Уравнение циолковского вывод. Движение тела с переменной массой

Человека всегда привлекало непознанное. Жгучая смесь страха перед неизвестностью и желания узнать, что же там на самом деле, заставляла людей двигаться дальше и открывать для себя новые глубины.

Космос поражает своей необъятностью и бездонностью. Люди, казалось бы, покорили его просторы - но это лишь видимость. Чем больше тайн мы открываем, тем больше новых вопросов встает перед нами. И эта бездна манит к себе не только космонавтов, но и поэтов, писателей, ученых, художников.

Сегодня мы покажем вам некоторые картины художников, вдохновленных глубинами космоса.

Алексей Леонов

«Над Черным морем»

Алексей Леонов не только художник, но и один из самых известных советских космонавтов. Он стал первым человеком, вышедшим в открытый космос.

Его картины очень реалистичны. Леонов стремится показать в них все так, как увидел он сам 18 марта 1965 года.

«Солнечный ветер»

Помимо картин, Леонов вместе с художником-фантастом Андреем Соколовым создал коллекцию марок с изображениями космических просторов.

Их работы были признаны лучшими марками СССР 1972 года в разделе «Советская наука и техника».

Олег Высоцкий

«Дыхание космоса»

Олег Высоцкий - современный художник-космист. В его работах человек и космос образуют некое единство, соединение духовного мира человека и Вселенной. Картины Высоцкого называют «поэмой о беспредельности».

Боб Эгглтон

Боб Эгглтон - американский художник-иллюстратор, работающий в жанре научной фантастики и фэнтези. Он создавал обложки для книг многих именитых фантастов, в числе которых Артур Кларк и Айзек Азимов.

Уолтер Майерс


Уолтер Майерс с самого детства увлекался астрономией. Он мечтал побывать в космосе, и это ощущение передалось его картинам. Майерс создает пейзажи всех планет и их спутников.

В работе он опирается на научные данные, и это позволяет зрителям увидеть максимально достоверные изображения. Кроме того, Майерс сопровождает картины комментариями - научными описаниями планет.

Алексей Кашперский

Алексей Кашперский, современный художник, создает акварельные космические пейзажи, завораживающие своей необычной техникой и мрачными тонами.

В своих работах Кашперский использует как двухмерную, так и трехмерную графику.

Требуется вывести искусственный спутник Земли массой на круговую орбиту высотой 250 км. Располагаемый двигатель имеетудельный импульсм/c. Коэффициент– это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массуракеты-носителя.

Первая космическая скоростьдля выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь – вдвое ниже). Характеристическая скорость, таким образом, равнам/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина. Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно.

Расчёт для двухступенчатой ракеты.

Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двухступенчатой ракеты м/c. На этот раз, что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения,

для 2-й ступени получаем:

т;

т;

полная масса 2-й ступени составляет 55,9 т.

Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем:

т;

полная масса 1-й ступени составляет 368,1 т;

общая масса двухступенчатой ракеты с полезным грузом составит 10 + 55,9 +368,1 = 434 т.

Аналогичным образом выполняются расчёты для большего количества ступеней. В результате получаем:

Стартовая масса трёхступенчатой ракеты составит 323,1 т.

Четырёхступенчатой – 294,2 т.

Пятиступенчатой – 281 т.

На этом примере видно, как оправдывается многоступенчатостьв ракетостроении: при той же конечной скорости ракета с большим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это – сильное упрощение. Ступени соединяются между собой специальными секциями – переходниками – несущими конструкциями. Каждая из них должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значениеперегрузки, которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента, а, вместе с ним, и положительного эффектамногоступенчатости. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Анализ баллистических возможностей ракет говорит о следующем:

При этом приращения скорости, сообщаемые ступенями для двух- и трехступенчатых ракет, имеют различные пропорции (табл. 2).

Оптимальное соотношение масс ступеней зависит от коэффициента тяговооруженности, представляющего собой отношение тяги двигателя к начальной массе ракеты. Поэтому для анализа влияния различных параметров ракеты на оптимальное соотношение масс ступеней обычно рассматривают скорость полета, определяемую с учетом величины коэффициента тяговооруженности. При баллистическом проектировании в качестве предварительных можно принимать соотношения масс ступеней, как в табл. 3.

