Скачать Универсальная программа учета (Portable).

Athlon 64 X2 устарел, как физически, так и морально. Такие устройства
были представлены в далеком 2006 году. Это были первые многоядерные решения
компании АМД. Оценить их важность на сегодняшний день не представляет особого труда. Их выпуск стал первым эволюционным шагом данного производителя в сфере высокотехнологичных решений. Именно он существенно повлиял на развитие компьютерной индустрии. Сейчас уже никого не удивишь 8-ми ядерным ЦПУ. Это уже стало нормой. А вот тогда подобное решение произвело своеобразную революцию, плодами которой мы и по сей день пользуемся.

История

Первым 2-х ядерным ЦПУ в нише домашних ПК стал продукт извечного конкурента АМД - компании "Интел". Это был процессор "пентиум" с индексом ХЕ 840. Устанавливался он в который был в то время основным у данного производителя. Увеличение количества ядер вызвало необходимость снижения Это привело к снижению производительности в однопоточных приложениях. Аналогичный результат получил и продукт его постоянного конкурента - процессор AMD Athlon 64 X2. Но за счет того, что такие решения были изначально ориентированы под многопоточность, эффект был не настолько сильным, как у основного конкурента. По мере появления софта, который способен полностью загрузить два физических ядра, расстановка сил постепенно изменилась. И такие решения постепенно вытеснили ЦПУ с 1-им ядром из обихода. Да, сейчас еще продаются подобные устройства, но они большей часть используются для офисных ПК, где на первый план выходит работа в офисных приложениях и низкая стоимость готовой системы. А для игровых систем рекомендуется брать 4, 6 или 8 ядер. В крайнем случае можно остановить выбор и на 2-х ядрах, но это существенно скажется на качестве игры не в лучшую сторону. Такой расклад был заложен более 5 лет назад, и один из его основоположников - процессор AMD Athlon 64 X2.

Модификации

Изначально такие ЦПУ устанавливались в который был самым прогрессивным у данного производителя на то время. Сразу было представлено 4 модели процессора. Младшим из них стал именно AMD Athlon 64 X2 4200. Остальные имели схожее название, но отличались индексом. Появились модификации 4400, 4600, а флагман этой линейки имел индекс 4800. Также обязательным атрибутом обозначений этих ЦПУ был «+», который добавлялся в конце наименования. Частота базовой модели составляла 2200 МГц. Также среди архитектурных особенностей стоит отметить кеш, размер которого у младшей модели был 1Мб. При этом на каждое из ядер приходилась лишь его половина. Остальные модификации могли похвастаться более высокой частотой и увеличенным размером кеша.

Более поздние решения

Чуть позже на рынке появились и более производительные продукты. Логическим развитием в этом направлении стало появление таких ЦПУ под платформу АМ2. Размер кеша у них был аналогичным, как у предшественника. А вот частоты существенно выросли и составили, например, для ЦПУ модели AMD Athlon 64 X2 5000 - 2700 МГц. Также еще одним нововведением стала поддержка новой памяти, которая называлась DDR2. Но, в принципе, у этих процессоров, срок между появлением которых составляет чуть меньше 2-х лет, много общего.

Заключение

Процессор AMD Athlon 64 X2 является одним из родоначальников эры параллельных вычислений на одном кристалле. Если внимательно к нему присмотреться, то можно с легкостью найти много общего с новыми решениями АМД. И тут ничего удивительного, ведь они построены по схожей архитектуре, которая за последние 5 лет претерпела определенные изменения, но также и сохранила общие черты.

Изучаем последние «белые пятна» истории процессоров

Мы думали, что в рамках тестирования устаревших платформ придется ограничиться всего двумя статьями, посвященными процессорам под Socket AM2, куда не вошли очень многие интересные с исследовательской точки зрения модели, однако действительность оказалась к нам чуть более благосклонной – удалось добыть еще четыре Athlon 64. Причем очень хорошо заполняющие пробелы предыдущих тестирований, так что сегодня мы ими и займемся. Подключив к участию также и Sempron 3200+ из первой статьи , но не устраивая межплатформенных соревнований. Причина – проста и понятна: особо не с кем сравнивать. Как мы уже убедились сверху все семейство Athlon 64 X2 (за исключением, может быть, топового 6400+) «перекрывают» такие процессоры, как А4-3400 или даже специфичный и нишевый Celeron G530T, ну а среднему классу и супротив Celeron G460 сложно устоять. А вот как там дела в среднем и нижнем классе обстоят (точнее, обстояли) внутри – как раз и любопытно взглянуть. Чем мы и займемся.

Конфигурация тестовых стендов

Процессор Sempron 3200+ Athlon 64 3000+ Athlon 64 3500+
Название ядра Manila Orleans Orleans
Технология пр-ва 90 нм 90 нм 90 нм
Частота ядра, ГГц 1,8 1,8 2,2
1/1 1/1 1/1
Кэш L1, I/D, КБ 64/64 64/64 64/64
Кэш L2, КБ 128 512 512
Оперативная память 2×DDR2-667 2×DDR2-667 2×DDR2-667
Сокет AM2 AM2 AM2
TDP 65 Вт 65 Вт 65 Вт

Начнем с одноядерных моделей. Как видим, для полного счастья нам по-прежнему не хватает еще Sempron 3400+: у него та же частота, что у Sempron 3200+ и Athlon 64 3000+, но кэш-памяти 256К байт. Т.е. если бы удалось найти такую модель, мы бы получили полную линейку L2 (128/256/512) для одноядерных моделей на одинаковой частоте. Но что удалось добыть – то удалось. Зато Athlon 64 вообще появились среди протестированных, причем сразу два, так что можно будет и прирост относительно тактовой частоты оценить.

Процессор Athlon 64 X2 4200+ (W) Athlon 64 X2 4200+ (B) Athlon 64 X2 4400+
Название ядра Windsor Brisbane Windsor
Технология пр-ва 90 нм 65 нм 90 нм
Частота ядра, ГГц 2,2 2,2 2,2
Кол-во ядер/потоков вычисления 2/2 2/2 2/2
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128
Кэш L2, КБ 2×512 2×512 2×1024
Оперативная память 2×DDR2-800 2×DDR2-800 2×DDR2-800
Сокет AM2 AM2 AM2
TDP 89 Вт 65 Вт 89 Вт

В списке двухъядерных моделей будут три процессора, два из которых носят одинаковое название – увы, но таковы издержки «старых» систем наименования по частоте или рейтингу производительности: дуплеты, триплеты и более того тогда сыпались как из рога изобилия. Причем 4200+ (равно как и 3800+, 4600+, 5000+... продолжить самостоятельно) еще в какой-то степени повезло – «тезки» имели одинаковые частоты и емкость L2. Почему вообще образовались пары? Сначала Athlon 64 X2 использовали 90 нм кристалл Windsor, а потом перешли на 65 нм Brisbane. Получился такой вот своеобразный бардак, в другой подлинейке подросший. Дело в том, что Windsor мог иметь как 1 МиБ кэш-памяти, так и 2 МиБ (512К/1024К на ядро, соответственно), а Brisbane – только меньшее из этих значений. В результате Athlon 64 X2 4000+/4400+/4800+ и далее были совсем разными. Например, 90 нм 4400+ (тоже участник нашего тестирования) это 2,2 ГГц и 2х1024 L2, а 65 нм 4400+ – 2,3 ГГц и 2х512. Неразбериху усугубляло и то, что массовые Windsor были как обычными (TDP 89 Вт), так и энергоэффективными (TDP 65 Вт), а Brisbane – только вторыми. В общем, в ассортименте AMD было три массовых Athlon 64 X2 4200+ и еще один встраиваемый процессор с таким же названием (на деле – тот же АМ2, тот же Brisbane, но 35 Вт)! А как их можно было различить? Только по маркировке, причем полной – начало было сходным, т.е. ADO4200 – два процессора: надо еще и «хвостик» для ясности читать.

В общем, такой вот экскурс в историю, дабы напомнить любителям поныть о добрых старых временах и непонятности нынешних процессорных номеров о том, как тогда все обстояло на самом деле:) Что же касается темы тестирования, то нам эта тройка Athlon 64 X2 позволит поискать ответы сразу на три вопроса. Первые два – очевидны: полезность увеличенной кэш-памяти («канонический» 4200+ против 4400+) и соотношение производительности двух микроархитектур. Третий же «всплывает» если внимательно посмотреть на ТТХ: 4200+ на Windsor это в точности два Athlon 64 3500+ в одном сокете. Соответственно, и польза (или ее отсутствие) от второго ядра будет видна очень хорошо, причем без «возмущающего» эффекта от общей кэш-памяти или разной емкости кэшей.

Как мы уже писали ранее, с поддержкой оперативной памяти процессорами под АМ2 есть свои тонкости. Одноядерные модели официально ограничены DDR2-667, но на практике не имеют ничего против установки частоты 800 МГц. Это положительный момент, но есть и отрицательный – делители могут быть только целочисленными, так что «истинные» 800 получаются только в процессорах, частота которых нацело делится на 400. Во всех остальных случаях все несколько хуже – для процессоров с частотой 1,8 ГГц реальный режим работы памяти вообще DDR2-720, а при 2,2 ГГц получаем DDR2-732. Понятно, что с учетом слабости (с точки зрения современности) самих ядер (или, даже, ядрышек:)) это особой роли не играет, но помнить о таком поведении «старичков» стоит.

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп, и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Мы долго разрывались в сомнениях – это одно- или двухпоточные тесты, так что полная определенность в вопросе крайне приятна:) Все-таки первое, причем еще и наблюдается проблема с миграцией процесса по ядрам, свойственная многоядерным процессорам без общей кэш-памяти. А последняя здесь важна – как видим, Athlon быстрее равночастотного Sempron аж на 20%, да и дальнейшее увеличение L2 тоже почти 10% прибавляет. На первый взгляд это кажется несущественным на фоне прироста от увеличения тактовой частоты, но не забываем, что 3000+ и 3500+ разделяет целых 400 МГц. Соответственно, возникает вопрос – каким образом AMD планировала скомпенсировать уменьшение емкости кэш-памяти в Athlon 64 X2 4400+ на Brisbane увеличением частоты всего на 100 МГц, если этот кристалл при прочих равных еще и чуть медленнее, чем Windsor? Впрочем, делать выводы по первой группе тестов, конечно, несколько опрометчиво, так что подождем.

