Определение модуля упругости резины формулы. Описание экспериментальной установки

Тема: Опытная проверка закона Гука. Определение модуля упругости первого рода и коэффициента Пуассона.

Цель работы:

1. Проверить в пределах упругости линейность связи деформации и нагрузки.

2. Определить числовые значения упругих постоянных E (модуля упругости первого рода) и (коэффициента Пуассона) для стали.

3. Выяснить при этом физический смысл этих постоянных.

I. НЕОБХОДИМы Е ПРИБОРЫ И ОБОРУДОВАНИЕ:

1. Стальной образец прямоугольного поперечного сечения.

2. Разрывная машина с силоизмерительным устройством УМ-5.

3. Тензометр – прибор для измерения упругих удлинений.

4. Штангенциркуль.

П. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

Упругие постоянные материалов используются при решении большого числа задач прочности и всех задач жёсткости и устойчивости. Они характеризуют способность материала сопротивляться различным видам деформаций при воздействии на них внешних нагрузок. Значения упругих характеристик, равно как и всех известных физических постоянных, не могут быть постулированы или найдены на основе логических и математических рассуждений, а могут быть получены только экспериментальным путём при испытании образцов на растяжение (сжатие), изгиб и кручение.

Различают материалы изотропные и анизотропные. Изотропия означает независимость свойств материала от направления воздействия нагрузки. Изотропные материалы характеризуются тремя упругими постоянными: модулем Юнга, коэффициентом Пуассона и модулем сдвига. При этом, как показывает теория, только две из них являются линейно независимыми. Анизотропные материалы могут иметь до 18 различных характеристик.

Монокристаллы и отдельные зёрна сталей анизотропны. Однако, благодаря их малости и хаотическому расположению в пространстве сталь приобретает статистически обоснованную изотропность и нуждается в экспериментальном определении, как минимум, двух упругих постоянных (например, модуля Юнга и коэффициента Пуассона).

Модуль Юнга или модуль упругости первого рода E характеризует сопротивляемость материала деформированию в направлении воздействия растягивающих или сжимающих нагрузок. Чем больше модуль Юнга, тем меньше удлинение или укорочение стержня при прочих равных условиях (длине, площади, нагрузке). Модуль Юнга является коэффициентом пропорциональности между нормальным напряжением и относительной линейной деформацией в законе Гука, записанном в дифференциальной форме: . На основе этой формулы находят опытным путём значение модуля упругости

где - формула для напряжения при растяжении, подтверждённая теорией упругости (эталоном точности для сопротивления материалов) и опытными данными; F – сила, растягивающая образец и определяемая по силоизмерительному устройству; A – площадь поперечного сечения, определяемая путём измерения размеров; - относительная продольная деформация, определяемая методом тензометрирования .

На основании закона Гука (1) абсолютная продольная деформация бруса прямо пропорциональна внутренней продольной силе N , вызвавшей эту деформацию:

Измерив опытным путем величину осевой нагрузки F и вызванную ею продольную деформацию и зная размеры испытуемого бруса, вычисляют модуль продольной упругости по формуле, полученной из (2)

Геометрические параметры образца l и A находятся до нагружения , а нагрузка и соответствующее ей удлинение берутся из опыта.

Коэффициент Пуассона характеризует способность материала сопротивляться поперечному деформированию, т.е. изменению размеров в направлении, перпендикулярном воздействию силы. Это сопротивление французский академик Пуассон предложил характеризовать в безразмерной форме как модуль отношения поперечной и продольной относительных деформаций, определяемых опытным путём:

b и l - начальные поперечные и продольные размеры бруса, соответственно.

Для нахождения и достаточно при одной и той же нагрузке измерить абсолютное сужение и абсолютное удлинение , а также знать необходимые первоначальные размеры.

Изменение формы образца при испытаниях на растяжение


Модуль сдвига или модуль упругости второго рода G характеризует сопротивляемость материала угловым деформациям при воздействии пары сил. Он является коэффициентом пропорциональности между касательным напряжением и углом сдвига в законе Гука при сдвиге, записанном в дифференциальной форме: На основе этой формулы можно экспериментально определить модуль сдвига, например, при кручении образца круглого сечения. В данной работе модуль сдвига определяют косвенным путём, исходя из теоретической зависимости между тремя упругими постоянными:

Упругие постоянные материала имеют более стабильные значения по сравнению с механическими характеристиками. Например, для различных марок сталей временное сопротивление может отличаться в несколько раз (от 400 до 4000 МПа и выше), в то время как среднестатистические значения упругих постоянных для всех марок сталей изменяются в узких пределах:

МПа;МПа.

В лабораторной работе необходимо произвести сравнение полученных значений постоянных со средними справочными данными для стали:

МПа;МПа.

III. ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

1) Измерить ширину и толщину образца, подсчитать площадь попе­речного сечения.

2) Ознакомиться со схемой разрывной машины, разобраться в прин­ципе ее работы.

УНИВЕРСАЛЬНАЯ МАШИНА УМ-5

Универсальной машина УМ-5 называется потому, что позволяет проводить испытания на растяжение, сжатие, изгиб и срез. Максимальное усилие, развиваемое машиной – 5 тонн.

Кинематическая схема машины показана ниже.

Рис.1. 1,2 - червячный механизм; 3 - винт; 4,5 - нижний и верхний захваты образца; 6 - рычаг силоизмерительного устройства;

7,8 - верхняя и нижняя опора рычага; 9 - маятник; 10 - колесико шкалы нагрузок; 11 - колесико шкалы деформаций.

Машина УМ-5 состоит из следующих узлов: станины, нагружающего механизма с коробкой скоростей, силоизмерительного механизма, измерителя деформаций и самопишущего диаграммного устройства.

Станина представляет собой жесткую раму, образованную чугунными коробками (верхней и нижней), соединенными между собой двумя колоннами.

В нижней коробке помещается червячный механизм (1-2). При вращении червячной шестерни (2) нагружающий винт (3) получает поступательное движение вниз или вверх. Реверсирование осуществляется переключением электродвигателя. Вращение от электродвигателя передается через коробку скоростей (на схеме не показана), позволяющей установить четыре скорости нагружения - 2, 4, 10, 60 мм/мин.