Такого рода расчёты выполняются не только на первом этапе проектирования – при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции. Формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке, и т.д., с целью контроля достижения ракетой заданной скорости.

Космонавтика регулярно достигает ошеломительных успехов. Искусственным спутникам Земли постоянно находятся все более разнообразные применения. Пребывание космонавта на околоземной орбите стало обычным явлением. Это было бы невозможно без главной формулы космонавтики - уравнения Циолковского.

В наше время продолжается изучение как планет и других тел нашей Солнечной системы (Венеры, Марса, Юпитера, Урана, Земли и пр.), так и удаленных объектов (астероиды, другие системы и галактики). Умозаключения о характеристике космического движения тел Циолковского положили начало теоретическим основам космонавтики, которые привели к изобретению десятков моделей электро-реактивных двигателей и крайне интересных механизмов, например, солнечного паруса.

Основные проблемы освоения космоса

В качестве проблем освоения космоса четко выделяются три области исследования и разработок в науке и технике:

  1. Полеты около Земли или конструирование искусственных спутников.
  2. Лунные полеты.
  3. Планетарные полеты и полеты к объектам Солнечной системы.

Уравнение Циолковского для реактивного движения способствовало тому, что человечество в каждой из этих областей достигло удивительных результатов. А также появилось множество новых прикладных видов наук: космическая медицина и биология, системы жизнеобеспечения на космическом аппарате, космическая связь, и др.

Большинство людей сегодня слышали об основных достижениях: первая высадка на луну (США), первый спутник (СССР) и подобное. Помимо самых известных достижений, которые у всех на слуху, существует много и других. В частности, СССР принадлежат:

  • первая орбитальная станция;
  • первый облет Луны и фотографии обратной стороны;
  • первая посадка на Луну автоматизированной станции;
  • первые полеты аппаратов к другим планетам;
  • первая посадка на Венеру и Марс и пр.

Многие даже не представляют, насколько огромными были достижения СССР в сфере космонавтики. Во всяком случае, они были значительно больше, чем просто первый спутник.

Но и США внесли не меньший вклад в развитие космонавтики. В США провели:

  • Все крупные достижения в использовании околоземной орбиты (спутники и спутниковая связь) для научных целей и решения прикладных задач.
  • Множество экспедиций на Луну, исследования Марса, Юпитера, Венеры и Меркурия с расстояния пролетных траекторий.
  • Множество научных и медицинских экспериментов, проводимых в невесомости.

И хотя на данный момент достижения других стран меркнут на фоне СССР и США, но Китай, Индия и Япония активно присоединились к изучению космоса в период после 2000 года.

Однако достижения космонавтики не ограничиваются только верхними слоями планеты и высокими научными теориями. На простую жизнь она тоже оказала большое влияние. В результате изучения космоса в нашу жизнь пришли такие вещи: молния, липучка, тефлон, спутниковая связь, механические манипуляторы, беспроводные инструменты, солнечные батареи, искусственное сердце и многое другое. И именно формула скорости Циолковского, которая помогла преодолеть гравитационное притяжение и способствовала появлению в науке космической практики, помогла всего этого добиться.

Термин "космодинамика"

Уравнение Циолковского легло в основу космодинамики. Однако следует разобраться с этим термином подробнее. Особенно в вопросе близких к нему по смыслу понятий: космонавтика, небесная механика, астрономия и др. Космонавтика переводится с греческого "плавание во Вселенной". В обычном случае этим термином обозначается масса всех технических возможностей и научных достижений, позволяющих изучать комическое пространство и небесные тела.

Космические полеты - это то, о чем человечество мечтало столетиями. И эти мечты превратились в реальность, из теории - в науку, а все благодаря формуле Циолковского для скорости ракеты. Из трудов этого великого ученого нам известно, что теория космонавтики стоит на трех столпах:

  1. Теория, описывающая движение космических аппаратов.
  2. Электро-ракетные двигатели и их производство.
  3. Астрономические знания и исследования Вселенной.

Как уже ранее отмечалось, в космическую эру появилось множество других научно-технических дисциплин, таких как: системы управления космическими кораблями, системы связи и передачи данных в космосе, навигация в космическом пространстве, космическая медицина и многое другое. Стоит отметить, что во времена зарождения основ космонавтики даже не было как такового радио. Изучение электромагнитных волн и передачи на большие расстояния с их помощью информации только начиналось. Поэтому основатели теории серьезно рассматривали в качестве способа передачи данных световые сигналы - отраженные в сторону Земли солнечные лучи. Сегодня невозможно представить космонавтику без всех смежных с ней прикладных наук. В те далекие времена воображение ряда ученых действительно поражало. Помимо способов связи ими также затрагивались такие темы, как формула Циолковского для многоступенчатой ракеты.

