового веса модели).

Под удельным импульсом J уд понимают отношение полного импульса тяги за время t работы двигателя к весу израсходованного за это время топлива G T .

При постоянной тяге, т. е. при постоянном давлении в камере сгорания и работе двигателя на земле, J уд =Р уд.

4. Расчет характеристик двигателя ДБ-1-СМ-6

Для расчета двигателей применяется коэффициент, характерный для данного топлива и определяющий оптимальный режим в камере сгорания:
где К - постоянный коэффициент для данного топлива;
F макс - максимальная площадь горения в камере сгорания;
f кр - критическое сечение сопла.

Задача 4 . Подсчитать основные характеристики двигателя ДБ-1-СМ-6, у которого корпусом является бумажная охотничья гильза 12-го калибра. Топливом служит смесь № 1 (селитра калиевая - 75, сера - 12 и древесный уголь - 26 частей). Плотность прессования (удельный вес топлива) γ=1,3-1,35 г/см 2 , Р уд =30 кг·сек/кг, К=100. Задаемся максимальным давлением в камере сгорания в пределах 8 кг/см 2 . Скорость горения данного топлива в зависимости от давления при нормальной температуре окружающей среды представлена на графике рис. 13.

Решение . Прежде всего необходимо вычертить корпус двигателя, т. е. гильзу 12-го калибра (Жевело), что дает возможность наглядно проследить за ходом расчетов (рис. 14). Корпус двигателя (гильза) имеет уже готовое сопло (отверстие для пистона Жевело). Диаметр отверстия 5,5 мм, длина гильзы 70 мм, ее внутренний диаметр 18,5 мм, внешний - 20,5 мм, длина сопла 9 мм. Топливная шашка двигателя должна иметь свободное пространство - продольный канал, благодаря которому имеется возможность довести площадь горения топлива в двигателе до максимальной величины. Форма канала - усеченный конус, нижнее основание которого соответствует размеру отверстия в гильзе (5,5 мм), а при калибровке может быть равным 6 мм. Диаметр верхнего основания - 4 мм. Верхнее основание делается несколько меньше из-за технологических соображений и техники безопасности при удалении металлического конуса из пороховой массы. Для определения длины конуса (стержня) необходимы исходные данные, которые получают в следующем порядке.

Используя формулу (15), определяют возможную максимальную площадь горения:


Максимальная площадь горения топлива (рис. 15) образуется в результате выгорания топлива по каналу радиально до внутренней стенки камеры сгорания (гильзы) и вперед на толщину свода топливной шашки до ее полной длины h, т. е.


Внутренний диаметр гильзы 18,5 мм, однако надо помнить, что в процессе прессования топлива гильза несколько деформируется, ее диаметр увеличивается до 19 мм (1,9 см), высота цоколя уменьшается до 7 мм. Толщину свода топлива находим из выражения:
где г - средняя толщина свода топлива (см);
d 1 - диаметр канала у сопла (см);
d 2 - диаметр канала в конце (см).

Длина канала l=h 1 -r=4,27-0,7=3,57 см. Полученные размеры сразу же нанесем на чертеж (рис. 15). Длина стержня для запрессовки: 3,57+0,7=4,27 см (0,7 см - высота цоколя гильзы).

Перейдем к определению высоты маршевой части топливной шашки. Эта часть топливной шашки не имеет канала, т. е. запрессована всплошную. Назначение ее в том, чтобы после достижения наибольшего значения тяги получить маршевый участок желательно с постоянной тягой. Высота маршевой части шашки должна быть строго определенной. Горение маршевой части ракетного топлива протекает в двигателе с незначительным давлением 0,07-0,02 кг/см 2 . Исходя из этого, по графику рис. 13 определяем скорость горения маршевой части топлива: U=0,9 см/сек.

Высота маршевой части h 2 для времени горения t=1,58 сек. составит.

Которого находится в самом средстве передвижения. Ракетный двигатель - единственный практически освоенный для вывода полезной нагрузки на орбиту искусственного спутника Земли и применения в условиях безвоздушного пространства тип двигателя. Другие типы двигателей, пригодные для применения в космосе (например, ) пока еще не вышли из стадии теоретической и/или экспериментальной отработки.

Сила тяги в ракетном двигателе возникает в результате преобразования исходной энергии в реактивной струи рабочего тела. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи, различают химические ракетные двигатели , ядерные ракетные двигатели и электрические ракетные двигатели .