На конце нагружающего винта установлен нижний захват (4). Верхний захват (5) через промежуточную тягу подвешен к рычагу (6) силоизмерителъного механизма.

Рычаг (6) имеет две опоры: нижнюю – (8) и верхнюю – (7). Благодаря этому рычаг может воспринимать как нагрузку направленную вниз (растяжение), так и вверх (сжатие). От рычага через промежуточные звенья усилие передается на короткий рычаг двуплечего маятника (9), вызывая отклонение его, пропорционально приложенной нагрузке. Груз на конце маятника составной, что позволяет получить три диапазона максимальных нагрузок - 1000, 2000 и 5000 кгс (10, 20, 50 кн ). При отклонении маятника перемещается рейка, поворачивая колесико со стрелкой. Так измеряется нагрузка.

Измеритель деформаций состоит также из рейки, связанннной одним концом с нижним захватом, а другим концом входящей в зацепление с колесиком (11). На оси с колесиком укрепляется стрелка, показывающая величину перемещения нижнего захвата, а, следовательно, и деформацию образца.

3) Разобраться со схемой рычажного тензометра и ознакомиться с реальным прибором (узнать, как он крепиться на деталь, как производится отсчет и т.п.).

ТЕНЗОМЕТР ГУГГЕНБЕРГЕРА РЫЧАЖНЫЙ

На стальном образце 1 прямоугольного поперечного сечения (рис. 2), закрепленном в захватах 2 машины УМ-5, установлены попарно (для увеличения точности измерений) рычажные тензометры Гуггенбергера: 3 – для измерения продольных деформаций, 4 – для измерения поперечных деформаций.

Рычажныйтензометр(рис. 3)устанавливаетсянаобразец 1 с помощью специальной струбцины и опирается на него двумя ножами – неподвижным 2 и подвижным3, выполненными в виде призмы.


Рис. 2. Схема закреплениятензометров на образцеРис. 3. Схема рычажного тензометра

Расстояние l 0 между ножами называется базой тензометра (минимальная - 20 мм, но с помощью удлинителей база может быть увеличена до 100 мм). При деформации образца расстояние между ножами изменяется. Подвижный нож 3 повернется и отклонит рычаг 4. Отклонение рычага 4 через тягу 5 передается на стрелку 6, которая повернется вокруг оси, закрепленной на рамке 7. Перемещение стрелки по шкале 8 пропорционально изменению расстояния между ножами.

Шкала 8 тензометра проградуирована в миллиметрах. Отношение отсчетапошкалекизменениюрасстояниямеждуножаминазывают коэффициентом увеличения тензометра K , величина которого определяется соотношением

где - размеры плеч рычагов тензометра (рис. 3).

Значение его для каждого тензометра указывается в паспорте.

Для повышения точности определения искомых упругих характеристик образец необходимо нагрузить ступенями 3-4 раза. Наибольшую нагрузку на образец можноопределить по величине предела пропорциональности или предела текучести материала по формуле:

Тогда при числе ступеней нагружений m величина ступени нагружения

III . ВЫПОЛНЕНИЕ ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

1. Штангенциркулем измеряют поперечные размеры образца b и h с точностью 0,1 мм. По формулам (4) и (5) определяют величину ступени нагружения и число опытов m и записывают эти данные в журнал наблюдений.

2. Нагружают образец предварительной нагрузкой и устанавливают стрелки 6 (рис. 2) всех четырех тензометров в исходное положение. Величину этой нагрузки и показания тензометров принимают за исходные и записывают в журнал наблюдений.

3. Нагружают образец равными ступенями и записывают соответствующие показания всех тензометров . Вычисляют среднее значение приращений показаний двух тензометров 3 для измерения продольных деформаций и двух тензометров 4 – для измерения поперечных деформаций по формулам соответственно:

где m - число ступеней нагружения .

После этого вычисляют опытные значения абсолютных продольных и поперечных деформаций

где K - коэффициент увеличения тензометра.

4. Подставив значение в формулу(3), определяют опытное значение модуля продольной упругости E . Затем, подставив значения и в формулу с учетом формулы , получают опытное значение коэффициента Пуассона .

5. Проводят анализ результатов опыта.

Форма отчета по лабораторной работе

1. Название лабораторной работы.

2. Цель лабораторной работы.

3. Испытательная машина.

4. Исходные данные.

4.1. Поперечное сечение образца: ширина b , высота h , площадь поперечного сечения A .

4.2. База тензометров:

для измерения продольных деформаций l 0 ;

для измерения поперечных деформаций b 0 .

4.3. Коэффициент увеличения тензометра K .

4.4. Табличные значения:

Модуль продольной упругости для стали E ;

Коэффициент Пуассона для стали .

F

Приращение

нагрузки

Продольнаядеформация

Поперечнаядеформация

I тензом.

II тензом.

I тензом.

II тензом.

Средние значения работа? Какой используется образец?

Как устроен рычажный тензометр? Что им измеряют? Что такое коэффициент увеличения тензометра?

Что называют базой рычажного тензометра?

С какой целью к образцу прикладывают начальную нагрузку?

Что такое ступень нагружения?

Как вычисляют коэффициент увеличения тензометра?

Как определяется наибольшая нагрузка, прикладываемая к образцу?

Что собой представляет центральное растяжение - сжатие?

Напишите формулу для определения нормальных напряжений при центральном растяжении.

Как записывается формула абсолютного удлинения бруса при растяжении? Что такое жесткость сечения бруса при растяжении?

Что происходит с поперечными размерами бруса при его растяжении в продольном направлении?

Что собой представляет относительная линейная деформация?

Что представляют собой относительная продольная и попереч­ная деформации?

Что такое коэффициент Пуассона? Каковы пределы его изменения?

Какие свойства материала характеризует коэффициент Пуассона?

Напишите закон Гука при растяжении (сжатии). Связь каких величин отражает закон Гука?

Что такое изотропия материалов?

Какие упругие постоянные характеризуют изотропные материалы?

Сколько линейно независимых упругих постоянных имеют изотропные материалы?

Как можно характеризовать сталь по её монокристаллическому и поликристаллическому строению?

Какие свойства материала характеризует модуль Юнга?

Как записывают закон Гука при растяжении или сжатии в дифференциальной форме?

Как находят модуль Юнга?