Можно ли выделить среди всего многообразия какую-либо дисциплину в качестве главной? Ею является теория движения космических тел. Именно она служит главным звеном, без которого невозможна космонавтика. Эту область науки принято называть космодинамикой. Хотя у нее существует множество тождественных названий: небесная или космическая баллистика, механика полета в космосе, прикладная небесная механика, наука о движении искусственных небесных тел и т. д. Все они обозначают одну и ту же область изучения. Формально космодинамика входит в небесную механику и использует ее методы, однако есть крайне важное отличие. Небесная механика только изучает орбиты у нее нет возможности выбора, а вот космодинамика призвана определять оптимальные траектории достижения тех или иных небесных тел космическими аппаратами. И уравнение Циолковского для реактивного движения позволяет кораблям определить как именно можно влиять на траекторию полета.

Космодинамика как наука

С тех пор, как К. Э. Циолковский вывел формулу, наука о движении небесных тел прочно оформилась как космодинамика. Она позволяет космическим кораблям пользоваться методами поиска оптимального перехода между разными орбитами, что называется орбитальным маневрированием, и является основой теории передвижения в космосе, точно так же как базой для полетов в атмосфере является аэродинамика. Однако она не единственная наука, занимающуюся данным вопросом. Помимо нее существует еще и ракетодинамика. Обе эти науки составляют прочную основу для современной космической техники и обе входят в раздел небесной механики.

Космодинамика состоит из двух основных разделов:

  1. Теория о движении центра инерции (масс) объекта в космосе, или теория о траекториях.
  2. Теория о движении космического тела относительно его центра инерции, или теория вращения.

Чтобы разобраться что представляет собой уравнение Циолковского, нужно хорошо понимать механику, т. е. законы Ньютона.

Первый закон Ньютона

Любое тело движется равномерно и прямолинейно или находится в покое до тех пор, пока приложенные к нему внешние силы не вынудят его изменить это состояние. Иными словами вектор скорости такого движения остается постоянным. Такое поведение тел также называется инерциальным движением.

Любой другой случай, при котором происходит какой-либо изменение вектора скорости, означает, что тело обладает ускорением. Интересным примером в данном случае является движение материальной точки по окружности или любого спутника по орбите. В данном случае происходит равномерное движение, но не прямолинейное, ведь вектор скорости постоянно меняет направление, а значит, ускорение не равно нулю. Данное изменение скорости можно вычислить по формуле v 2 / r, где v - постоянная величина скорости, а r - радиус орбиты. Ускорение в этом примере будет направлено к центру окружности в любой точки траектории движения тела.

Исходя из определения закона, причиной изменения направления материальной точки может быть только сила. В ее роли (для случая со спутником) выступает гравитация планеты. Притяжение планет и звезд, как легко можно догадаться, имеет большое значение в космодинамике в целом и при использовании уравнения Циолковского, в частности.

Второй закон Ньютона

Ускорение прямо пропорционально силе и обратно пропорционально массе тела. Или в математической форме: a = F / m, или более привычно - F = ma, где m - это коэффициент пропорциональности, который представляет собой меру для инерции тела.

Так как любая ракета представляется, как движение тела с переменной массой, уравнение Циолковского будет изменяться каждую единицу времени. В вышеописанном примере о спутнике, движущемся вокруг планеты, зная его массу m, можно легко выяснить силу, под действием которой он вращается по орбите, а именно: F = mv 2 /r. Очевидно, что данная сила будет направлена к центру планеты.

Возникает вопрос: почему спутник не падает на планету? Он не падает, так как его траектория движения не пересекается с поверхностью планеты, потому что природа не заставляет его двигаться вдоль действия силы, ибо ей сонаправлен только вектор ускорения, а не скорости.

Также следует отметить, что в условиях, когда известна сила, действующая на тело, и его масса, можно выяснить ускорение тела. А по нему математическими методами определяется путь, по которому двигается это тело. Здесь мы приходим к двум основным задачам, решением которых занимается космодинамика:

  1. Выявление сил, при помощи которых можно манипулировать движением космического корабля.
  2. Определение движения этого корабля, если известны действующие на него силы.