Финальный рендеринг трёхмерных сцен

Несмотря на резко изменившийся характер нагрузки, Brisbane по-прежнему при прочих равных немного медленнее Windsor. Но более интересно не это, а практически линейная масштабируемость приложений по ядрам. Даже сверхлинейная, что тоже вполне объяснимо – у одноядерного процессора есть одно ядро на все-все-все, а не только потоки прикладной программы, а двух- и более уже может «изыскать» дополнительные ресурсы для служебных процессов с меньшим ущербом для основной работы. Хотя по тоже вполне понятным причинам абсолютные показатели старичков уже далеко не впечатляют: Celeron G465 (современный, с Hyper-Threading, но физически одноядерный и низкочастотный), к примеру, набирает 35 баллов в этой группе тестов, т.е. на уровне Athlon 64 X2 3800+ и лишь на 10% меньше, чем 4200+.

Упаковка и распаковка

Прирост от многоядерности всего 20%, хотя уж два-то ядра умеют использовать два теста из четырех. Но недостатком Athlon с точки зрения этих программ является отсутствие общей кэш-памяти, так что ничего удивительного нет. Даже если ее количество удвоить – 4400+ обгоняет 3500+ в 1,3 раза, а аналогичное соотношение для двух- и одноядерных Celeron равно 1,47. Развернутые комментарии излишни: Pentium D были еще хуже с точки зрения практической реализации, но и на примере Athlon 64 X2 тоже хорошо заметна порочность пути создания многоядерных процессоров путем механического объединения нескольких ядер в одном корпусе. Безусловно, это лучше, чем ничего, но хуже, чем изначально многоядерный дизайн как в тех же Phenom или, хотя бы, Core Duo, за последнее время ставший стандартом де-факто в отрасли.

Кодирование аудио

Линейная масштабируемость и невосприимчивость к емкости кэш-памяти – это мы знали и раньше. Так что относительно новым стал очередной проигрыш Brisbane. Это уже становится однообразным:)

Компиляция

Масштабируемость почти линейная, поскольку здесь уже важна кэш-память, зато можно проследить – насколько она важна. Только не стоит забывать об эксклюзивной ее архитектуре. С учетом этого видим, что переход от 192 КБ (суммарно) Sempron 3200+ к 640 КБ Athlon 64 3000+ дает почти 30% прироста быстродействия. А вот дальнейшее ее увеличение с 640 до 1152 КБ добавляет 10% – в какой-то степени тоже близко к линейной масштабируемости.

Математические и инженерные расчёты

Пара потоков и здесь небесполезна, пусть и в меньшей степени, чем в предыдущих двух группах. Ее значение даже повыше, чем у кэш-памяти или тактовой частоты. Но ничего нового в этом, конечно, нет.

Растровая графика

И здесь пара ядер востребована большинством приложений, пусть и не в полной мере. Зато, кстати, от кэша пользы немного – к вящей радости тех, кто в свое время покупал Sempron. Сейчас, впрочем, ни их, ни Athlon 64, ни даже Athlon 64 X2 в таковом качестве использовать можно только на безрыбье: 62 балла это не только 65 нм Athlon 64 X2 4200+, но и... одноядерный Celeron G440 . В среднем, конечно – пакетные тесты ACDSee любым Athlon 64 X2 выполняются заметно быстрее, однако такая обработка изображений яркое, но, к сожалению, исключение из правил. Другие RAW-конвертеры, где на этапе «проявки» можно распараллелить работу одновременной обработкой нескольких фотографий, поведут себя аналогично. Но после проявки обычно наступает этап ретуширования и прочего – обычно, куда более длительный. Со всеми вытекающими. Особенно для любителей всего альтернативного – если Photoshop частично задействовать многопоточность умеет, то GIMP этому пока вовсе не обучен.

Векторная графика

На первый взгляд и эти две программы тоже, однако это не совсем так – основной проблемой Athlon 64 X2 в них оказывается отсутствие единой кэш-памяти, что и низводит эффект от второго ядра почти до нуля. А то и ниже – Brisbane здесь оказался даже хуже равночастотного Orleans.

Кодирование видео

И вновь близкая к линейной масштабируемость, а также слабая зависимость от емкости кэш-памяти. Все бы, конечно, хорошо... Если сравнивать процессоры только друг с другом, а не с современными моделями, но именно этим мы сегодня и занимаемся. К счастью для старичков, которые для работы такого рода, безусловно, уже не слишком пригодны, даже если достались даром.

Офисное ПО

А вот поработать с такими программами в принципе можно. Не потому, конечно, что «старые» процессоры так уж быстры, а потому, что и новые не слишком далеко ушли от них, поскольку большинство современных технологий приложениями этого класса не используются. Однако какой-никакой прогресс и в однопоточной производительности тоже за прошедшие годы наблюдался, так что даже Celeron G465 обходит Athlon 64 X2 4400+ на 25%. С одной стороны, вроде бы, и ничего критичного. С другой же... а зачем терпеть пусть и мелкие, но неудобства?

Java

Прирост от двухъядерности почти линейный. А вот в плане требовательности JVM к кэш-памяти мы, наконец-то, нащупали тот порог, выше которого можно не «дергаться»: со 192 КБ до 640 КБ почти 15%, но с 640 до 1152 КБ лишь 3%. На SBDC мы наблюдали второе, да и вообще большинство современных процессоров ведут себя подобным образом – в частности, многоядерные Athlon II не хуже аналогичных по частоте и количеству ядер Phenom II, но на то они и современные: либо есть L3, либо L2 большой (от 512К и далее) емкости. А вот «старичков» оказалось полезным протестировать хотя бы для того, чтобы в очередной раз убедиться, что не все зависимости можно продлять бесконечно в любую сторону – бывают пороги, которые все резко меняют. Особенно когда речь идет о кэш-памяти, которой либо хватает (и тогда дальнейшее увеличение уже ничего почти не дает), либо не хватает (и тогда все очень резко замедляется).

Игры

Как мы уже как-то писали, запуск современных игр на одноядерных процессорах – занятие не для слабонервных. Однако получить какой-никакой результат можно, порадоваться почти линейному приросту от второго вычислительного ядра тоже можно, а вот дальше мысль останавливается:) Достаточно вспомнить, что самый быстрый двухъядерный процессор, а именно Pentium G2120 набирает 119 баллов , а самый быстрый четырехъядерный Athlon II X4 651 дотягивает до 121 балла . Выше, конечно, есть всяческие Phenom II, FX и Core, но нам сейчас более интересны бюджетные модели, поскольку главными героями являются слишком уж старые процессоры. Используемая видеокарта на , безусловно, избыточна для обоих названных групп CPU, так что получаем чистое их сравнение. Вот выше уже большой прирост получить сложно – результат Core i7-3770K равен 159 баллам . А вот ниже – почти двукратная разница между современными процессорами за «около 100 долларов» и «старичками», т.е. из примерно 150% отрыва i7-3770K от Athlon 64 X2 4200+ первые 100% приходятся на пропасть между последним и современными бюджетниками. Это, повторимся, даже при использовании видеокарты, которая практически никогда в реальных компьютерах не соседствует ни с какими Athlon. Вывод? Неоднократно уже озвученный: при ориентации на игровое применение компьютера основные средства должны быть потрачены на видеокарту. Во вторую очередь – видеокарта. И в третью – она же. А процессор куда менее важен. Естественно, это не должна быть модель среднего класса шестилетней давности и уже точно не бюджетный процессор того времени, а вот из современных устройств – можно обойтись и недорогим. Можно, конечно, и дорогим, если финансы «не жмут», но только после того, как будет приобретена соответствующая видеокарта. А вот прежде чем приобретать новую дорогую видеокарту для старого компьютера, нужно три раза подумать – возможно, что для начала стоит обновить платформу. Ничего нового, конечно, в этом нет, но в очередной раз убедиться в справедливости прописных истин всегда приятно:)

Многозадачное окружение

Запуск этого экспериментального теста на Sempron (да и одноядерных Athlon 64), как тоже уже было сказано, относится к области стресс-тестирования, поскольку его однократный прогон занимает несколько часов, однако тут уже хорошо заметна разница между играми и «обычными» приложениями. Простая – если в интерактиве низкая производительность это приговор системе, то в прочем... Ну, работает медленно – и что? С задачей же за какое-то время справляется в конечном итоге. Даже если в буквальном смысле слова «перегрузить» компьютер несколькими задачами такого рода, что их и по одной-то на нем вряд ли будут решать. Более интересно другое: как видим, о линейной масштабируемости здесь (в отличие от некоторых других тестов) речь не идет: Athlon 64 X2 4200+ («правильный» т.е. 90 нм) быстрее, чем Athlon 64 3500+ примерно в полтора раза. На момент анонса платформы АМ2 отпускные цены этих двух моделей были равны 359 и 184 долларам соответственно, причем немалое количество тогдашних покупателей Х2 выбирали их «на перспективу»: в расчете на то, что через пару лет одноядерный процессор однозначно потребуется на что-нибудь менять, а вот двухъядерный еще поработает. Можно ли считать это состоявшимся хотя бы сейчас – споры не утихают:) Но интересно даже не это, а то, что в результате развязавшихся уже в том же 2006 году ценовых войн, не прошло и искомой пары лет, как Athlon 64 X2 сильно подешевели. В частности, с июля 2007 года «66-балльный » 6000+ начал отгружаться по 178 долларов. Нехитрая арифметика: 184+178-359=3 доллара в которые обошелся бы такой немного растянутый апгрейд без смены платы и с предположением, что 3500+ после него не нашел бы своего покупателя, вместо покупки 4200+ на старте. Конечно, вряд ли кто-то мог предполагать именно такое развитие событий (и вообще: Если бы я был такой умный до, как моя Сара после (с) ), но любителям «перспективных» платформ и процессоров стоит помнить о том, что бывал и такой вот исторический опыт.

Итого

Как Athlon 64 X2 соотносятся с современными процессорами мы оценили еще в прошлый раз , а с Sempron разобрались в позапрошлый, почему сегодня и решено было отойти от «дальних» сравнений, просто заполнив пробелы в знаниях о процессорах для Socket AM2. Вот с этой точки зрения на испытуемых и взглянем.