Как вычисляют напряжение при растяжении?

Как определяют относительную продольную деформацию опытным путём?

Что представляют собой модуль упругости Е ? Каков его физический смысл?

Какие размерности имеют упругие постоянные Е и ?

Как найти из эксперимента величины относительных линей ных деформаций в продольном и поперечном направлениях?

абсолютной линейной деформациив продольномнаправле­ нии?

Можно ли определить из проведенных испытаний величину абсолютной линейной деформации в поперечном направлении?

Какие свойства материала характеризует модуль сдвига?

Как записывают закон Гука при сдвиге в дифференциальной форме?

Какая зависимость существует между упругими постоянными изотропного материала?

Какие средние значения имеют упругие постоянные стали?

С какой целью соединяют последовательно датчики, наклеенные на противоположных гранях образца?

Какие деформации могут внести существенные погрешности в результате опыта?

email:

Приложение:

Измерение модуля продольной упругости, модуля сдвига и коэффициента Пуассона (поперечной деформации) в недисперсионных изотропных конструкционных материалах.

Общие сведения:

Определяется как отношение напряжения (сила на единицу площади) к деформации сжатия.

Определяется как отношение напряжения сдвига к деформации сдвига.

Коэффициент Пуассона отношение относительного поперечного сжатия к относительному продольному растяжению.

Эти основные свойства материалов обязательно учитываются в производстве и в различных научных исследованиях, и определяются с помощью измеренных значений скорости звука и плотности материала. Скорость распространения звука легко вычисляется путем ультразвукового контроля в режиме импульс-эхо с использованием соответствующего оборудования. Представленная ниже процедура действительна для любого однородного, изотропного, недисперсионного материала (скорость звука не изменяется с частотой). Сюда включены наиболее распространенные металлы, промышленная керамика и стекло, при условии, что размеры поперечного сечения не близки длине волны частоты контроля. Жесткие пластики, такие как полистирол и акрил, также могут быть измерены, несмотря на то, что они имеют высокий коэффициент затухания ультразвука.

Каучук не может быть измерен ультразвуковым методом по причине высокой степени дисперсии и нелинейно упругих свойств. Мягкие пластики точно так же показывают высокую степень затухания в режиме сдвиговых волн, и обычно не могут быть измерены. В случае анизотропных материалов, упругость варьируется в зависимости от направления, так же как и скорость распространения продольных волн и/или сдвиговых волн. Для генерации полной матрицы модуля упругости в анизотропных образцах обычно требуется шесть серий ультразвуковых измерений. Пористость или зернистость материала может влиять на точность измерения модуля упругости, поскольку вызывает колебания скорости звука исходя из размера и ориентации зерен или размера и распределения пор, вне зависимости от упругости материала.

Оборудование:

Для измерения скорости звука при расчете упругости обычно используются прецизионные толщиномеры 38DL PLUS или 45MG с ПО для одноэлементных ПЭП , или дефектоскопы с функцией измерения скорости звука (например, серии EPOCH). Генераторы/приемники модели 5072PR или 5077PR в комбинации с осциллографом или дискретизатором сигналов также могут использоваться для измерения времени распространения волн. Для данного теста потребуется два преобразователя, подходящих для эхо-импульсного измерения скорости звука в материале продольными и поперечными волнами. Среди наиболее используемых ПЭП: широкополосный преобразователь продольных волн M112 или V112 (10 МГц) и преобразователь поперечных волн с нормальным углом падения V156 (5 МГц). Они подходят для измерения наиболее распространенных металлов и обожженных керамических образцов. Для измерения очень толстых и очень тонких материалов или образцов с высоким затуханием ультразвука требуются специальные преобразователи. В некоторых случаях применяется теневой метод контроля (метод сквозного прозвучивания) с использованием двух преобразователей, расположенных на одной оси, по разные стороны проверяемого изделия. При выборе преобразователя или настройке прибора необходимо проконсультироваться со специалистом Olympus.

Тестовый образец может быть любой формы, позволяющей выполнять эхо-импульсное измерение времени прохождения ультразвука через материал. Обычно, это образец толщиной 12,5 мм с ровными параллельными поверхностями, ширина или диаметр которого больше диаметра используемого преобразователя. Необходимо проявлять крайнюю осторожность при измерении узких образцов по причине возможных пограничных эффектов, которые могут повлиять на измеренное время прохождения импульса. При использовании сильно тонких образцов, разрешение будет ограничено из-за небольших колебаний во времени прохождения импульса через короткий УЗ-путь. Мы рекомендуем брать образцы толщиной минимум 5 мм, но желательно толще. Во всех случаях толщина тестового образца должна быть точно известна.

Процедура:

Измерьте скорость распространения продольных и сдвиговых волн тестового образца с использованием подходящих ПЭП и настроек прибора. Для измерения скорости сдвиговых волн потребуется специальная контактная жидкость высокой вязкости, как например SWC. Толщиномеры 38DL PLUS и 45MG могут напрямую измерять скорость звука в материале на основе введенной толщины образца, а дефектоскопы серии EPOCH измеряют скорость звука в ходе калибровки скорости звука. В обоих случаях, следуйте рекомендуемой процедуре измерения скорости звука, представленной в руководстве по эксплуатации прибора. При использовании генератора/приемника, зафиксируйте время прохождения сигнала туда и обратно через участок известной толщины с помощью преобразователей продольных и поперечных волн, и рассчитайте:

При необходимости, переведите единицы измерения скорости звука в дюйм/с или см/с. (Время обычно измеряется в микросекундах; для получения измерений в дюйм/с или см/с умножьте дюйм/мкс или см/мкс на 10 6 .) Полученные значения скорости звука могут использоваться в следующих формулах.


Примечание: Если скорость звука выражена в см/с, а плотность – в г/см 3 , модуль упругости будет выражен в дин/см 2 . Если вы используете английскую систему мер (дюйм/с и фунт/дюйм 3) для расчета модуля упругости в фунтах на кв. дюйм (PSI), не путайте фунт (единицу измерения силы) с фунтом (единицей измерения массы). Поскольку модуль упругости выражен как сила на единицу площади, при расчете в английской системе мер необходимо умножить результат вышеуказанной формулы на коэффициент пересчета масса/сила (1 / ускорение свободного падения) для получения значения упругости в фунтах на кв. дюйм. Если исходные расчеты выполнены в метрических единицах, используйте коэффициент конверсии 1 psi = 6,89 x 10 4 дин/см 2 . Вы также можете ввести скорость звука в дюймах/с, а плотность – в г/см 3 , а затем разделить на коэффициент пересчета 1,07 x 10 4 для получения упругости в PSI.