Вторая задача является классическим вопросом для небесной механики в то время, как первая показывает исключительную роль космодинамики. Поэтому в данной области физики помимо формулы Циолковского для реактивного движения крайне важно понимать ньютоновскую механику.

Третий закон Ньютона

Причиной силы, действующей на какое-либо тело, всегда является другое тело. Но верно также и обратное. В этом заключается суть третьего закона Ньютона, который гласит, что всякому действию есть действие, равное по величине, но противоположно направленное, называемое противодействием. Другими словами, если тело А действует с силой F на тело B, то тело B действует на тело А с силой -F.

В примере со спутником и планетой третий закон Ньютона приводит нас к пониманию того, что с какой силой планета притягивает спутник, точно с такой же спутник притягивает планету. Данная сила притяжения ответственна за придание ускорения спутнику. Но она также придает ускорение и планете, но ее масса так велика, что данное изменение скорости ничтожно мало для нее.

Формула Циолковского для реактивного движения полностью строится на понимании последнего закона Ньютона. Ведь именно за счет выбрасываемой массы газов основное тело ракеты приобретает ускорение, которое позволяет ему двигаться в нужном направление.

Немного о системах отсчета

Рассматривая какие-либо физические явления, сложно не затрагивать такую тему, как систему отсчета. Движение космического корабля, как и любого другого тела в пространстве, может фиксироваться в разных координатах. Не существует неправильных систем отсчета, есть лишь более удобные и менее. Например, движение тел в Солнечной системе лучше всего описывать в гелиоцентрической системе отсчета, то есть в координатах, связанных с Солнцем, также именуемых системой Коперника. Однако движение Луны в данной системе рассматривать менее удобно, поэтому ее изучают в геоцентрических координатах - отсчет ведется относительно Земли, это называется системой Птолемея. А вот, если стоит вопрос в том, попадет ли пролетающий рядом астероид в Луну, удобнее будет использовать опять гелиоцентрические координаты. Важно уметь пользоваться всеми координатными системами и быть способным смотреть на задачу с разных точек зрения.

Ракетное движение

Основным и единственным способом передвижения в космическом пространстве является ракета. Впервые этот принцип был выражен, по данным сайта "Хабр", формулой Циолковского в 1903 году. С тех пор инженеры космонавтики изобрели десятки видов ракетных двигателей, использующих самые разнообразные виды энергии, но все они объединены одним принципом работы: выбрасывание части массы из запасов рабочего тела для получения ускорения. Силу, которая образуется в результате данного процесса, принято называть силой тяги. Приведем некоторые умозаключения, которые позволят прийти к уравнению Циолковского и выводу его основной формы.

Очевидно, что тяговая сила будет увеличиваться в зависимости от объемов выбрасываемой из ракеты массы в единицу времени и той скорости, которую удается этой массе сообщить. Таким образом, получается соотношение F = w * q, где F - тяговая сила, w - скорость отбрасываемой массы (м/с) и q - масса, расходуемая в единицу времени (кг/с). Стоит отдельно отметить важность системы отсчета, связанной именно с самой ракетой. В противном случае невозможно характеризовать силу тяги ракетного двигателя, если измерять все относительно Земли или других тел.

Исследования и эксперименты показали, что соотношение F = w * q остается справедливым только для случаев, когда выбрасываемая масса представляет собой жидкость или твердое тело. Но в ракетах используется струя раскаленного газа. Поэтому в соотношение нужно ввести ряд поправок, и тогда получим дополнительный член соотношения S * (p r - p a), который суммируется с изначальным w * q. Здесь p r - давление, оказываемое газом, на срезе сопла; p a - атмосферное давление и S - площадь сопла. Таким образом, уточненная формула будет выглядеть следующим образом:

F = w * q + Sp r - Sp a.

Откуда видно, что по мере набора высоты ракетой атмосферное давление будет становиться меньше, а сила тяги - возрастать. Однако физики любят удобные формулы. Поэтому зачастую используется формула, похожая на свою первоначальную форму F = w э * q, где w э - эффективная скорость истечения массы. Она определяется экспериментальным путем во время испытания двигательной установки и численно равна выражению w + (Sp r - Sp a) / q.