Sempron и одноядерные Athlon 64 на деле очень похожи. Заметно, конечно, что большая емкость кэш-памяти дает последним немало, однако, фактически, Athlon с разным L2 отличаются друг от друга не менее заметно. По диаграмме кажется, что более, но не стоит забывать, что Sempron 3400+ нам найти не удалось, а вот он как раз, скорее всего, встроился бы в промежуток между Sempron 3200+ и Athlon 64 3000+ образом, подобным Athlon 64 Х2 4200+ и 4400+. В общем, различия между одноядерными семействами искусственные: второе начиналось чуть выше, чем первое заканчивалось. Единственной точкой пересечения можно считать разве что Sempron 3600+ и Athlon 64 3000+: более высокая частота пусть и при 256К L2 вполне может позволить первому процессору иногда даже обгонять второй. Но, кстати, обратите внимание на то, насколько разные рейтинги для этого нужны: 3600+ и 3000+. Хотя у обоих процессорах они по указаниям AMD указывают на производительность, однако гранаты явно разной системы ;) Что всегда лило воду на мельницу приверженцев версии, что на деле рейтинг указывает вовсе не какую-то объективную (пусть и гипотетическую) производительность сравнительно с эталонным Athlon на каком-то наборе приложений, а частоту сравнимых по производительности процессоров Intel. Только разных – Celeron и Pentium 4 соответственно. За давностью лет, да и сменой системы маркировки процессоров AMD на, мягко говоря, более удобную и логичную (точнее, вот уже несколько новых более удобных и логичных), естественно, серьезно заниматься этим вопросом сегодня нет смысла, но раз уж у нас в своем роде экскурс в историю, почему бы эту самую историю в очередной раз не вспомнить? :)

Рейтингование же Athlon 64 Х2 по сути контрольный выстрел в лоб официальной версии. Понятно, что массовое ПО не сразу стало хотя бы двухпоточным, однако в перспективе других вариантов развития событий изначально не прослеживалось. И к чему мы пришли? 500 очков Athlon 64 дает прирост итогового балла нашей методики в 1,19 раза, а 300 очков между семействами – 1,2 раза (если сравнить Athlon 64 Х2 3800+ и Athlon 64 3500+). Но следующие 400 очков уже внутри Athlon 64 Х2 – лишь 1,07 раза! В общем, судить по рейтингу разных семейств о производительности – занятие совсем неблагодарное, хотя официально для этого его и вводили. Впрочем, у Athlon 64 Х2 рейтинги уже никак не сопоставишь и с тактовой частотой процессоров Intel – не было Pentium D с официальными частотами по 4 ГГц и выше. Но и Pentium 4 таких тоже не было.

Сравнение же двух вариантов Athlon 64 Х2, т.е. Brisbane и Windsor, тоже уже интересно лишь с исторической точки зрения, но перекликается с современностью. Да и с рейтингами тоже – как видим, процессор на более новом кристалле настолько устойчиво отстает от равного по ТТХ предшественника, что 65 нм Athlon 64 Х2 4200+ стоило бы иметь частоту хотя бы на 100 МГц выше, т.е. 2,3 ГГц. Увы, но такой Brisbane назывался Athlon 64 Х2 4400+, с чем он точно не имел ничего общего. Понятно, что проблему можно было бы решить более грамотной раздачей рейтингов, но ведь без них ее можно было бы и вовсе не создавать. А почему это перекликается с современностью? Brisbane дешевле в производстве, чем Windsor и несколько экономичнее – прямая аналогия с Sandy Bridge и Ivy Bridge. Но есть и серьезные различия: при равных ТТХ Ivy таки быстрее Sandy во-первых, и называются такие процессоры по-разному во-вторых. В общем, ругая Intel за слишком уж небольшой прирост от освоения техпроцесса 22 нм, стоит помнить, что бывали в истории случаи и хуже.

На этом мы заканчиваем архивную тему – как минимум до ввода в эксплуатацию новой версии методики тестирования. На очереди – заключительная версия процессорных итогов, благо материала по сравнению с промежуточной накопилось достаточно: почти столько же, сколько было в последней. Осталось только изучить производительность новых процессоров AMD для Socket AM3+, чем мы в следующей статье и займемся.

Долгое время двухъядерные войны проходили незаметно для средних слоев населения – все о них знали, но мало кто мог себе позволить в них поучаствовать. Постепенно картина менялась и людей, позволяющих себе такое, становилось все больше, но общая картина менялась незначительно. И только после появления у Intel грозных процессоров «массового поражения» Core 2 Duo мир начал преображаться – менее мощное оружие прежних времен было вынуждено потерять в цене или кануть в лета. Сегодня жаркие двухъядерные войны разворачиваются в среднем, а скоро будут и в нижнем ценовых диапазонах – именно здесь процессоры продаются не сотнями или тысячами, а сотнями тысяч. И чтобы выиграть сражения на этом поле, а значит стать более продаваемым, важно доказать свое превосходство: стоить меньше при равной производительности, или наоборот – работать быстрее при равной цене, или использовать более дешевую и распространенную платформу, на крайний случай быть более экономичным в плане энергопотребления. Пути ведения войны у обоих лидеров процессорного двухъядерного рынка и похожи и различаются одновременно. Похожи в тотальном снижении цен – новый вид аукциона «Кто меньше?». А отличаются способом получения самых-самых доступных моделей. В Intel поступили просто, превращая Pentium D 920 в Pentium D 915 – отключаем Intel Virtualization Technology, и больше ничего не трогаем, а продаем дешевле. Кстати, таким же образом были получены модели постарше Pentium D 925 и Pentium D 945, являющиеся удешевленными по той же схеме Pentium D 930 и Pentium D 950. А что же конкурент? AMD, долгое время почивавшая на лаврах, представляла «самые производительные» процессоры по не самой демократичной цене, но агрессивная ценовая политика Intel вынудила ее пересмотреть цены и планы. Сначала, надеясь победить, пришлось серьезно снизить цены на имеющиеся и новые Socket AM2 процессоры. Но этого оказалось мало – без нового, еще более дешевого и доступного двухъядерника никак. И вооружившись идеей «Двухъядерные процессоры AMD в массы!», инженеры легким движением руки Athlon 64 X2 3800+ превращают в Athlon 64 X2 3600+ путем урезания вдвое кэш-памяти второго уровня на каждом из ядер – было 512 Кб, а стало 256 Кб. Очень вероятно, что таким образом удалось вдохнуть жизнь в кристаллы с частично нерабочим L2. На сколько это ударило по производительности, мы сегодня оценим, а заодно закончим экскурс в возможности AMD Socket AM2, начатый с Sempron AM2 и продолженный в Athlon 64 AM2 . Ну и, конечно же, сравним возможности всех упомянутых бюджетных двухъядерных новинок, подготовив почву для практического исследования возможностей, уже полным ходом продающихся процессоров Core 2 Duo. А пока перейдем к более близкому знакомству с объектами сегодняшнего исследования.

Тестовый образец Athlon 64 X2 3600+ к нам попал в антистатическом пакете. Младшая модель двухъядерного семейства процессоров AMD пока очень редко встречается в коробочных, так называемых «боксовых», вариантах поставки – чаще всего OEM. Очень популярный способ распространения, как для сборщиков, так и для нашей розницы. Зато не приходится платить за кулер, который, возможно, не удовлетворяет требованиям покупателя, а можно подобрать систему охлаждения под свои нужды – от совсем дешевой, чтоб только работало, до очень дорогой и эффективной для максимального разгона.

Процессор Athlon 64 X2 3600+ имеет немного необычную маркировку ADO3600IAA4CU, которая расшифровывается примерно следующим образом: ADO – Athlon 64 с тепловым пакетом до 65 Вт для рабочих станций (процессор меньше потребляет энергии и меньше греется), 3600 – рейтинг процессора, I – тип корпуса 940 pin OµPGA (Socket AM2), A – напряжение питания ядра ≈1,25-1,35 В, A – максимально допустимая температура корпуса ≈55-70°C, 4 – суммарный размер кэш-памяти второго уровня 512 Кб (2х256 Кб), CU – ядро Winsdor (такое же используется и в остальных процессорах Athlon 64 X2 имеющих 2х512 Кб кэш-памяти второго уровня). Судя по маркировке, перед нами Athlon 64 X2 3800+ с аппаратно заблокированной половиной L2 у каждого ядра, благодаря чему он стал дешевле и экономичнее в плане энергопотребления. А теперь полная информационная сводка об этом процессоре и использованной в процессе его тестирования памяти GEIL DDR2-800, полученная с помощью утилиты CPU-Z.

Попытка разогнать Athlon 64 X2 3600+ оказалась вполне успешной, если учесть, что использовался «боксовый» кулер из коробки с Athlon 64 X2 3800+. Даже без поднятия напряжения процессор стабильно заработал на частоте 2600 МГц, при этом память заработала как DDR2-866, но с Command Rate 2T. Еще сильнее разогнать процессор не удалось – хотя температура его не поднималась выше 60°C, пропадала стабильность работы системы. Видимо, это предел данного экземпляра.

Первый вопрос, который нас интересовал: «Так ли важен объем кэш-памяти второго уровня?». Для ответа на этот вопрос достаточно сравнить производительность «отца» и «сына» - Athlon 64 X2 3800+ и Athlon 64 X2 3600+.

Процессор имеет уже более привычную маркировку ADA3800IAA5CU, т.е. это обычный двухъядерный процессор Athlon 64 X2 для рабочих станций с общим объемом кэш-памяти L2 1 Мб (2х512 Кб) и тепловым пакетом до 89 Вт, ядро Winsdor.

Кроме того, в тестировании принимает участие процессор Athlon 64 X2 3800+ для Socket 939 – с его помощью мы проверим, какова для Athlon 64 X2 польза от ускорения подсистемы памяти, от возможности использовать DDR2-400/533/667/800, от перехода на Socket AM2.

А перед знакомством с процессорами конкурента, обновленные таблицы с основными характеристиками новых и уходящих моделей AMD Athlon 64 X2. Athlon 64 X2 Socket AM2

Частота CPU, ГГц

Частота HT, МГц

Техпроцесс

Двухканальный контролер памяти

Athlon 64 X2 5200+

Athlon 64 X2 5000+

Athlon 64 X2 4800+

Athlon 64 X2 4600+

Athlon 64 X2 4400+

Athlon 64 X2 4200+

Athlon 64 X2 4000+

Athlon 64 X2 3800+

Athlon 64 X2 3600+

Введение

Начинаем знакомство с двухъядерными процессорами для настольных компьютеров. В этом обзоре вы найдёте всё о процессоре с двумя ядрами от AMD: общую информацию, тестирование производительности, разгон и сведения о энергопотреблении и тепловыделении.