Для определения модуля сдвига умножьте квадрат скорости распространения поперечной волны на плотность.
Опять же, используйте единицы измерения см/с и г/см 3 для получения модуля упругости в дин/см 2 или английскую систему мер (дюйм/с и фунт/дюйм 3) и умножьте результат на коэффициент пересчета масса/сила.

Библиография
Подробнее об измерении модулей упругости ультразвуковым методом см. в представленных ниже источниках:
1. Moore, P. (ed.), Nondestructive Testing Handbook, Volume 7, American Society for Nondestructive Testing, 2007, pp. 319-321.
2. Krautkramer, J., H. Krautkramer, Ultrasonic Testing of Materials , Berlin, Heidelberg, New York 1990 (Fourth Edition), pp. 13-14, 533-534.

Цель работы: экспериментальное определение модулей упругости пластин, изготовленных из различных материалов, методом изгиба.

Приборы и принадлежности: установка «Модуль Юнга», пластины, набор грузов массой 0.05 кг, 0.1 кг и 0.15 кг.

Элементы теории и метод эксперимента

В различных элементах конструкций и машин часто возникают только продольные усилия, которые вызывают в них деформацию растяжения или сжатия.

Английский ученый XVII века Роберт Гук открыл фундаментальную закономерность между силами и вызываемыми ими перемещениями, устанавливающую прямопропорциональную зависимость удлинения образца от растягивающей силы.

Английский ученый XIX века Томас Юнг впервые высказал идею о том, что для каждого материала существует постоянная величина, характеризующая его способность сопротивляться воздействию внешних нагрузок. Понятие об этой величине, названной им «модулем упругости» (позднее «модулем Юнга»), было сформулировано в 1807 г. в труде «Натуральная философия».

Модуль упругости характеризует важнейшее свойство конструкционного материала – жесткость – и является фундаментальным понятием, без которого не обходится ни один инженерный расчет элементов конструкций и сооружений. На рис. 1 изображен стержень с прямолинейной осью под действием продольных сил N, где

σ – нормальное напряжение,

A – площадь поперечного сечения стержня.

Рис. 1. Продольные и поперечные деформации стержня

При действии продольных сил стержень деформируется. Если он растянут, то длина его увеличивается и становится равной L +∆ L , где L – это абсолютная продольная деформация (удлинение) стержня. Поперечные размеры его уменьшаются и принимают значения H –∆ H и B –∆ B , где H и B – это абсолютные поперечные деформации стержня.

Отношение абсолютной продольной деформации стержня к его первоначальной длине называется относительной продольной деформацией:

Отношение абсолютной поперечной деформации стержня к его первоначальному поперечному размеру называется относительной поперечной деформацией:

Здесь знак «+» у деформации и знак «–» у деформаций и поставлены потому, что при растяжении продольные размеры стержня увеличиваются, а поперечные уменьшаются.

Последний шаг в формировании закона Гука в его современном виде сделали французский математик Коши, который в 1822 г. ввел в научную литературу понятия «напряжение» и «деформация», и французский ученый Навье, который в 1826 г. дал определение модуля упругости как отношение нагрузки, приходящейся на единицу площади поперечного сечения, к произведенному ею относительному удлинению

Где E – модуль Юнга (модуль упругости первого рода).

Таким образом, закон Гука получил практическое применение в виде формулы

Модуль упругости E является физической постоянной материала и определяется экспериментально. Его величина выражается в тех же единицах, что и напряжения σ, т. е. в паскалях (Па), так как ε – безразмерная величина. Модуль упругости большинства материалов имеет большие числовые значения и его обычно выражают в гигапаскалях (ГПа).

Абсолютное значение отношения относительной поперечной деформации и относительной продольной деформации при растяжении или сжатии в области действия закона Гука называется коэффициентом Пуассона

Это безразмерный коэффициент, характеризующий свойства материала и определяемый экспериментально. Он носит имя французского ученого, который впервые ввел его в теорию.

После приложения к телу внешней нагрузки его точки перемещаются. Обычно величины упругих перемещений считаются малыми по сравнению с геометрическими размерами деформируемых тел. Рассмотрим эти перемещения на примере консольной балки длиной L с односторонней внешней заделкой, изображенной на рис. 2. К свободному концу балки приложена сосредоточенная сила F , которая и вызывает деформации ее точек. Прогиб балки в текущем сечении обозначим δ . Выделим элемент объема балки длиной Dz , находящейся на расстоянии Z от закрепленного конца.

Рис. 2. Изгиб консольной балки

Деформированное состояние в текущем сечении балки описывается радиусом кривизны или кривизной ее изогнутой оси .

Известно , что уравнение изогнутой оси балки имеет вид:

Где IX – осевой момент инерции сечения балки относительно оси Ox . Произведение EIX называется жесткостью сечения при изгибе относительно соответствующей оси.

На рис. 3 изображено произвольное сечение, представляющее собой плоскую геометрическую фигуру, площадь которой A . Выделим на ней элементарную площадь DA .

Определим момент инерции прямоугольного сечения относительно осей СX и СY , проходящих через его центр, как это показано на рис. 4.

Разделим площадь прямоугольника на элементарные прямоугольники с размерами B и Dy , площадь которых . Подставляя значение в выражение (9) и интегрируя, получаем:

Аналогично

Рассмотрим балку длиной L , установленную на двух опорах и нагруженную, как это изображено на рис. 5.

Решение дифференциального уравнения (8) можно получить последовательным интегрированием. Когда внешняя нагрузка расположена симметрично относительно опор, как показано на рис. 5, то решение этого уравнения примет вид:

Поэтому модуль Юнга определяется формулой

С учетом выражения (10) получим

Следовательно, определив нагрузку F и значение прогиба δ для балки (пластины) длиной L с поперечными размерами сечения B и H , по формуле (14) можно вычислить модуль Юнга материала, из которого она изготовлена.