Рассмотрим понятие, тождественное w э - удельный импульс тяги. Удельный - значит относящийся к чему-то. В данном случае это к гравитации Земли. Для этого в вышеописанной формуле правая часть умножается и делится на g (9,81 м/с 2):

F = w э * q = (w э / g) * q * g или F = I уд * q * g

Измеряется данная величина I уд в Н*с/кг или что тоже самое м/с. Иными словами удельный импульс тяги измеряется в единицах скорости.

Формула Циолковского

Как легко можно догадаться, помимо тяги двигателя на ракету действует множество других сил: притяжение Земли, гравитация других объектов Солнечной системы, атмосферное сопротивление, давление света и т. д. Каждая из этих сил придает свое ускорение ракете, а суммарное из действие сказывается на итоговом ускорение. Поэтому удобно ввести понятие реактивного ускорения или a r = F т / M, где М - масса ракеты в определенный период времени. Реактивное ускорение - это ускорение, с которым двигалась бы ракета при отсутствии действующих на нее сил из вне. Очевидно, что по мере расходования массы, ускорение будет увеличиваться. Поэтому есть еще одна удобная характеристика - начальное реактивное ускорение a r0 = F т * M 0 , где М 0 - это масса ракеты в момент начала движения.

Логичным будет звучать вопрос о том, какую скорость способна развить ракета в подобном пустом пространстве, после того как израсходует какое-то количество массы рабочего тела. Пусть масса ракеты изменилась от m 0 до m 1 . Тогда скорость ракеты после равномерного израсходования массы до значения m 1 кг будет определяться формулой:

V = w * ln(m 0 / m 1)

Это не что иное, как формула движения тел с переменной массой или уравнение Циолковского. Она характеризует энергетический ресурс ракеты. А скорость, получаемая данной формулой, называется идеальной. Можно записать данную формулу в ином тождественном варианте:

V = I уд * ln(m 0 / m 1)

Стоит отметить, применение Формулы Циолковского для расчета топлива. Точнее сказать, массы ракеты носителя, которая потребуется для выведения определенного веса на орбиту Земли.

В конце следует сказать и о таком великом ученом, как Мещерский. Вместе с Циолковским они являются праотцами космонавтики. Мещерский внес огромный вклад в создание теории движения объектов переменной массы. В частности, формула Мещерского и Циолковского выглядит следующим образом:

m * (dv / dt) + u * (dm / dt) = 0,

где v - скорость материальной точки, u - скорость отброшенной массы относительно ракеты. Данная соотношение также называется дифференциальным уравнением Мещерского, тогда формула Циолковского получается из нее как частное решение для материальной точки.

В данном разделе мы будем рассматривать движение тел переменной массы. Такой вид движения часто встречается в природе и в технических системах. В качестве примеров, можно упомянуть:

    Падение испаряющейся капли;

    Перемещение тающего айсберга по поверхности океана;

    Движение кальмара или медузы;

    Полет ракеты.

Ниже мы выведем простое дифференциальное уравнение, описывающее движение тела переменной массы, рассматривая полет ракеты.

Дифференциальное уравнение реактивного движения

Реактивное движение основано на третьем законе Ньютона , в соответствии с которым "сила действия равна по модулю и противоположна по направлению силе противодействия". Горячие газы, вырываясь из сопла ракеты, образуют силу действия. Сила реакции, действующая в противоположном направлении, называется силой тяги . Эта сила как раз и обеспечивает ускорение ракеты.

Пусть начальная масса ракеты равна \(m,\) а ее начальная скорость составляет \(v.\) Через некоторое время \(dt\) масса ракеты уменьшится на величину \(dm\) в результате сгорания топлива. Это приведет к увеличению скорости ракеты на \(dv.\) Применим закон сохранения импульса к системе "ракета + поток газа". В начальный момент времени импульс системы равен \(mv.\) Через малое время \(dt\) импульс ракеты будет составлять \[{p_1} = \left({m - dm} \right)\left({v + dv} \right),\] а импульс, связанный с выхлопными газами, в системе координат относительно Земли будет равен \[{p_2} = dm\left({v - u} \right),\] где \(u\) − скорость истечения газов относительно Земли. Здесь мы учли, что скорость истечения газов направлена в сторону, противоположную скорости движения ракеты (рисунок \(1\)). Поэтому, перед \(u\) поставлен знак "минус".