Время двухъядерных процессоров пришло. В самое ближайшее время процессоры, оснащённые двумя вычислительными ядрами, начнут активное проникновение в настольные компьютеры. К концу следующего года большинство новых PC должно быть основано именно на CPU с двумя ядрами.
Столь сильное рвение производителей по внедрению двухъядерных архитектур объясняется тем, что иные методы для наращивания производительности себя уже исчерпали. Рост тактовых частот даётся очень тяжело, а увеличение скорости шины и размера кэш-памяти не приводит к ощутимому результату.
В то же время совершенствование 90 нм технологического процесса дошло да той точки, когда производство гигантских кристаллов с площадью порядка 200 кв. мм стало рентабельным. Именно этот факт дал возможность производителям CPU начать кампанию по внедрению двухъядерных архитектур.

Итак, сегодня, 9 мая 2005 года, вслед за компанией Intel, предварительно представляет свои двухъядерные процессоры для настольных систем и компания AMD. Впрочем, как и в случае с двухъядерными процессорами Smithfield (Intel Pentium D и Intel Extreme Edition), речь о начале поставок пока не идёт, они начнутся несколько позднее. В данный момент AMD даёт нам возможность лишь предварительно познакомиться со своими перспективными предложениями.
Линейка двухъядерных процессоров от AMD получила название Athlon 64 X2. Это наименование отражает как тот факт, что новые двухъядерные CPU имеют архитектуру AMD64, так и то, что в них присутствует два вычислительных ядра. Вместе с названием, процессоры с двумя ядрами для настольных систем получили и собственный логотип:


Семейство Athlon 64 X2 на момент его появления на прилавках магазинов будет включать четыре процессора с рейтингами 4200+, 4400+, 4600+ и 4800+. Эти процессоры можно будет приобрести по цене от $500 до $1000 в зависимости от их производительности. То есть, свою линейку Athlon 64 X2 AMD ставит несколько выше обычных Athlon 64.
Однако прежде чем начинать судить о потребительских качествах новых CPU, давайте подробнее познакомимся с особенностями этих процессоров.

Архитектура Athlon 64 X2

Следует отметить, что реализация двухъядерности в процессорах AMD несколько отличается от реализации Intel. Хотя, как и Pentium D и Pentium Extreme Edition, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединённых на одном кристалле, двухъядерный процессор от AMD предлагает несколько иной способ взаимодействия ядер между собой.
Дело в том, что подход Intel заключается в простом помещении на один кристалл двух ядер Prescott. При такой организации двухъядерности процессор не имеет никаких специальных механизмов для осуществления взаимодействия между ядрами. То есть, как и в обычных двухпроцессорных системах на базе Xeon, ядра в Smithfield общаются (например, для решения проблем с когерентностью кэшей) посредством системной шины. Соответственно, системная шина разделяется между ядрами процессора и при работе с памятью, что приводит к увеличению задержек при обращении к памяти обоих ядер одновременно.
Инженеры AMD предусмотрели возможность создания многоядерных процессоров ещё на этапе разработки архитектуры AMD64. Благодаря этому, в двухъядерных Athlon 64 X2 некоторые узкие места удалось обойти. Во-первых, дублированы в новых процессорах AMD далеко не все ресурсы. Хотя каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины Hyper-Transport на оба ядра общий. Взаимодействие каждого из ядер с разделяемыми ресурсами осуществляется посредством специального Crossbar-переключателя и очереди системных запросов (System Request Queue). На этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.


Таким образом, единственное узкое место, имеющееся в архитектуре Athlon 64 X2 – это пропускная способность подсистемы памяти 6.4 Гбайт в секунду, которая делится между процессорными ядрами. Впрочем, в будущем году AMD планирует перейти на использование более скоростных типов памяти, в частности двухканальной DDR2-667 SDRAM. Этот шаг должен положительно сказаться на увеличении производительности именно двухъядерных CPU.
Отсутствие поддержки современных типов памяти с высокой пропускной способностью новыми двухъядерными процессорами объясняется тем, что AMD в первую очередь стремилась сохранить совместимость Athlon 64 X2 с существующими платформами. В результате, эти процессоры могут использоваться в тех же самых материнских платах, что и обычные Athlon 64. Поэтому, Athlon 64 X2 имеют Socket 939 корпусировку, двухканальный контроллер памяти с поддержкой DDR400 SDRAM и работают с шиной HyperTransport с частотой до 1 ГГц. Благодаря этому единственное, что требуется для поддержки двухъядерных CPU от AMD современными Socket 939 материнскими платами, – это обновление BIOS. В этой связи отдельно следует отметить, что, к счастью, инженерам AMD удалось вписать в ранее установленные рамки и энергопотребление Athlon 64 X2.

Таким образом, в части совместимости с существующей инфраструктурой двухъядерные процессоры от AMD оказались лучше конкурирующих продуктов Intel. Smithfield совместим лишь с новыми чипсетами i955X и NVIDIA nFroce4 (Intel Edition), а также предъявляет повышенные требования к конвертеру питания материнской платы.
В основе процессоров Athlon 64 X2 использованы ядра с кодовыми именами Toledo и Manchester степпинга E, то есть по своему функционалу (за исключением возможности обработки двух вычислительных потоков одновременно) новые CPU подобны Athlon 64 на базе ядер San Diego и Venice. Так, Athlon 64 X2 поддерживают набор инструкций SSE3, а также имеют усовершенствованный контроллер памяти. Среди особенностей контроллера памяти Athlon 64 X2 следует упомянуть возможность использования разномастных модулей DIMM в различных каналах (вплоть до установки в оба канала памяти модулей разного объёма) и возможность работы с четырьмя двухсторонними модулями DIMM в режиме DDR400.
Процессоры Athlon 64 X2 (Toledo), содержащие два ядра с кэш-памятью второго уровня по 1 Мбайту на каждое ядро, состоят из примерно 233.2 млн. транзисторов и имеет площадь около 199 кв. мм. Таким образом, как того и следовало ожидать, кристалл и сложность двухъядерного процессора оказывается примерно вдвое больше кристалла соответствующего одноядерного CPU.

Линейка Athlon 64 X2

Линейка процессоров Athlon 64 X2 включает в себя четыре модели CPU c рейтингами 4800+, 4600+, 4400+ и 4200+. В их основе могут использоваться ядра с кодовыми именами Toledo и Manchester. Различия между ними заключаются в размере кэш-памяти второго уровня. Процессоры с кодовым именем Toledo, которые обладают рейтингами 4800+ и 4400+, имеют два L2 кэша (на каждое из ядер) объёмом 1 Мбайт. CPU же с кодовым именем Manchester располагают вдвое меньшим объёмом кэш-памяти: два раза по 512 Кбайт.
Частоты двухъядерных процессоров AMD достаточно высоки и равны 2.2 или 2.4 ГГц. То есть, тактовая частота старшей модели двухъядерного процессора AMD соответствует частоте старшего процессора в линейке Athlon 64. Это означает, что даже в приложениях, не поддерживающих многопоточность, Athlon 64 X2 сможет демонстрировать очень хороший уровень производительности.
Что же касается электрических и тепловых характеристик, то, несмотря на достаточно высокие частоты Athlon 64 X2, они мало отличаются от соответствующих характеристик одноядерных CPU. Максимальное тепловыделение новых процессоров с двумя ядрами составляет 110 Вт против 89 Вт у обычных Athlon 64, а ток питания возрос до 80А против 57.4А. Впрочем, если сравнивать электрические характеристики Athlon 64 X2 с спецификациями Athlon 64 FX-55, то рост максимального тепловыделения составит всего лишь 6Вт, а предельный ток и вовсе не изменится. Таким образом, можно говорить о том, что процессоры Athlon 64 X2 предъявляют к конвертеру питания материнских плат примерно такие же требования, как и Athlon 64 FX-55.

Целиком характеристики линейки процессоров Athlon 64 X2 выглядят следующим образом:


Следует отметить, что AMD позиционирует Athlon 64 X2 как совершенно независимую линейку, отвечающую своим целям. Процессоры этого семейства предназначаются той группе продвинутых пользователей, для которой важна возможность использования нескольких ресурсоёмких приложений одновременно, либо применяющих в повседневной работе приложения для создания цифрового контента, большинство из которых эффективно поддерживает многопоточность. То есть, Athlon 64 X2 представляется неким аналогом Athlon 64 FX, но не для игроков, а для энтузиастов, использующих PC для работы.


При этом выпуск Athlon 64 X2 не отменяет существование остальных линеек: Athlon 64 FX, Athlon 64 и Sempron. Все они продолжат мирно сосуществовать на рынке.
Но, отдельно следует отметить тот факт, что линейки Athlon 64 X2 и Athlon 64 имеют унифицированную систему рейтингов. Это значит, что процессоры Athlon 64 с рейтингами выше 4000+ на рынке не появятся. В то же время семейство одноядерных процессоров Athlon 64 FX будет продолжать развиваться, поскольку данные CPU востребованы геймерами.
Цены Athlon 64 X2 таковы, что, судя по ним, эту линейку можно считать дальнейшим развитием обычных Athlon 64. Фактически, так оно и есть. По мере того, как старшие модели Athlon 64 будут переходить в среднюю ценовую категорию, верхние модели в этой линейке будут заменяться на Athlon 64 X2.
Появление процессоров Athlon 64 X2 в продаже ожидается в июне. Рекомендованные AMD розничные цены выглядят следующим образом:

AMD Athlon 64 X2 4800+ - $1001;
AMD Athlon 64 X2 4600+ - $803;
AMD Athlon 64 X2 4400+ - $581;
AMD Athlon 64 X2 4200+ - $537.

Athlon 64 X2 4800+: первое знакомство

Нам удалось получить на тестирование образец процессора AMD Athlon 64 X2 4800+, являющегося старшей моделью в линейке двухъядерных CPU от AMD. Данный процессор по своему внешнему виду оказался очень похож на своих прародителей. Фактически, отличается он от обычных Athlon 64 FX и Athlon 64 для Socket 939 только лишь маркировкой.