Описание экспериментальной установки

Схематичное изображение установки «Модуль Юнга» приведено на рис. 6.

Установка «Модуль Юнга» состоит из основания 1, на котором закреплена стойка 2. На стойке расположен кронштейн 3 с двумя призматическими опорами 4. На опоры устанавливается исследуемый образец 5 (пластина). С помощью устройства нагружения образца 7, представляющего собой скобу с призматической опорой, к образцу прикрепляются наборный груз 6 и часовой индикатор 8.

Порядок выполнения работы

1. Поставить одну из исследуемых пластин на призматические опоры 4.

2. Установить часовой индикатор 8 так, чтобы его наконечник коснулся пластины.

3. Повесить скобу устройства 7 посередине пластины.

4. Прикрепить на скобу груз массой M 1 =0,1 кг.

5. По шкале индикатора 8 определить значение прогиба пластины δ1 .

6. Снять груз.

7. Повесить на скобу груз массой M 2 =0,15 кг.

8. По шкале индикатора 8 определить значение прогиба пластины δ2 .

Где G – ускорение свободного падения.

10. Значение прогиба пластины определить как

11. Найти модуль Юнга по формуле (14), где L =0,114 м – расстояние между призмами (длина пластины); B =0,012 м – ширина сечения пластины; H =0,0008 м – толщина пластины; δ – величина прогиба пластины, м.

12. Проделать указанные выше действия со второй пластиной.

13. Повторить для обеих пружин пп. 1-12 еще два раза.

Материал исследуемых образцов — сталь пружинная и бронза.

Поясните полученные результаты модулей упругости пластин, сравните их со справочными данными .

Порядок оценки погрешностей

Считать, что погрешность оценки величины модуля Юнга по формуле (14) определяется погрешностью измерения длины пластины L (систематическая погрешность) и погрешностью оценки прогиба d (систематическая + случайная погрешности).

Записать результаты прямых измерений указанных параметров:

А) L =< L > ± DL , Где DL = DL Сист ;

Б) d=< D> ± Dd, Где , .

Записать результаты косвенных измерений:

Е=<Е> ± DЕ, Где , , , , .

Вопросы и задания для самоконтроля

1. Чем отличается нормальное напряжение от касательного?

2. По каким формулам определяются абсолютная и относительная деформации?

3. Какая величина называется модулем упругости первого рода?

4. Как определяется коэффициент Пуассона?

5. Что называется жесткостью сечения при изгибе?

6. В чем заключается различие формул осевого момента инерции сечения относительно осей Ox и Oy ?

7. Какой формулой выражается прогиб двухопорной балки?

Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

œКузбасский государственный технический университет

Кафедра сопротивления материалов

ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА

И КОЭФФИЦИЕНТА ПУАССОНА

Методические указания к лабораторной работе по дисциплине œСопротивление материалов для студентов технических специальностей

Составители И. А. Паначев М. Ю. Насонов

Утверждены на заседании кафедры Протокол № 8 от 31.01.2011 Рекомендованы к печати учебно-методической комиссией специальности 150202 Протокол № 6 от 02.03.2011 Электронная копия находится в библиотеке ГУ КузГТУ

Кемерово 2011

Цель работы : определение экспериментальным способом "упругих" постоянных материала – стали ВСт3

модуля продольной упругости (модуля упругости I рода, модуля Юнга);

коэффициента поперечной деформации (коэффициента Пуассона).

” 1. Модуль продольной упругости (модуля упругости I рода, модуль Юнга) – определение и использование

п. 1. Обозначение

Модуль продольной упругости обозначается латинской буквой – " Е ".

п. 2. Смысловое определение

Е – это характеристика жесткости (упругости) материала, показывающая его способность сопротивляться продольному деформированию (растяжению, сжатию) и изгибу.

п. 3. Свойства Е

1. Е – это "упругая" постоянная материала, применение которой справедливо только в пределах линейных упругих деформаций материала, т. е. в пределах действия закона Гука (рис. 1).

Участок действия

закона Гука –

Е = tgα

Рис. 1. Диаграмма растяжения стали ВСт3 А-В – участок линейной зависимости между деформациями – ε

и напряжениями – σ (участок действия закона Гука); В-С – участок нелинейной зависимости между деформациями

и напряжениями

2. Е связывает между собой в формуле закона Гука при растяжении (сжатии) деформации и напряжения и графически оценивается следующим образомЕ = tg (см. рис. 1).

3. Материал с большим числовым значением Е является более жестким и требует больших усилий при его деформировании.

4. Большинству материалов соответствует определенное постоянное (константа) значение Е .

5. Значения Е для основных материалов приводятся в справочниках по сопротивлению материалов и справочниках машиностроителя, а в случае отсутствия данных в справочниках – определяются экспериментально.

п. 4. Использование Е

Е используется в сопротивлении материалов при оценке проч-

ности, жесткости и устойчивости элементов конструкций:

1) при расчете на прочность в процессе определения экспериментальным способом напряжений по измеренным деформациям

≤ [σ]; (1) 2) при расчетах на жесткость в процессе теоретического опреде-

ления деформаций

3) при расчете на устойчивость в процессе решения всех типов задач.

п. 5. Численное определение

Е численно равен напряжению, которое могло бы возникнуть

в брусе при его упругом растяжении на 100% (в 2 раза).

Е – характеристика условная, т. к. при его определении условно считают, что любой материал способен упруго деформируясь, увеличиваться в длину бесконечное число раз, хотя известно

– не более чем на 2% (кроме резины, каучука).

Основа 100% принята для удобства применения Е в формулах закона Гука.

Е практически определяют при растяжении образца на долю процента и увеличением полученного напряжения в соответствующее число раз.

Пример 1 : при растяжении образца на = 1% возникающие в образце напряжения – равны, например, 1000 МПа (10 000 кг/см2 ), тогда модуль упругости будет равен

Е = 100 = 100 000 МПа (1 000 000 кг/см2 ).Пример 2: = 0,1%= 100 МПа (1 000 кг/см2 )

Е = 1000 = 100 000 МПа (1 000 000 кг/см2 ).

п. 6. Единицы измерения Е

Е имеет размерность: [кН/см 2 ] или [МПа].