В соответствии с законом о сохранении полного импульса системы, можно записать: \[ {p = {p_1} + {p_2},}\;\; {\Rightarrow mv = \left({m - dm} \right)\left({v + dv} \right) + dm\left({v - u} \right).} \]

Рис.1

Преобразуя данное уравнение, получаем: \[\require{cancel} \cancel{\color{blue}{mv}} = \cancel{\color{blue}{mv}} - \cancel{\color{red}{vdm}} + mdv - dmdv + \cancel{\color{red}{vdm}} - udm. \] В последнем уравнении можно пренебречь слагаемым \(dmdv,\) рассматривая малые изменения этих величин. В результате уравнение запишется в виде \ Разделим обе части на \(dt,\) чтобы преобразовать уравнение в форму второго закона Ньютона : \ Данное уравнение называется дифференциальным уравнением реактивного движения . Правая часть уравнения представляет собой силу тяги \(T:\) \ Из полученной формулы видно, что силя тяги пропорциональна скорости истечения газов и скорости сгорания топлива . Конечно, это дифференциальное уравнение описывает идеальный случай. Оно не учитывает силу тяжести и аэродинамическую силу . Их учет приводит к значительному усложнению дифференциального уравнения.

Формула Циолковского

Если мы проинтегрируем выведенное выше дифференциальное уравнение, то получим зависимость скорости ракеты от массы сгоревшего топлива. Результирующая формула называется идеальным уравнением реактивного движения или формулой Циолковского , который вывел ее в \(1897\) году.

Чтобы получить указанную формулу, удобно переписать дифференциальное уравнение в следующем виде: \ Разделяя переменные и интегрируя, находим: \[ {dv = u\frac{{dm}}{m},}\;\; {\Rightarrow \int\limits_{{v_0}}^{{v_1}} {dv} = \int\limits_{{m_0}}^{{m_1}} {u\frac{{dm}}{m}} .} \] Заметим, что \(dm\) обозначает уменьшение массы. Поэтому, возьмем приращение \(dm\) с отрицательным знаком. В результате, уравнение принимает вид: \[ {\left. v \right|_{{v_0}}^{{v_1}} = - u\left. {\left({\ln m} \right)} \right|_{{m_0}}^{{m_1}},}\;\; {\Rightarrow {v_1} - {v_0} = u\ln \frac{{{m_0}}}{{{m_1}}}.} \] где \({v_0}\) и \({v_1}\) − начальная и конечная скорость ракеты, а \({m_0}\) и \({m_1}\) − начальная и конечная масса ракеты, соответственно.

Полагая \({v_0} = 0,\) получим формулу, выведенную Циолковским: \ Данная формула определяет скорость ракеты в зависимости от изменения ее массы по мере сгорания топлива. С помощью этой формулы можно грубо оценить запас топлива, необходимый для ускорения ракеты до определенной скорости.

  • Физика
  • Жестокими законы окружающей нас природы можно назвать только в переносном смысле. Мы создали машины, способные освободить нас от уз, удерживающих в гравитационном колодце всё человечество, но управление некоторыми из их аспектов остаётся вне наших сил. Если мы хотим начать наше путешествие по Солнечной системе, то эти ограничения придётся как-то обходить.

    Современные ракеты отбрасывают часть собственной массы в виде газа из сопел двигателей, что даёт им возможность двигаться в противоположном направлении. Это реально благодаря третьему закону Ньютона, который был сформулирован в 1687 году. Всему нашему ракетному движению мы обязаны формуле Циолковского 1903 года.

    В формуле всего четыре переменных (слева направо): конечная скорость летательного аппарата, удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива), начальная масса летательного аппарата (полезная нагрузка, конструкция и топливо) и его конечная масса (полезная нагрузка и конструкция).

    Как можно изменить одну из переменных, если три другие уже заданы? Это просто невозможно, никакая форма желания, хотения или просьб здесь не поможет.

    Именно потери на гравитацию определяют пределы человеческого исследования космоса, и мы вынуждены их учитывать, когда мы выбираем место, куда мы хотим отправиться. Сегодня таких мест не так уж и много. С земной поверхности мы можем оказаться на орбите Земли, с орбиты Земли можно отправиться на поверхность Луны, или на поверхность Марса, или в пространство между Луной и Землёй. Возможны различные комбинации, но с текущим развитием технологий это самые вероятные точки назначения.