Несмотря на то, что Athlon 64 X2 – это типичный Socket 939 процессор, который должен быть совместим с большинством материнских плат с 939-контактным процессорным гнездом, на данный момент его функционирование с многими платами затруднено в виду отсутствия необходимой поддержки со стороны BIOS. Единственной материнской платой, на которой данный CPU смог заработать в двухъядерном режиме в нашей лаборатории, оказалась ASUS A8N SLI Deluxe, для которой существует специальный технологический BIOS с поддержкой Athlon 64 X2. Впрочем, очевидно, что с появлением двухъядерных процессоров AMD в широкой продаже данный недостаток будет ликвидирован.
Следует отметить, что без необходимой поддержки со стороны BIOS, Athlon 64 X2 в любой материнской плате превосходно работает в одноядерном режиме. То есть, без обновлённой прошивки наш Athlon 64 X2 4800+ работал как Athlon 64 4000+.
Популярная утилита CPU-Z пока выдаёт о Athlon 64 X2 неполную информацию, хотя и распознаёт его:


Несмотря на то, что CPU-Z детектирует два ядра, вся отображаемая информация о кеш-памяти относится лишь к одному из ядер CPU.
Предваряя тесты производительности полученного процессора, в первую очередь мы решили исследовать его тепловые и электрические характеристики. Для начала мы сравнили температуру Athlon 64 X2 4800+ с температурой других Socket 939 процессоров. Для этих опытов мы применяли единый воздушный кулер AVC Z7U7414001; прогрев процессоров осуществлялся утилитой S&M 1.6.0, которая оказалась совместима с двухъядерным Athlon 64 X2.


В состоянии покоя температура Athlon 64 X2 оказывается несколько выше температуры процессоров Athlon 64 на ядре Venice. Однако, несмотря на наличие в нём двух ядер, этот CPU не горячее чем одноядерные процессоры, производимые по 130 нм технологическому процессу. Причём, такая же картина наблюдается и при максимальной нагрузке CPU работой. Температура Athlon 64 X2 при 100-процентной загрузке оказывается меньше температуры Athlon 64 и Athlon 64 FX, в которых используются 130 нм ядра. Таким образом, благодаря пониженному напряжению питания и использованию ядра ревизии E инженерам AMD действительно удалось добиться приемлемого тепловыделения своих двухъядерных процессоров.
Исследуя энергопотребление Athlon 64 X2, мы решили сравнить его не только с соответствующей характеристикой одноядерных Socket 939 CPU, но и с энергопотреблением старших процессоров Intel.


Как это ни покажется удивительным, но энергопотребление Athlon 64 X2 4800+ оказывается ниже энергопотребления Athlon 64 FX-55. Объясняется это тем, что в основе Athlon 64 FX-55 лежит старое 130 нм ядро, так что в этом нет ничего странного. Основной же вывод заключается в другом: те материнские платы, которые были совместимы с Athlon 64 FX-55, способны (с точки зрения мощности конвертера питания) поддерживать и новые двухъядерные процессоры AMD. То есть, AMD совершенно права, говоря о том, что вся необходимая для внедрения Athlon 64 X2 инфраструктура уже практически готова.

Естественно, мы не упустили и возможность проверки разгонного потенциала Athlon 64 X2 4800+. К сожалению, технологический BIOS для ASUS A8N-SLI Deluxe, поддерживающий Athlon 64 X2, не позволяет изменять ни напряжение на CPU, ни его множитель. Поэтому, эксперименты по оверклокингу выполнялись на штатном для процессора напряжении путём увеличения частоты тактового генератора.
В процессе экспериментов нам удалось увеличить частоту тактового генератора до 225 МГц, при этом процессор продолжал сохранять способность к стабильному функционированию. То есть, в результате разгона у нас получилось поднять частоту нового двухъядерного CPU от AMD до 2.7 ГГц.


Итак, при оверклокинге Athlon 64 X2 4800+ позволил увеличить свою частоту на 12.5%, что, как нам кажется, для двухъядерного CPU не так уж и плохо. По крайней мере, можно говорить о том, что частотный потенциал ядра Toledo близок к потенциалу других ядер ревизии E: San Diego, Venice и Palermo. Так что достигнутый при разгоне результат даёт нам надежду на появление ещё более скоростных процессоров в семействе Athlon 64 X2 до внедрения следующего технологического процесса.

Как мы тестировали

В рамках этого тестирования мы сравнили производительность двухъядерного процессора Athlon 64 X2 4800+ с быстродействием старших процессоров с одноядерной архитектурой. То есть, в соперниках у Athlon 64 X2 выступили Athlon 64, Athlon 64 FX, Pentium 4 и Pentium 4 Extreme Edition.
К сожалению, сегодня мы не можем представить сравнение нового двухъядерного процессора от AMD с конкурирующим решением от Intel, CPU с кодовым именем Smithfield. Однако в самое ближайшее время наши результаты тестов будут дополнены результатами Pentium D и Pentium Extreme Edition, так что следите за обновлениями.
Пока же в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

Процессоры:

AMD Athlon 64 X2 4800+ (Socket 939, 2.4 ГГц, 2 x 1024KB L2, ревизия ядра E6 - Toledo);
AMD Athlon 64 FX-55 (Socket 939, 2.6 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 4000+ (Socket 939, 2.4 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
Intel Pentium 4 Extreme Edition 3.73 ГГц (LGA775, 3.73 ГГц, 2MB L2);
Intel Pentium 4 660 (LGA775, 3.6 ГГц, 2MB L2);
Intel Pentium 4 570 (LGA775, 3.8 ГГц, 1MB L2);

Материнские платы:

ASUS A8N SLI Deluxe (Socket 939, NVIDIA nForce4 SLI);
NVIDIA C19 CRB Demo Board (LGA775, nForce4 SLI (Intel Edition)).

Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-12).

Графическая карта: - PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: - Maxtor MaXLine III 250GB (SATA150).
Операционная система: - Microsoft Windows XP SP2.

Производительность

Офисная работа

Для исследования производительности в офисных приложениях мы воспользовались тестами SYSmark 2004 и Business Winstone 2004.


Тест Business Winstone 2004 моделирует работу пользователя в распространённых приложениях: Microsoft Access 2002, Microsoft Excel 2002, Microsoft FrontPage 2002, Microsoft Outlook 2002, Microsoft PowerPoint 2002, Microsoft Project 2002, Microsoft Word 2002, Norton AntiVirus Professional Edition 2003 и WinZip 8.1. Полученный же результат достаточно закономерен: все эти приложения многопоточность не используют, а потому Athlon 64 X2 оказывается лишь чуть-чуть быстрее своего одноядерного аналога Athlon 64 4000+. Небольшое преимущество же объясняется скорее усовершенствованным контроллером памяти ядра Toledo, нежели наличием второго ядра.
Впрочем, в повседневной офисной работе частенько несколько приложений работает одновременно. Насколько эффективными в этом случае оказываются двухъядерные процессоры AMD, показано ниже.


В данном случае измеряется скорость работы в Microsoft Outlook и Internet Explorer, в то время как в фоновом режиме выполняется копирование файлов. Однако, как показывает приведённая диаграмма, копирование файлов – это не столь сложная задача и выигрыша двухъядерная архитектура тут не даёт.


Этот тест несколько сложнее. Здесь в фоновом режиме выполняется архивация файлов посредством Winzip, в то время как на переднем плане пользователь работает в Excel и Word. И в данном случае мы получаем вполне осязаемый дивиденд от двухъядерности. Athlon 64 X2 4800+, работающий на частоте 2.4 ГГц, обгоняет не только Athlon 64 4000+, но и одноядерный Athlon 64 FX-55 с частотой 2.6 ГГц.


По мере усложнения задач, работающих в фоновом режиме, прелести двухъядерной архитектуры начинают проявляться всё сильнее. В данном случае моделируется работа пользователя в приложениях Microsoft Excel, Microsoft Project, Microsoft Access, Microsoft PowerPoint, Microsoft FrontPage и WinZip, в то время как в фоновом режиме происходит антивирусная проверка. В данном тесте работающие приложения оказываются способными как следует загрузить оба ядра Athlon 64 X2, результат чего не заставляет себя ждать. Двухъядерный процессор поставленные задачи решает в полтора раза быстрее аналогичного одноядерного.


Здесь моделируется работа пользователя, получающего письмо в Outlook 2002, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Данная модель работы пользователя предусматривает использование многопоточности, поэтому Athlon 64 X2 4800+ демонстрирует более высокое быстродействие, нежели одноядерные процессоры от AMD и Intel. Заметим, что процессоры Pentium 4 с технологией «виртуальной» многопоточности Hyper-Threading не могут похвастать столь же высокой производительностью, как Athlon 64 X2, в котором находится два настоящих независимых процессорных ядра.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf-формат с использованием Acrobat 5.0.5. Затем, пользуясь сформированным документом, создается презентация в PowerPoint 2002. И в данном случае Athlon 64 X2 вновь оказывается на высоте.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма. Хотя в этом случае положительный эффект от двухъядерности также присутствует, процессоры семейства Pentium 4 справляются с такой работой несколько быстрее.
В целом, относительно оправданности использования двухъядерных процессоров в офисных приложениях можно сказать следующее. Сами по себе приложения такого типа редко оптимизированы для создания многопоточной нагрузки. Поэтому, получить выигрыш при работе в одном конкретном приложении на двухъядерном процессоре тяжело. Однако, если модель работы такова, что какие-то из ресурсоёмких задач выполняются в фоне, то процессоры с двумя ядрами могут дать весьма ощутимый прирост в быстродействии.

Создание цифрового контента

В этом разделе мы вновь воспользуемся комплексными тестами SYSmark 2004 и Multimedia Content Creation Winstone 2004.


Бенчмарк моделирует работу в следующих приложениях: Adobe Photoshop 7.0.1, Adobe Premiere 6.50, Macromedia Director MX 9.0, Macromedia Dreamweaver MX 6.1, Microsoft Windows Media Encoder 9 Version 9.00.00.2980, NewTek LightWave 3D 7.5b, Steinberg WaveLab 4.0f. Поскольку большинство приложений, предназначенных для создания и обработки цифрового контента, поддерживают многопоточность, совершенно неудивителен успех Athlon 64 X2 4800+ в данном тесте. Причём, заметим, что преимущество этого двухъядерного CPU проявляется даже тогда, когда параллельная работа в нескольких приложениях не используется.


Когда же несколько приложений работает одновременно, двухъядерные процессоры способны показать ещё более впечатляющие результаты. Например, в этом тесте в пакете 3ds max 5.1 рендерится в bmp файл изображение, и, в это же время, пользователь готовит web-страницы в Dreamweaver MX. Затем пользователь рендерит в векторном графическом формате 3D анимацию.


В этом случае моделируется работа в Premiere 6.5 пользователя, который создает видео-ролик из нескольких других роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
И снова мы видим гигантское преимущество двухъядерной архитектуры от AMD как над обычными Athlon 64 и Athlon 64 FX, так и над Pentium 4 с технологией «виртуальной» многоядерности Hyper-Threading.