Характеристикой эффективности ракетного двигателя является (другое название - удельная тяга ) - отношение тяги, развиваемой ракетным двигателем, к секундному массовому расходу рабочего тела. Удельный импульс имеет размерность (Н×с)/кг и на практике обычно сокращается до м/c, то есть размерности . Для идеального ракетного двигателя удельный импульс численно равен скорости истечения рабочего тела из сопла.

Химические ракетные двигатели

Наиболее распространены химические ракетные двигатели, в которых в результате экзотермической химической реакции и (вместе именуемые ) продукты сгорания нагреваются до высоких температур, разгоняются в сверхзвуковом сопле и истекают наружу.

Наиболее просты по конструкции (РДТТ), в которых горючее и окислитель хранятся в форме твёрдых веществ, а топливный бак одновременно выполняет функции камеры сгорания. Твердотопливные двигатели удобны в эксплуатации и хранении, но менее эффективны, чем жидкостные. Удельный импульс твердотопливных двигателей - 2-3 км/с.

Ядерные ракетные двигатели

Ядерный ракетный двигатель (ЯРД) - двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерной реакции или радиоактивном распаде. Различают радиоизотопные, ядерные и термоядерные ракетные двигатели.

Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными.

Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды, что не позволяет использовать ЯРД (кроме, возможно, газофазных - см. ниже), на первых двух ступенях ракет-носителей.

ЯРД разделяются на твёрдо- и газофазные. В твёрдофазных ЯРД делящееся вещество, как и в обычных , размещено в сборках-стержнях с развитой поверхностью, что позволяет эффективно нагревать (лучистой энергией в данном случае можно пренебречь) (обычно - ), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура РТ ограничена максимальной допустимой температурой элементов конструкции (не более 3 000 °К), что ограничивает скорость истечения.

В газофазных ЯРД делящееся вещество, также как и РТ, находится в газообразном состоянии и удерживается в рабочей зоне электромагнитным полем. При этом существует небольшая утечка делящегося вещества во внешнюю среду. РТ (водород) содержит частицы , поскольку нагревается за счёт поглощения лучистой энергии. Элементы конструкции в ЯРД этого типа не являются сдерживающим фактором, поэтому скорость истечения РТ может превышать 30 000 м/с при значительном расходе. Считается, что газофазные ЯРД могут быть использованы в качестве двигателей первой ступени, несмотря на утечку делящегося вещества.

На настоящий момент ядерные ракетные двигатели с делящимся веществом в твердой фазе находятся на стадии экспериментальной отработки. В Советском Союзе и в США такие ЯРД активно испытывались в годах века. Реактор «Nerva» был готов к использованию в качестве двигателя третьей ступени ракеты-носителя , однако лунную программу к этому времени закрыли, а других задач для этих РН не было.

Газофазные ЯРД в настоящий момент находятся на стадии теоретической отработки, однако и в СССР, и в США проводились также и экспериментальные исследования. Ожидается, что новый толчок к работам над газофазными двигателями дадут результаты эксперимента «Плазменный кристалл», проводившегося на ракетные двигатели и электромагнитные ракетные двигатели.

К особенностям (обычно считаемых недостатками) электрических ракетных двигателях относят низкую тягу (не превышающую единиц для самых мощных из электрических ракетных двигателей) и неспособность работы в условиях атмосферы при высотах менее 100 км. Все это сужает область применения электрических ракетных двигателей.

В настоящий момент электрические ракетные двигатели применяются в качестве маршевых двигателей и двигателей ориентации на автоматических . Благодаря высокому удельному импульсу (скорости истечения) расход рабочего тела (РТ) небольшой, что позволяет обеспечить длительный срок активного существования КА.

К числу основных параметров и характеристик ЖРД относятся следующие.

1. Тяга ЖРД - равнодействующая реактивной силы ЖРД и сил давления окружающей среды, действующих на его внешние поверхности, за исключением сил внешнего аэродинамического сопротивления.

где - секундный массовый расход топлива (кг/с);

W а – скорость истечения на срезе сопла камеры (м/с);

F a – площадь среза сопла (м 2);

Р а – давление на срезе сопла;

Р n – давление окружающей среды.

Различают тягу на земле (на уровне моря) и в пустоте. Из определения тяги ЖРД следует, что тяга двигателя в пустоте имеет наибольшее значение, а при наличии давления окружающей атмосферы тяга соответственно снижается. Например, тяга ЖРД SSME космического корабля «Спейс-Шаттл» в пустоте равна 2,09 МН, а на земле - 1,67 МН; тяга самого мощного в мире ЖРД РД-170 каждого из четырех блоков первой ступени ракеты-носителя (РН) "Энергия" составляет 7,4 МН на земле и

8,06 МН в пустоте.