    Представленные ниже значения не учитывают никакие потери на, к примеру, сопротивление атмосферы, но значения достаточно близки для иллюстрации того, что нужно принять как должное. Это в некотором роде стоимость полёта.

    Как можно заметить, путь от Земли на орбиту, эти жалкие 400 километров - это самая затратная часть полёта. Это целая половина «стоимости» полёта на Марс, даже до Луны добраться «стоит» меньше. Всё это связано с гравитационным притяжением нашего космического дома.

    А лететь нам придётся на ракете с химическими двигателями; пусть и есть перспективные разработки, но реальными остаются традиционные, используемые уже на протяжении более 60 лет в пилотируемой космонавтике двигатели. Химическое топливо накладывает ограничение на количество энергии, которое можно из них извлечь, а значит и вложить в ракету, и мы используем самые эффективные реакции, известные человечеству. И вновь нам придётся смириться с некоторым значением переменной, которое мы не в силах изменить.

    Ниже представлены как некоторые виды ракетного топлива, которые хоть раз были использованы для приведения в движение аппаратов с человеком на борту или планируются к использованию, так и их удельные импульсы. Метан-кислород находится под рассмотрением для будущих экспедиций на Луну и Марс. Самовоспламеняющееся двухкомпонентное жидкое ракетное топливо использовалось для посадочного лунного модуля программы «Аполлон» из-за своей простоты.

    Самой эффективной парой остаётся кислород-водородная, и химия не может дать нам больше. В конце 70-х годов прошлого века ядерный ракетный двигатель с водородом в качестве рабочего тела, который разгоняла теплота управляемой ядерной реакции, выдал 8,3 км/с.

    Итак, единственное, что мы теперь можем изменить в формуле Циолковского - это отношение масс летательного аппарата. Ракета должна быть построена таким образом, чтобы это отношение имело какое-то заданное значение, иначе она просто не достигнет своей цели. Что-то можно сделать, если добавить несколько гениальных решений в конструкцию, но в целом это мало повлияет на результат - химию топлива и гравитацию небесных тел не изменить.

    Итак, что имеем? Вот процентное соотношение топлива от общей массы ракеты, необходимое для попадания ракеты на орбиту Земли.

    Полученные цифры не учитывают разнообразные потери сопротивления атмосферы, неполного сгорания и других отрицательных факторов, поэтому реальное отношение чуть ближе к 100%. Прекрасные инженерные решения типа разделения на ступени, нескольких видов топлива (например, керосин или твёрдое топливо для первой ступени, водород для остальных) очень помогают в ситуации, когда лишь порядка 10% от массы аппарата остаётся на собственно ракету. Масса полезной нагрузки иногда и в буквальном смысле идёт на вес золота.

    Характеристики реальных ракет не сильно отличаются от этих идеальных, полученных без учёта множества факторов значений. Самая большая в истории человечества ракета «Сатурн-5» на стартовом столе имела топлива 85% от всей своей массы. У неё было три ступени: первая работала на керосине и кислороде, вторая и третья - на водороде и кислороде. Такой же показатель у «Шаттлов». «Союз» использует керосин на всех своих ступенях, поэтому масса его топлива составляет 91% от общей массы ракеты. Использование пары водород-кислород сопряжено с большим количеством технических трудностей, но эта комбинация более эффективна; керосин в паре с кислородом предоставляет возможность использовать более простые и надёжные решения.

    15% массы ракеты - это куда меньше, чем кажется. У ракеты должны быть баки, трубы, ведущие к двигателям, корпус, который должен быть в состоянии выдерживать как сверхзвуковой полёт в атмосфере после нечеловеческого жара стартовой площадки, так и холод безвоздушного пространства. Ракету нужно вести, управлять ей с помощью сверхзвуковых рулей и маневровых двигателей. Хрупкие тела людей в космическом корабле нужно обеспечивать кислородом, а также удалять углекислоту, их нужно защитить от жара и холода, дать им возможность безопасно вернуться на поверхность родной планеты. Наконец, люди - не единственная нагрузка ракеты: мы не запускаем людей просто для развлечения, вернее, мы можем запустить человека ради самого факта, но лишь один раз. С людьми в космос летит и разнообразное оборудование для проведения экспериментов, поскольку полёты в космос имеют целью научные исследования.