А вот и ещё одно проявление триумфа двухъядерной архитектуры AMD. Его причины такие же, как и в предыдущем случае. Они кроются в использованной модели работы. Здесь гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
Таким образом, необходимо признать, что для приложений, работающих с цифровым контентом, двухъядерная архитектура очень выгодна. Практически любые задачи такого типа умеют эффективно загружать оба ядра CPU одновременно, что приводит к сильному увеличению скорости работы системы.

PCMark04, 3DMark 2001 SE, 3DMark05

Отдельно мы решили посмотреть на скорость Athlon 64 X2 в популярных синтетических бенчмарках от FutureMark.






Как мы уже неоднократно отмечали ранее, тест PCMark04 оптимизирован для многопоточных систем. Именно поэтому процессоры Pentium 4 с технологией Hyper-Threading показывали в нём лучшие результаты, нежели CPU семейства Athlon 64. Однако, теперь ситуация сменилась. Два настоящих ядра в Athlon 64 X2 4800+ позволили этому процессору оказаться наверху диаграммы.






Графические тесты семейства 3DMark многопоточность не поддерживают ни в каком виде. Поэтому, результаты Athlon 64 X2 здесь мало отличаются от показателей обычных Athlon 64 с частотой 2.4 ГГц. Небольшое преимущество же над Athlon 64 4000+ объясняется наличием в ядре Toledo усовершенствованного контроллера памяти, а над Athlon 64 3800+ - большим объёмом кеш-памяти.
Впрочем, в составе 3DMark05 есть пара тестов, которые могут задействовать многопоточность. Это – тесты CPU. В этих бенчмарках на центральный процессор возлагается нагрузка по программной эмуляции вершинных шейдеров, а, кроме того, вторым потоком, выполняется обсчёт физики игровой среды.






Результаты вполне закономерны. Если приложение в состоянии задействовать два ядра, то двухъядерные процессоры работают намного быстрее одноядерных.

Игровые приложения















К сожалению, современные игровые приложения многопоточность не поддерживают. Несмотря на то, что технология «виртуальной» многоядерности Hyper-Threading появилась очень давно, разработчики игр не спешат делить вычисления, производимые игровым движком, на несколько потоков. И дело, скорее всего, не в том, что для игр это сделать тяжело. По всей видимости, рост вычислительных возможностей процессора для игр не так уж и важен, поскольку основная нагрузка в задачах этого типа ложится на видеокарту.
Впрочем, появление на рынке двухъядерных CPU даёт некоторую надежду на то, что производители игр станут сильнее нагружать центральный процессор расчётами. Результатом этого может явиться появление нового поколения игр с продвинутым искусственным интеллектом и реалистичной физикой.

Пока же в применении двухъядерных CPU в игровых системах никакого смысла нет. Поэтому, кстати, AMD не собирается прекращать развитие своей линейки процессоров ориентированной специально на геймеров, Athlon 64 FX. Эти процессоры характеризуются более высокими таковыми частотами и наличием единственного вычислительного ядра.

Сжатие информации


К сожалению, WinRAR не поддерживает многопоточность, поэтому результат Athlon 64 X2 4800+ практически не отличается от результата обычного Athlon 64 4000+.


Однако существуют архиваторы, которые могут эффективно задействовать двухъядерность. Например, 7zip. При тестировании в нём результаты Athlon 64 X2 4800+ вполне оправдывают стоимость этого процессора.

Кодирование аудио и видео


Популярный mp3 кодек Lame до недавнего времени многопоточность не поддерживал. Однако вновь появившаяся версия 3.97 alpha 2 этот недостаток исправила. В результате, процессоры Pentium 4 стали кодировать аудио быстрее, чем Athlon 64, а Athlon 64 X2 4800+, хотя и обгоняет своих одноядерных собратьев, всё же несколько отстаёт от старших моделей семейства Pentium 4 и Pentium 4 Extreme Edition.


Хотя кодек Mainconcept может задействовать два вычислительных ядра, скорость Athlon 64 X2 оказывается не на много выше быстродействия, демонстрируемого одноядерными собратьями. Причём, отчасти это преимущество объясняется не только двухъядерной архитектурой, но и поддержкой команд SSE3, а также усовершенствованным контроллером памяти. В результате, Pentium 4 с одним ядром в Mainconcept работают заметно быстрее, чем Athlon 64 X2 4800+.


При кодировании MPEG-4 популярным кодеком DiVX, картина складывается совершенно иная. Athlon 64 X2, благодаря наличию второго ядра, получает хорошую прибавку к скорости, которая позволяет ему обойти даже старшие модели Pentium 4.


Кодек XviD также поддерживает многопоточность, однако добавление второго ядра в этом случае даёт гораздо меньший прирост в скорости, чем в эпизоде с DiVX.


Очевидно, что из кодеков Windows Media Encoder оптимизирован для многоядерных архитектур лучше всего. Например, Athlon 64 X2 4800+ справляется с кодированием с использованием этого кодека в 1.7 раз быстрее, чем одноядерный Athlon 64 4000+, работающий на аналогичной тактовой частоте. В результате, говорить о каком бы то ни было соперничестве одноядерных и двухъядерных процессоров в WME просто бессмысленно.
Как и приложения для обработки цифрового контента, подавляющее большинство кодеков уже давно оптимизировано для Hyper-Threading. В результате, и двухъядерные процессоры, позволяющие выполнять два вычислительных потока одновременно, выполняют кодирование быстрее, чем одноядерные. То есть, использование систем с CPU с двумя ядрами для кодирования аудио и видео контента вполне оправдано.

Редактирование изображений и видео









Популярные продукты Adobe для обработки видео и редактирования изображений хорошо оптимизированы под многопроцессорные системы и Hyper-Threading. Поэтому, в Photoshop, After Effects и Premiere двухъядерный процессор от AMD демонстрирует чрезвычайно высокую производительность, значительно превышающую быстродействие не только Athlon 64 FX-55, но и более быстрых в задачах этого класса процессоров Pentium 4.

Распознавание текста


Достаточно популярная программа для оптического распознавания текстов ABBYY Finereader, хотя и имеет оптимизацию для процессоров с технологией Hyper-Threading, на Athlon 64 X2 работает только лишь одним потоком. Налицо ошибка программистов, которые детектируют возможность распараллеливания вычислений по наименованию процессора.
К сожалению, подобные примеры неправильного программирования встречаются и в наши дни. Будем надеяться, что на сегодня число приложений, подобных ABBYY Finereader, минимально, а в ближайшем будущем их количество сократится до нуля.

Математические вычисления






Как это не покажется странным, но популярные математические пакеты MATLAB и Mathematica в варианте для операционной системы Windows XP многопоточность не поддерживают. Поэтому, в этих задачах Athlon 64 X2 4800+ выступает примерно на одном уровне с Athlon 64 4000+, опережая его лишь за счёт лучше оптимизированного контроллера памяти.


Зато многие задачи математического моделирования позволяют организовать распараллеливание вычислений, которое даёт неплохой прирост производительности в случае использования двухъядерных CPU. Это и подтверждается тестом ScienceMark.

3D-рендеринг






Финальный рендеринг относится к задачам, которые могут легко и эффективно быть распараллелены. Поэтому, совершенно неудивительно, что применение при работе в 3ds max процессора Athlon 64 X2, оснащённого двумя вычислительными ядрами, позволяет получить очень неплохой прирост в быстродействии.






Аналогичная картина наблюдается и в Lightwave. Таким образом, использование двухъядерных процессоров при финальном рендеринге не менее выгодно, чем и в приложениях для обработки изображений и видео.

Общие впечатления

Перед тем, как сформулировать общие выводы по итогам нашего тестирования, пару слов следует сказать и о том, что осталось за кадром. А именно о комфорте использования систем, оснащённых двухъядерными процессорами. Дело в том, что в системе с одним одноядерным процессором, например, Athlon 64, в каждый момент времени может исполняться лишь один вычислительный поток. Это значит, что если в системе работает несколько приложений одновременно, то планировщик OC вынужден с большой частотой переключать процессорные ресурсы между задачами.

За счёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, «зависает», и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых двухъядерными процессорами, на порядок реже. Дело в том, процессоры с двумя ядрами способны выполнять одновременно два вычислительных потока, соответственно, для функционирования планировщика появляется в два раза больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с двухъядерным процессором стала некомфортной, необходимо одновременное пересечение двух процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

В заключение мы решили провести небольшой эксперимент, показывающий, как влияет на производительность системы с одноядерным и двухъядерным процессором параллельное исполнение большого количества ресурсоёмких приложений. Для этого мы измеряли число fps в Half-Life 2, запуская в фоне несколько копий архиватора WinRAR.


Как видим, при использовании в системе процессора Athlon 64 X2 4800+, производительность в Half-Life 2 остаётся на приемлемом уровне гораздо дольше, нежели в системе с одноядерным, но более высокочастотным процессором Athlon 64 FX-55. Фактически, в системе с одноядерным процессором запуск одного фонового приложения уже приводит к двукратному падению скорости. При дальнейшем увеличении числа задач, работающих в фоне, производительность падает до неприличного уровня.
В системе же с двухъядерным процессором сохранять высокую производительность приложения, работающего на переднем плане, удаётся гораздо дольше. Запуск одной копии WinRAR проходит практически незамеченным, добавление большего числа фоновых приложений, хотя и оказывает влияние на задачу переднего плана, приводит к гораздо меньшему снижению производительности. Следует заметить, что падение скорости в данном случае вызвано не столько нехваткой процессорных ресурсов, сколько разделением ограниченной по пропускной способности шины памяти между работающими приложениями. То есть, если фоновые задачи не будут активно работать с памятью, приложение переднего плана вряд ли сильно будет реагировать на увеличение фоновой нагрузки.

Выводы

Сегодня состоялось наше первое знакомство с двухъядерными процессорами от AMD. Как показали проведённые испытания, идея объединения двух ядер в одном процессоре продемонстрировала свою состоятельность на практике.
Использование двухъядерных процессоров в настольных системах, способно значительно увеличить скорость работы целого ряда приложений, эффективно использующих многопоточность. Ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах семейства Pentium 4 уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от двухъядерной архитектуры CPU. Так, среди приложений, скорость работы которых на двухъядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР.
При этом существует и большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ – офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях двухъядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняется одновременно.
Резюмируя вышесказанное, на графике ниже мы просто приводим численное выражение преимущества двухъядерного процессора Athlon 64 X2 4800+ над одноядерным Athlon 64 4000+, работающим на той же частоте 2.4 ГГц.