п. 7. Примеры числового значения Е

Модуль упругости Е для разных материалов равен

2,1 104 кН/см2

2,1 105 МПа

2 100 000 кг/см2

1,15 104 кН/см2

1,15 105 МПа

1 150 000 кг/см2

1,0 104 кН/см2

1,0 105 МПа

1 000 000 кг/см2

алюминий – 0,7 104 кН/см2

0,7 105 МПа

700 000 кг/см2

0,15 104 кН/см2

0,15 105 МПа =

150 000 кг/см2

каучук –

0,00008 104 кН/см2 = 0,0008 105 МПа = 80 кг/см2 .

Из имеющихся в списке данных можно сделать вывод о соотношении жесткостей материалов (жесткость материала пропорционально зависит от модуля упругости). Например, сталь в 2 раза жестче меди, поэтому при рассмотрении однотипных образцов, выполненных из стали и меди, для их растяжения на одинаковую длину в границах упругих деформаций, к стальному образцу необходимо прикладывать нагрузку в два раза большую при сравнении с медным.

” 2. Коэффициент поперечной деформации (коэффициент Пуассона) –

определение и использование

п. 1. Обозначение

Коэффициент Пуассона обозначается греческой буквой " " (мю).

п. 2. Смысловое определение

– упругая механическая характеристика материала, характеризующая способность материала деформироваться в попереч-

ном направлении при продольном приложении нагрузки, так как при растяжении образца наряду с его продольным удлинением имеет место еще и его поперечное сужение (рис. 2).

Рис. 2. Продольное и поперечное деформирование образца при растяжении

Из рис. 2 следует, что абсолютные деформации образца

l = l1 – l0 ,

b =b 1 –b 0 ,

где l иb – абсолютное удлинение и абсолютное сужение об-

l 0и l 1

разца (абсолютные деформации);

– начальная и конечная длина образца;

b 0и b 1

– начальная и конечная ширина образца.

Если принять, что l 1 l 0

L, а b1 b0 = b,

то относитель-

ные деформации образца будут равны:

L /l

" = b /b,

– относительная продольная и относительная попе-

речная деформации образца (относительное удли-

нение и относительное сужение).

численно равен отношению относительного сужения образца к его относительному удлинению при его продольном деформировании, т. е. отношению между относительными поперечной и продольной деформациями. Это отношение выражается

формулой

п. 3. Свойства

1. Каждому материалу соответствует определенное постоянное значение (константа) .

2. Для большинства материалов численное значение приводится в справочниках по сопротивлению материалов и справочниках машиностроителя, в ином случае определяется экспериментально.

п. 4. Использование

Используется в сопротивлении материалов как коэффициент в формуле обобщенного закона Гука (2) и связывает между собой модули упругости первого и второго рода, что будет рассмотрено далее.

п. 5. Единицы измерения

– безразмерная величина (б/в).

п. 6. Пределы изменения

Обобщенно для известных исследованных изотропных (имеющих одинаковые упругие свойства по всем направлениям) материалов интервал изменения коэффициента Пуассона= 0 0,5.

п.7. Примеры числового значения

Коэффициент Пуассона – для различных видов материа-

пробковое дерево – 0.

3. Описание испытательного оборудования

В лабораторной работе для растяжения образца используется разрывная машина Р-5 (рис. 3).

Рис. 3. Схема разрывной машины Р-5: 1 – рукоять; 2 – гайку; 3 – винт;

9 –силоизмеритель; 10 – тензометры

Установка в ходе эксперимента работает нижеследующим образом. Вращение рукояти /1/ передается через редуктор на гайку /2/, которая вызывает вертикальное перемещение винта /3/. Это приводит к растяжению образца /6/, закрепленного в захватах /4/ и /5/. Усилие в образце создается системой рычагов /7/ и маятником /8/. Величина усилия фиксируется по шкале силоизмерителя /9/. Для определения абсолютных продольных и поперечных деформаций используются тензометры рычажного типа (тензометр Гуггенбергера) /10/.P

Рис. 4. Рычажный тензометр (тензометр Гуггенбергера): а – общий вид; б – упрощенная схема;

l бт – база тензометра;l бт – изменение базы тензометра; 1 – образец; 2 – винт; 3 – крепежная струбцина;

Цена4 – измерительнаяодного малого шкала;деления5 шкалы– указательнаятензометрастрелка;– С тен з равна 0,0016 – шарнир;мм (0,00017 – неподвижнаясм/дел.). опора; 8 – подвижная опора

Тензометр может измерять деформации только того участка, на котором он расположен, т. е. участка, называемого "базой тензометра" , но не может измерять абсолютные деформации всего образца, если конечно длина образца не равна базе тензометра.

В связи с тем, что измерения в эксперименте будут производиться тензометрами с размерами (базами) значительно меньшими размеров испытываемого образца, то длина и ширина измеряемого участка образца будет ограничиваться базами продольных и поперечных тензометров.

E и – это характеристики материала, а не образца, поэтомуE и, полученные при измерении деформаций участка образца, будут такими же, как и при измерении деформаций всего образца.

п. 3. Расположение тензометров и измерительных участков на образце

В лабораторной работе для повышения точности получаемых результатов значения E и будут определяться по двум уча-

сткам испытываемого образца, расположенных на его противоположных гранях (рис. 5).

I участок

II участок

Рис. 5. Схема расположения исследуемых участков образца и тензометров на образце

1, 2 – продольные тензометры 3, 4 – поперечные тензометры; (пунктиром показаны тензометры на невидимой грани образца)

Такое расположение тензометров обусловлено тем, что в процессе растяжения образца линии действия растягивающих сил Р не всегда совпадают с продольной осью образца, т. е. имеет место эксцентриситет (смещение линии действия силР от продольной оси). Средние показания тензометров, взятые с двух участков образца, дадут истинную картину.

п. 4. Замечания

1. Приложение к образцу дополнительной нагрузки, равной ступени нагружения, должно давать каждый раз одну и ту же величину приращения его длины. Это связано с тем, что растяжение образца в данной лабораторной работе ведется только в пределах упругих свойств материала, в границах действия закона Гука, представляющего собой линейную зависимость между нагрузкой и деформацией. Данное положение позволяет проводить эксперимент многократно, используя в качестве основы постоянную дополнительную нагрузку, равную ступени нагружения – Р , при равномерном увеличении общей нагрузки. Для приведения экспериментальной установки в рабочее

состояние используется предварительная ступень нагруже-

ния – Р 0 .