2. Удельный импульс тяги ЖРД - отношение тяги ЖРД к массовому секундному расходу топлива ЖРД.

Аналогично тяге удельный импульс тяги ЖРД максимален в пустоте и соответственно уменьшается при наличии давления окружающей среды. Удельный импульс тяги является важнейшим параметром двигателя, характеризует эффективностьжидкого ракетного топлива и совершенство конструкции двигателя. Например, для ЖРД SSME удельный импульс в пустоте (I п) равен 4464 м/с, а на земле (I з) - 3562 м/с.

3. Удельная масса ЖРД - отношение массы залитого ЖРД к его наибольшей тяге на основном режиме, причем масса залитого ЖРД определяется массой ЖРД (массой конструкции ЖРД) и компонентов топлива, заполняющих его трубопроводы и агрегаты при работе. При наличии нескольких основных режимов ЖРД его удельную массу определяют по наибольшей тяге. Удельная масса ЖРД F-1 и SSME равна 1,48 и 1,02 г/Н соответственно.

4. Тип жидкостного ракетного топлива (ЖРТ ). Обычно каждую ДУ конструируют для вполне определенного топлива, причем от него в значительной степени зависят удельные параметры ЖРД и эффективность их применения в составе ЛА. В настоящее время наибольшее применение в качестве топлива находят жидкий кислород и жидкий водород, жидкий кислород и углеводо­родное горючее (керосин и метан), а также четырехокись азота и несимметричный диметилгидразин (НДМГ).

5. Время работы ЖРД - время от первой команды на запуск ЖРД до первой команды на его выключение. Для ЖРД многократного включения время работы равно суммарному времени работы ЖРД, соответствующему всем циклам работы. Обычно для ЖРД одноразового включения время работы не превышает 1000 с. Для двигателей многократного включения кроме времени их работы (суммарного времени непрерывной работы при каждом цикле) задают число циклов работы, а также минимальное и максимальное время (паузу) между ними. Например, ЖРД J-2 третьей ступени РН "Сатурн-5" при первом цикле работал 180 с, а затем следовала пауза 4,5 ч, после чего двигатель повторно работал 300 с.

6. Ресурс работы ЖРД - суммарное время работы ЖРД, в течение которого гарантируется обеспечение всех его параметров. Обычно ресурс работы ЖРД в несколько (три и более) раз превышает время его работы в составе ЛА. Для ЖРД, используемых в составе многоразовых транспортных космических кораблей (МТКК), указанный ресурс превышает время работы в одном полете в десятки раз. Например, ЖРД SSME рассчитан на 55 полетов, и ресурс его работы (без капитального ремонта) согласно техническому заданию составляет 27·10 3 с (7,5 ч).

Ресурс работы ЖРД малой тяги (ЖРДМТ), являющихся ЖРД многократного включения, характеризуется как временем работы, так и числом циклов работы. Например, для ЖРД R-40А (основного ЖРД ДУ реактивной системы управления МТКК "Спейс-шаттл") ресурс работы составляет 2·10 4 с и 5·10 4 циклов работы.

7. Число основных режимов работы . Различают однорежимные ЖРД (двигатели с одним основным режимом работы) и многорежимные ЖРД (двигатели с несколькими основными режимами работы). ЖРД большой тяги являются однорежимными двигателями, но в последнее время за рубежом опубликовано большое число проектов двухрежимных ЖРД, в основном для одно- и двухступенчатых МТКК.

8. Диапазон изменения тяги. Для выполнения программы полета ЛА часто возникает необходимость в изменении тяги двигателя, что обеспечивается изменением массового расхода топлива в камеру ЖРД. Например, тяга ЖРД SSME в полете может изменяться в диапазоне 65...109 % P ном. Например, на 60...80-й секунде полета МТКК "Спейс-шаттл" тяга всех трех ЖРД SSME снижается примерно до 65 % Р ном для уменьшения нагрузок на корабль в зоне максимального скоростного напора. Перед выключением тяга указанных двигателей непрерывно снижается, чтобы перегрузки на космонавтов не превышали значения 3g. .

9. Давление в камере Р к - среднее статическое давление продуктов сгорания в начале камеры сгорания у смесительной головки. Р к определяет массу ЖРД. Чем выше Р к , тем меньше габариты, а, следовательно, и масса двигателя. Поэтому стремятся к повышению давления в камере. У современных двигателей Р к = 25…30 МПа.

10. Импульс тяги ЖРД - интеграл от тяги ЖРД по времени. Значение импульса тяги ЖРД равно площади под кривой зависимости тяги от времени работы.