    Реальная масса полезной нагрузки ракет куда меньше этих 10%-15%. «Сатурн-5», единственная ракета, которая помогла человеку ступить на Луну, доставляла на орбиту Земли всего 4% от своей общей массы, всего же на орбиту доставлялось 120 тонн. «Шаттлы» могли доставлять примерно столько же (100 тонн), но реальная полезная нагрузка составляла порядка 20 тонн, 1% от общей массы.

    Сравним ракеты с привычными нам транспортными средствами. (Конечно, ракета имеет баки с окислителями, а земной транспорт использует для этого кислород воздуха.)

    Легко заметить, как отличаются материалы и конструкция транспортного средства в зависимости от относительной массы топлива. Транспорт с топливом массой менее 10% от его общей массы обычно делается из стали, а над его конструкцией нет нужды особо думать: прикрепи эту часть к той и усиль корпус, где требует интуиция. Десятитонный грузовик можно сильно перегрузить, но он будет продолжать двигаться, пусть и медленно.

    Воздушный транспорт требует уже более серьёзного подхода и лёгких конструкций из алюминия, магния, титана, композитных материалов. Тут уже просто так ничего не поменяешь, а над любой мелкой деталью нужно подумать дважды. Машины подобного рода не могут работать так далеко за пределами своих лимитов нагрузок. 60%-70% от массы этих аппаратов составляет собственно вес транспортного средства с полезной нагрузкой, и с применением некоторых инженерных решений возможна комфортная, безопасная и выгодная эксплуатация.

    А ракеты, где 85% приходится на топливо, находятся на пределе наших инженерных способностей. Мы едва можем их производить, они требуют постоянного улучшения для возможности их использовать. Внешне небольшие изменения требуют огромного количества разнообразного анализа и тестирования прототипов в аэродинамических трубах, вибростендах, а для пробного запуска следует удалить персонал в бункер на пару-тройку километров от стартовой площадки - даже после всех этих проверок возможны происшествия. Очень часто превышать нагрузки более, чем на 10% от заданного техническими требованиями, нельзя. Это аналогично ситуации, когда после разгона до 44 километров в час велосипед развалится на мельчайшие винтики просто потому, что предельной скоростью является 40 км/ч.

    Чудо массового производства, пивная алюминиевая банка примерно на 94% состоит из своего содержимого, и лишь 6% приходится на корпус, но каким-то образом этот показатель лучше у внешнего бака Шаттла, несмотря на то, что в нём содержится не напиток чуть холоднее комнатной температуры, а высокоактивные жидкости температурой примерно на 20 градусов выше температуры абсолютного нуля, сжатые до ужасного давления. При этом этот топливный бак может выдержать перегрузку в 3 g, сохраняя поток окислителя и горючего на уровне 1,5 тонн в секунду.

    Дон Петтит описывает детали экспедиции STS-126 ноября 2008 года. Двигатели челнока должны были отключиться при достижении скорости 7824 м/с, но если бы это произошло на уровне 7806 м/с, то космический аппарат стал бы спутником Земли, но не попал бы на целевую орбиту. Говоря проще, «Индевор» не достиг бы МКС. Большая ли это разница? Это примерно аналогично ситуации, когда нужно заплатить 10 долларов, и для этого не хватает всего лишь двух центов (0,2%). Хорошо, в этом случае можно было бы использовать часть топлива для орбитальных манёвров. Если бы скорость была всего на 3% ниже, то не хватило бы и этих запасов, и челнок пришлось бы сажать где-то в Испании. Эти 3% можно было потерять, если маршевый двигатель отключился бы всего на 8 секунд раньше.

    Представим наилучшее стечение обстоятельств: бак для Шаттла (массу двигателей мы отбросим) и водород-кислородное топливо. Если подставить значения в формулу Циолковского, то станет ясным, что при радиусе нашей планеты в полтора раза больше его нынешнего мы никогда бы не достигли космоса только за счёт технологии химических ракетных двигателей .

    И всё это - последствия формулы Циолковского. Если мы хотим избавиться от её жестокого господства, нам придётся создать работающие версии принципиально новых двигателей. Возможно, тогда ракеты станут такими же безопасными, привычными и надёжными, как и реактивные пассажирские самолёты.