2. F обр – площадь сечения испытательного образца определяется в соответствии с рис. 6.

h = 0,3 см

а = 8 см

” 3. Рабочие формулы для определения модуля продольной упругости – Е и коэффициента Пуассона –

В лабораторной работе искомые характеристики определяются с учетом ступенчатого способа приращения силы и равенство размеров испытываемых участков базам продольных и поперечных тензометров:

1) Е определяется из формулы (3) – закон Гука (II вид) –

l N l;

P lбт

l бтF обр

где P

– приращение силы, прикладываемой к образцу (ступень

l бт

нагружения);

– база продольного тензометра;

l бт – изменение базы продольного тензометра;F обр – площадь сечения образца.

ЛАБОРАТОРНАЯ РАБОТА №9

Определение модуля упругости (модуля Юнга) по деформации изгиба

Цель работы: определение модуля упругости (модуля Юнга) по деформации изгиба стержней прямоугольного сечения.

КРАТКАЯ ТЕОРИЯ

Деформация изгиба возникает тогда, когда к стержню, один конец которого закреплен (рис.1а ) или к стержню, свободно лежащему на опорах (рис.1б ) приложена сила, перпендикулярная к его оси. И в том и в другом случае стержень изгибается и характеристикой этой деформации может служить стрела прогиба .

Во введении к данному циклу работ было показано, что деформация изгиба представляет собой неоднородную деформацию растяжения-сжатия. Там же было получены выражения (формулы (12)и (13) введения) для определения стрел прогиба для обеих ситуаций, приведенных на рис.1.

В данной лабораторной работе будет исследоваться изгиб стержня прямоугольного сечения, свободно лежащего на опорах (рис.1б ). В этом случае стрела прогиба определяется соотношением

где L - длина стержня, Е – модуль Юнга материала стержня, Р – сила, действующая на середину стержня. Величина I определяется только формой сечения стержня и рассчитывается по формуле

. (2)

Величины, входящие в эту формулу, поясняются на рис.2. Буквой О обозначен центр масс сечения стержня. Через него проходит нейтральный слой, который не испытывает деформации сжатия-растяжения.

В данной работе используется стержень прямоугольного сечения (рис.3) Очевидно, что в этом случае центр масс сечения совпадает с его геометрическим центром и, следовательно, b 1= b 2= b /2 . Здесь b – размер стержня в направлении действия нагрузки, иначе говоря, толщина стержня. Кроме того, очевидно, что величина а не зависит от х (стержень имеет постоянную ширину. Теперь интеграл (2) вычисляется просто:

(3)

Подставляя полученное выражение в (1), получаем

или , где (4)

Выражение (4) подсказывает следующий метод определения модуля Юнга. Надо получить экспериментальную зависимость стрелы прогиба от нагрузки Р и определить тем или иным способом коэффициент пропорциональности А . Далее, проведя измерения геометрических размеров стержня, рассчитать Е.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для определения экспериментальной зависимости стрелы прогиба от нагрузки состоит из двух стоек со стальными призмами, на которых располагается стержень прямоугольного сечения из исследуемого материала. Грузы, вес которых определяется на технических весах, подвешиваются к стремени, которое помещают на одинаковом расстоянии от стоек. Стрела прогиба измеряется с помощью микрометра, установленного вертикально над стержнем в месте расположения стремени. Контакт острия на стебле микрометра со стержнем фиксируется световым индикатором.

Предварительно измеряются геометрические параметры установки, т.е. величины L , a и b после чего исследуемый стержень размещается на опорах.

Далее необходимо убедиться, будут ли деформации стержня, возникающие в наших экспериментах, упругими, поскольку только в этом случае для вычисления модуля Юнга справедлива формула (1). Для выяснения этого обстоятельства используется следующая процедура. Микрометрический винт приводится в контакт со стержнем и производится отсчет показаний микрометра. Используя все имеющиеся грузы, создается максимально возможная (для данной работы) нагрузка стержня. Затем грузы снимаются, микровинт вновь приводится в контакт со стержнем и вновь производится отсчет показаний микрометра. Если показания микрометра до и после нагружения стержня совпадают в пределах погрешности измерений, можно говорить, что форма стержня восстановилась и, тем самым, утверждать, что при проведении экспериментов возникающие деформации будут упругими.

Стрела прогиба в данной установке определяется как разность показаний микрометра до нагружения стержня n0 и при нагрузке стержня n , т.е. =n0 –n , а нагрузка рассчитывается по формуле Р=mg . Используя эти соотношения можно несколько изменить формулы (4) так, чтобы в них входили результаты прямых измерений

или = n 0 – n = B m , где . (5)

Определив коэффициент пропорциональности В по экспериментальной зависимости стрелы прогиба от массы груза теперь нетрудно рассчитать значение модуля Юнга.

Экспериментальная зависимость от m при увеличении нагрузки снимается следующим образом. В отсутствие нагрузки отсчитывается показание микрометра n 0 . Подвешивается груз массой m 1 и отсчитывается показание микрометра n 1 . Очевидно, 1 = n 0 – n 1 . Добавляется груз массой m 2 . Суммарная масса нагрузки будет составлять m 1+ m 2 . Отсчитывается показание микрометра n 2 , определяется 2 . Добавляется следующий груз и т.д.

Аналогичным образом определяется экспериментальная зависимость от m при разгрузке. Отсчитывается показание микрометра при максимальной подвешенной массе, убирается один груз, вновь отсчитывается показание микрометра и так до тех пор, пока не будут сняты все грузы. В отсутствии нагрузки определяется новое значение n 0 .

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

    в отсутствие нагрузке привести в контакт со стержнем стебель микрометра, произвести отсчет показания микрометра n 0 ;

    взвесить одну из гирь и подвесить ее к стремени. Вращением головки микрометра восстановить контакт острия стебля микрометра со стержнем. Определить новое показание микрометра;

    последовательно добавлять к подвешенным гирям остальные, предварительно взвешивая их. После подвешивания очередной гири восстанавливать контакт острия стебля микрометра со стержнем и отсчитывать показания микрометра;

    результаты измерений занести в таблицу, вид которой приведен ниже, рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при нагружении стержня.