Как видно по графику, Athlon 64 X2 4800+ оказывается во многих приложениях значительно быстрее старшего CPU в семействе Athlon 64. И, если бы не баснословно высокая стоимость Athlon 64 X2 4800+, превышающая $1000, то этот CPU смело можно было бы назвать весьма выгодным приобретением. Тем более что ни в одном приложении он не отстаёт от своих одноядерных собратьев.
Учитывая же цену Athlon 64 X2, следует признать, что на сегодня эти процессоры наравне с Athlon 64 FX могут являться разве только ещё одним предложением для обеспеченных энтузиастов. Те из них, для кого в первую очередь важна не игровая производительность, а скорость работы в других приложениях, обратят внимание на линейку Athlon 64 X2. Экстремальные же геймеры, очевидно, останутся приверженцами Athlon 64 FX.

Рассмотрение двухъядерных процессоров на нашем сайте на этом не заканчивается. В ближайшие дни ждите второй части эпопеи, в которой речь пойдёт о двухъядерных CPU от Intel.

Представляем горячую новинку этого лета: массовый двухъядерный процессор от AMD. За $354 вы можете получить два ядра, работающие на частоте 2 ГГц и имеющие по 512 Кбайт L2 кеша. Но достаточно ли этого для удовлетворительной производительности? Ответ – в нашем обзоре, в котором вы найдёте и дополнительные бонусы: тестирование энергопотребления, оверклокинг и бенчмарки в 64-битной версии Windows.

Появление на рынке двухъядерных процессоров для настольных компьютеров было встречено пользователями с воодушевлением. Новые архитектуры, позволяющие объединить два процессорных ядра на одном полупроводниковом кристалле, дали существенный толчок в увеличении производительности современных CPU. В свете того, что производители процессоров в последнее время испытывают очень большие трудности в части дальнейшего наращивания тактовых частот, появление двухъядерных CPU трудно переоценить. Однако, как и любые другие новые продукты, процессоры с двумя ядрами оказались достаточно дорогими, чтобы в короткий срок стать массовыми решениями. В первую очередь это касается двухъядерных процессоров семейства AMD Athlon 64 X2. CPU этой линейки изначально позиционировались производителем как процессоры более высокого класса, нежели обычные Athlon 64. Это вылилось в то, что стоимость процессоров линейки Athlon 64 X2 лежала в пределах от $500 до $1000.

При этом Intel в ценообразовании на свои двухъядерные процессоры проявил более демократичный подход. Стоимость процессоров линейки Pentium D начинается с отметки в $241, что позволяет этим CPU попадать в настольные компьютеры класса mainstream. Впрочем, такое различие в ценах возникает не на пустом месте: производительность двухъядерных процессоров AMD, предлагаемых до сегодняшнего дня, значительно выше быстродействия CPU класса Pentium D.

Надо сказать, что такое положение дел вряд ли нравилось AMD. То, что Intel предлагает гораздо более дешёвые двухъядерные процессоры, вряд ли устраивало маркетологов AMD. Поэтому, сразу вслед за анонсом первых CPU с двумя ядрами инженерам AMD была дана команда по поиску путей удешевления двухъядерных процессоров. И задача эта была решена: сегодня, 1 августа 2005 года компания анонсирует младшую модель в линейке Athlon 64 X2 с рейтингом 3800+, стоимость которой (согласно официальному прайс-листу) опустилась до отметки $354. Не менее приятный факт заключается и в том, что данный анонс носит отнюдь не "бумажный" характер, AMD Athlon 64 X2 3800+ появится в магазинах с минуты на минуту.

Стоимость младшей модели линейки Athlon 64 X2 снижена достаточно стандартным методом. Во-первых, тактовая частота этого процессора опущена ниже частоты остальных двухъядерных CPU от AMD, а во-вторых, этот процессор имеет уменьшенный размер кеш-памяти второго уровня. Благодаря урезанию L2 кеша AMD получила возможность уменьшить ядро, что естественно, положительным образом сказывается на себестоимости. Так, первые процессоры Athlon 64 X2 основывались на ядре с кодовым именем Toledo, состоящем из 233.2 млн. транзисторов и имеющем площадь 199 кв. мм. Новое же ядро Manchester, нашедшее применение как в новом Athlon 64 X2 3800+, так и в некоторых других процессорах линейки, имеет площадь 147 кв. мм и содержит лишь 154 млн. транзисторов. Это, конечно, больше, чем содержится в одноядерных CPU от AMD, но, тем не менее, позволяет увеличить выход кристаллов с одной 200 мм пластины на 38%. Кстати, благодаря сокращению кеш-памяти второго уровня, площадь ядра процессоров Athlon 64 X2 с ядром Manchester вплотную приблизилась к площади ядра CPU серии Pentium 4 6XX, что само по себе уже говорит о многом.

Таким образом, новый Athlon 64 X2 3800+ представляет собой весьма любопытный объект для исследования. Этот двухъядерный процессор от AMD попадает в несколько иную ценовую категорию, нежели его предшественники, что в теории может сделать его хитом продаж. Конечно, при условии, что его производительность окажется на хорошем уровне. В этом обзоре мы как раз и поговорим о перспективности этой новинки, располагая результатами тестов.

Подробности о AMD Athlon 64 X2 3800+

Подробно о двухъядерных процессорах AMD мы уже говорили в статье "Обзор двухъядерного процессора AMD Athlon 64 X2 4800+ ". Отличия Athlon 64 X2 3800+ от его старших собратьев состоят в уменьшенном размере кеш-памяти второго уровня, составляющем по 512 Кбайт на каждое из ядер (такой же размер L2 кеша имеют и Athlon 64 X2 4600+ и 4200+), а также в пониженной до 2.0 ГГц тактовой частоте. Таким образом, с учётом новинки полная линейка двухъядерных CPU от AMD принимает следующий вид:

Тактовая частота Объём L2 кеша Цена
Athlon 64 X2 4800+ 2.4 ГГц 1 Мбайт + 1 Мбайт $1001
Athlon 64 X2 4600+ 2.4 ГГц 512 Кбайт + 512 Кбайт $803
Athlon 64 X2 4400+ 2.2 ГГц 1 Мбайт + 1 Мбайт $581
Athlon 64 X2 4200+ 2.2 ГГц 512 Кбайт + 512 Кбайт $537
Athlon 64 X2 3800+ 2.0 ГГц 512 Кбайт + 512 Кбайт $354

Полные же спецификации новинки, процессора Athlon 64 X2 3800+, мы приводим в таблице ниже:

Athlon 64 X2 3800+
Маркировка ADA3800DAA5BV
Частота 2.0 GHz
Тип упаковки 939-pin organic micro-PGA
Размер L2 кеша 512 Кбайт + 512 Кбайт
Контроллер памяти 128-бит, двухканальный
Поддерживаемые типы памяти DDR400 SDRAM
Частота шины HyperTransport 1 ГГц
Степпинг ядра E4
Технология производства 90 нм, SOI
Число транзисторов 154 млн.
Площадь ядра 147 кв. мм
Типичное тепловыделение 89 Вт
Максимальная температура корпуса 65 град.
Напряжение питания ядра 1.35В
Поддержка технологии AMD64 Есть
Поддержка NX-бит Есть
Поддержка технологии Cool’n’Quiet Есть

Хочется обратить внимание читателя на тот факт, что тепловой пакет для Athlon 64 X2 3800+ установлен в 89 Вт. Это означает, что этот процессор может работать со всеми теми материнскими платами и системами охлаждения, которые совместимы с обычными CPU семейства Athlon 64. Примечательность данного факта состоит в том, что предыдущие модели Athlon 64 X2, за исключением модели 4200+, имели типичное тепловыделение 110 Вт.

Достаточно любопытным представляется и то, что Athlon 64 X2 3800+ имеет чётко обозначенное напряжение питания в 1.35В. Очевидно, что повышение напряжения питания до 1.4В для выпуска младшей модели в семействе не требуется.

Диагностическая утилита CPU-Z выдаёт об Athlon 64 X2 3800+ следующую информацию:

Здесь нас никакие сюрпризы не поджидают, утилита детектирует ядро Manchester, работающее на 2-гигагерцовой частоте.

Энергопотребление и технология Cool’n’Quiet

Измеренное нами практическое энергопотребление рассматриваемого процессора в режиме максимальной загрузки (создаваемой специализированной утилитой S&M 1.7.2) составило 65.1 Вт. Давайте сравним эту величину с энергопотреблением других процессоров:

Как видим, Athlon 64 X2 3800+ вполне оправдывает установленную для него величину типичного тепловыделения. Процессор, хотя и потребляет больше одноядерных собратьев семейства Athlon 64 (на ядре Venice), до энергопотребления Athlon 64 FX-57 с тепловым пакетом 104 Вт всё-таки не дотягивает. Сравнение же с процессорами конкурента в данном контексте вообще бессмысленно, любые CPU от Intel потребляют примерно в два раза больше своих прямых соперников от AMD.

Пару слов необходимо сказать о технологии Cool’n’Quiet, которая перекочевала в двухъядерные процессоры AMD из своих одноядерных предшественников. Эта технология поддерживается в Athlon 64 X2 3800+ в полной мере, единственная особенность состоит в том, что оба ядра снижают частоту и напряжение питания при низкой загрузке синхронно.

В состоянии пониженного энергопотребления частота Athlon 64 X2 3800+ падает до 1 ГГц, а напряжение уменьшается до 1.1В. В результате, в состоянии покоя энергопотребление процессора снижается до 5.8 Вт, что делает Athlon 64 X2 3800+ весьма экономичным CPU. Впрочем, ещё большей экономии можно было бы добиться, если бы ядра могли входить в состоянии пониженного энергопотребления независимо друг от друга. Однако, данная возможность, видимо, будет реализована лишь в двухъядерных CPU, нацеленных на использование в мобильных компьютерах.

Как мы тестировали

Тестирование производительности AMD Athlon 64 X2 3800+ мы выполняли, сравнивая результаты этого CPU с показателями быстродействия процессоров близкой стоимости. В их число вошли Athlon 64 3800+, его цена на сегодня составляет $373; Pentium 4 650 cо стоимостью $401 и Pentium D 830 с ценой в $316.

Таким образом, в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

  • Процессоры:
    • AMD Athlon 64 X2 3800+ (Socket 939, 2.0 ГГц, 2 x 512KB L2, ревизия ядра E4 - Manchester);
    • AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
    • Intel Pentium D 830 (LGA775, 3.0 ГГц, 2 x 1MB L2);
    • Intel Pentium 4 650 (LGA775, 3.4 ГГц, 2MB L2).
  • Материнские платы:
    • ASUS P5WD2 Premium (LGA775, Intel 955X);
    • DFI NF4 Ultra-D (Socket 939, NVIDIA nForce4 Ultra).
  • Память:
    • 1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
    • 1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-14).
  • Графическая карта: PowerColor RADEON X850 XT (PCI-E x16).
  • Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).
  • Операционные системы:
    • Microsoft Windows XP Professional SP2;
    • Microsoft Windows XP Professional x64 Edition.