п/п

m, кг

n , мм

, мм

 , мм

1 = n0-n1

2 = n0-n2

k = n0-n2

    Снять зависимость величины прогиба от массы груза при разгрузке стержня. Для этого

    подвесить максимальный груз, произвести отсчет показаний микрометра;

    вывести стебель микрометра из контакта со стержнем, снять одну гирю, вновь привести стебель микрометра в контакт со стержнем, произвести отсчет показания микрометра;

    повторять предыдущий пункт, последовательно снимая гири;

    сняв последнюю гирю, снова определить величину n 0 ;

    результаты измерений занести в таблицу, аналогичную вышеприведенной (ее удобно заполнять снизу вверх), рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при разгрузке стержня.

    По результаты измерений методом наименьших квадратов определить значения коэффициента В и рассчитать величины модуля Юнга при нагружении и разгрузке стержня.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Измерения геометрических размеров стержня являются прямыми измерениями, поэтому погрешности величин а ,b и L определяются стандартными методами обработки прямых измерений. Прямыми являются и измерения массы. Однако при этом будем считать, что случайная погрешность определения массы много меньше систематической, так что полная погрешность определения массы равна систематической погрешности, составляющей .

Стрела прогиба определяется косвенным образом по формуле =n0 –n , где n0 и n , прямые измерения, производимые по микрометру с точностью 0,01мм . Погрешность  определяется по формуле . Очевидно, что n 0= n = 0,01мм , так что = 0,014мм . Итак, абсолютная погрешность измерения стрелы прогиба во всех опытах будет одинакова и равна 0,014мм .

Согласно формуле (5) существует линейная связь между стрелой прогиба и массой груза, т.е. m . Коэффициент В по данным эксперимента можно было бы определить так. Каждый опыт дает определенное значение B i :

Вi = i / m i , (7)

где i и mi - значения величин и m , полученные в i -том опыте. Индекс i у величины B показывает, что это значение соответствует i -тому опыту. Из значений B i можно образовать среднее

Здесь следует отметить, что это простой, но не самый лучший способ определения B . В самом деле, m есть величина, характеризующая условия опыта, которую мы знаем практически точно, а есть результат опыта, известный с погрешностью. Погрешность  одинакова во всех измерениях. Тогда ошибка в величине B , равная i /mi , тем больше, чем меньше mi . Иначе можно сказать, что значение B , вычисленное по формуле (8), не является наилучшей оценкой истинного B . Это является следствием того, что величины B i неравноточные.

Строго задача о нахождении наилучшей оценки истинного значения B по данным эксперимента и известной зависимости типа Y=aX (в данном случае =B m ) ставится так. Необходимо найти такое значение B , при котором функция =B m наилучшим образом соответствует опытным данным (смысл нечеткого выражения "наилучшим образом" станет ясным из дальнейшего).

Выберем за меру отклонения функции от экспериментальных данных для i -го опыта величину (i-Bmi)2 . Если бы за меру отклонения была взята просто величина i-Bmi , то сумма отклонений в нескольких опытах могла бы оказаться весьма малой за счет взаимного уничтожения отдельных слагаемых большой величины, но имеющих разные знаки. Это, однако, вовсе не говорило бы о том, что функция =Bm хороша. Очевидно, что такого взаимного уничтожения не будет, если мера отклонения выбрана в виде (i-Bmi)2 .

Итак, в качестве меры общего отклонения S в описании опытных данных функцией =Bm необходимо взять сумму мер отклонений для всех опытов, то есть:

. (9)

Таким образом, наша функция будет наилучшим способом описывать опытные данные, если S , то есть сумма квадратов отдельных отклонений, минимальна. Метод определения констант, входящих в формулу, из требования минимальности S , называется методом наименьших квадратов.

Величина S является функцией B , т.е. S=S(B) . Чтобы найти такое значение B, которое доставляет минимум функции S (наилучшее значение B ), необходимо, как известно, решить уравнение dS/dB=0 . Используя (9), получаем:

что дает . (10)

Итак, подставляя в формулу (10) экспериментальные значения mi и i , рассчитывается значение величина, являющееся наилучшей оценкой истинного B . Среднеквадратичное отклонение определяется по формуле:

. (11)

Для расчета доверительного интервала о B выбирается доверительная вероятность и определяется коэффициент Стьюдента t ,k-1 , т.е. для числа на единицу меньше числа проделанных опытов. Тогда, как обычно, о B=t ,k-1SB .

Методом наименьших квадратов следует обработать экспериментальные точки, полученные как при нагружении стержня, так и при его разгрузке. Следует также на экспериментальных графиках провести "наилучшие" прямые, используя значение рассчитанные значения В .

После расчета коэффициента пропорциональности В можно рассчитать по формуле (6) значение модуля Юнга. Погрешности, входящих в эту формулу величин, известны. Естественно, что значения этих погрешностей определяют и погрешность определения величины E . Величина E является результатом косвенного измерения. Значение E определяется по формуле погрешности косвенных измерений. Предполагая при этом, g =0 , можно записать:

Взяв производные и поделив обе части (12) на величину E= g L3/4ab3 B , получим выражение, которое удобно использовать для расчета погрешности

. (13)

Подставляя в формулу (6) вначале случайные, а затем систематические погрешности, можно определить соответственно случайную и систематическую (С Е ) погрешности измерения модуля Юнга. Полная погрешность единичного измерения модуля Юнга определяется по формуле.Таким образом, будут получены два значения модуля Юнга (из экспериментов при нагружении и разгрузке стержня). Их надо сравнить друг с другом и с табличными значениями.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что такое механическое напряжение и относительная деформация? Какова связь между ними (на примере деформации сжатия-растяжения)? Что такое механическое напряжение и относительная деформация с молекулярной точки зрения?

    В чем состоит закон Гука? Каков физический смысл модуля Юнга, модуля сдвига? Что такое коэффициент Пуассона?

    Почему модуль Юнга может быть определен из наблюдений деформаций изгиба?

    Каковы основные этапы вывода формулы (1)? Что такое «момент инерции сечения» I ?

    Определите относительную погрешность величины A , вычисляемой по формуле A=B-C , если B=100, C=99 и относительные погрешности их определения составляют 1%.