Особенностью этого тестирования стало использование сразу двух операционных систем: 32-битной и 64-битной версий Windows XP. Тестируя производительность процессоров в 64-битном режиме, мы в первую очередь старались использовать "родные" 64-битные приложения, которых уже стало достаточно много. Таким образом, полученные результаты дадут нам возможность оценить не только производительность процессоров в обычном 32-битном режиме, но и посмотреть, как поведут себя испытуемые CPU при задействовании технологий AMD64 и EM64T.

Впрочем, справедливости ради следует заметить, что большое число 64-битных приложений, доступных сегодня, представляют собой сделанные энтузиастами порты Open Source программ. Соответственно, такие программы весьма специфичны. К сожалению, крупных коммерческих продуктов от известных производителей в 64-битных версиях пока крайне мало.

Производительность

Новая редакция теста PCMark принципиально не отличается от прошлых версий. Тест CPU из этого пакета основывается на реальных алгоритмах шифрования и сжатия данных, плюс активно использует многопоточность. Соответственно, неудивителен и полученный результат. Двухъядерные процессоры показывают лучшую производительность, чем одноядерные, а CPU с NetBurst архитектурой, традиционно показывающие более высокое быстродействие в PCMark, вновь могут похвастать лучшими результатами по данным этого теста.

Также, необходимо отметить, что производительность процессоров с технологиями AMD64 и EM64T в PCMark05 совершенно одинакова как в 32-битной операционной системе, так и в 64-битной ОС. Это как раз наглядно подтверждает эффективность x86-64 архитектуры: исполняемые в 64-битной операционной системе в режиме совместимости 32-битные приложения работают с той же скоростью, что и в родной для них 32-битной среде.

То же самое можно сказать и про результаты в 3DMark05. Использование 64-битной системы Microsoft Windows XP Professional x64 Edition с соответствующими драйверами не приводит к падению производительности в 32-битных DirectX программах. Так что геймеры, по всей видимости, не должны опасаться миграции в 64-битную среду, поддерживаемую процессорами AMD с технологией AMD64 и процессорами Intel с технологией EM64T.

Сам по себе тест 3DMark05, как и большинство игр, не поддерживает многопоточность. Поэтому двухъядерные процессоры никак не проявляют себя здесь. Однако в состав этого тестового пакета входят специализированные тесты CPU, в которых многопоточность используется для расчёта шейдеров и одновременного моделирования игровой среды.

Новый процессор Athlon 64 X2 3800+ показывает здесь вполне адекватную своей стоимости производительность. В первом игровом тесте он обгоняет своих одноядерных конкурентов, немного уступая Pentium D 830 с тактово й частотой 3.0 ГГц. Зато во втором тесте его быстродействие оказывается недосягаемым для всех CPU той же что и он ценовой категории.

Производительность в играх

Современные игры не используют многопоточность, поэтому двухъядерные процессоры в приложениях этого типа не могут похвастать высокими результатами. Так, Athlon 64 X2 3800+ здесь показывает такое же число fps, как демонстрировал бы одноядерный Athlon 64 3200+:

Впрочем, благодаря тому, что архитектура K8 показывает себя очень эффективной именно в игровых приложениях, Athlon 64 X2 3800+ в играх уступает аналогичному по цене одноядерному CPU семейства Pentium 4 не так уж и значительно. Кроме того, мы вновь можем отметить, что переход в 64-битный режим мало сказывается на скорости работы 32-битных игровых приложений.

Несмотря на то, что разработчики игр не балуют нас использованием преимуществ многоядерных архитектур, 64-битные расширения худо-бедно всё же начинают использоваться. Не так давно появился патч для популярной игры Far Cry, позволяющий её использование в Microsoft Windows XP Professional x64 Edition в 64-битном режиме. Естественно, мы не смогли обойти стороной этот факт и протестировали производительность процессоров не только в стандартной 32-битной, но и в 64-битной версии этой игры.

Как видим, 64-битный Far Cry способен продемонстрировать более высокий уровень fps. Так, использование 64-битной операционной системы и 64-битной версии игры позволяет получить дополнительное преимущество порядка 3-5%.

Сжатие данных

Популярный архиватор WinRAR многопоточность не поддерживает, поэтому результаты, показанные в нём рассматриваемым в этом обзоре процессором Athlon 64 X2 3800+ относительно невысоки. По крайней мере, он уступает в быстродействии одноядерным CPU той же ценовой категории. Впрочем, если сравнивать результат Athlon 64 X2 3800+ с показателями двухъядерного процессора Intel Pentium D 830, то всё выглядит не так уж и плохо: производительность у этих двух CPU примерно одинакова.

Также следует обратить внимание на тот факт, что запуск 32-битной утилиты WinRAR в 64-битной операционной системе несколько снижает её быстродействие. По всей видимости, это замедление вносит интерпретатор WoW64, благодаря которому реализуется функционирование 32-битных программ в Microsoft Windows XP Professional x64 Edition.

Среди архиваторов есть и программы, поддерживающие многопоточность. К таким утилитам относится, например 7zip. Помимо возможности эффективной работы с многоядерными процессорами, 7zip отличается ещё и тем, что существует и в 64-битной версии. Поэтому, тестирование производительности с его использованием представляется нам очень любопытным.

Алгоритм сжатия данных в 7zip эффективно использует технологию Hyper-Threading. Тем не менее, производительность процессора Pentium D 830 с частотой 3 ГГц оказывается примерно равной производительности Pentium 4 650 с частотой 3.4 ГГц. Одноядерный Athlon 64 3800+ уступает здесь процессорам от Intel, а Athlon 64 X2 3800+, хотя и показывает на 22% более высокий результат, чем Athlon 64 3800+, догнать конкурентов в семействах Pentium 4 и Pentium D не может.

Сказанное выше относилось лишь к 32-битной версии архиватора. Использование же 64-битной версии изменяет изложенный расклад. Дело в том, что процессоры Athlon 64 от задействования 64-битных регистров получают осязаемый выигрыш в производительности, чего никак нельзя сказать о процессорах Pentium 4 и Pentium D. Быстродействие CPU с NetBurst архитектурой в 64-битном режиме, как мы видим на примере 7zip, может оказаться ниже производительности CPU в 32-битном режиме. Поэтому, 64-битная версия 7zip ставит на первое место процессор Athlon 64 X2 3800+.

При разархивации и Athlon 64, и Pentium 4 работают быстрее при использовании 64-битного режима. Однако, в данном случае, процессоры c архитектурой K8 более эффективны: лидирует одноядерный Athlon 64 3800+, двухъядерный же Athlon 64 X2 3800+, отставая на 18%, демонстрирует второй результат.

Кодирование медиа данных

В первую очередь остановимся на кодировании аудио в формат mp3 популярным кодеком lame. Для целей тестирования мы использовали неофициальную версию 3.97, поддерживающую многопоточность и имеющую 64-битный вариант.

При кодировании аудио процессоры с двухъядерной архитектурой могут похвастать более высокой скоростью, нежели их одноядерные собратья, несмотря на их более низкую тактовую частоту. Если использовать 32-битный кодек, то по данным этого теста лидирует двухъядерный Intel Pentium D 830. Если же прибегать к 64-битной версии кодека, то картина меняется. По странному стечению обстоятельств, 64-битная версия LAME работает медленнее 32-битной. При этом, если замедление процессоров Athlon 64 составляет менее 10%, то процессоры Pentium 4 и Pentium D теряют в скорости около 20%. В итоге, при использовании 64-битной версии LAME лучший результат показывает Athlon 64 X2 3800+.

Столь странное поведение 64-битного порта LAME связано, скорее всего, с проблемами компилятора от Microsoft, который использовался для сборки кода. Впрочем, в таких "клинических" случаях, когда 64-битная версия программы оказывается медленнее 32-битной, никто не мешает в 64-битной операционной системе использовать более быстрый вариант, хоть он и приводит к активации режима совместимости.

Также, в природе существует и 64-битный порт видеокодека XviD. Используя этот кодек, мы провели тестирование скорости кодирования видео в 32-битной и 64-битной операционной системе.

Таких же неожиданностей, как в случае с LAME здесь нет. 64-битная версия кодека работает явно быстрее 32-битной. Однако при этом получить выигрыш от использования процессоров с двухъядерной архитектурой при кодировании XviD, к сожалению, не даёт. Таким образом, в выбранной ценовой категории, самую высокую скорость при сжатии видео кодеком XviD обеспечивает процессор Athlon 64 3800+.

Рассмотрим теперь производительность тестируемых процессоров в кодеках, не имеющих 64-битных клонов.

Двухъядерная архитектура процессора Athlon 64 X2 3800+, вместе с поддержкой им набора инструкций SSE3, к сожалению, не позволяет этому CPU продемонстрировать высший результат. Лидером здесь оказывается Pentium D 830. Заметим, что в этом кодеке двухъядерный процессор AMD работает немного медленнее одноядерного CPU той же ценовой категории, в то время как с процессорами Intel всё происходит наоборот: одноядерный Pentium 4 650 проигрывает Pentium D 830.

Результаты при кодировании кодеком DivX вполне предсказуемы. Архитектура NetBurst здесь эффективнее, чем K8. Кроме того, несмотря на поддержку этим кодеком многопоточности, более высокая частота одноядерных процессоров оказывается важнее дополнительного ядра, которым располагают CPU семейств Athlon 64 X2 и Pentium D. Также, хочется отметить весьма любопытный факт, что в 64-битной операционной системе Microsoft Windows XP Professional x64 Edition 32-битный кодек DivX работает слегка быстрее, чем в родной для него 32-битной среде. Размер этого преимущества составляет порядка 3-5%.

Во время предыдущих тестирований двухъядерных процессоров мы уже отмечали, что Windows Media Encoder является отличным примером приложения, эффективно задействующих два ядра. Так, преимущество Athlon 64 X2 3800+ над Athlon 64 3800+ составляет тут более 30%, несмотря на то, что двухъядерный процессор имеет на 17% более низкую тактовую частоту. В целом же Athlon 64 X2 3800+ удаётся слегка обойти в этом тесте даже Pentium D 830, несмотря на то, что архитектура NetBurst весьма неплохо показывает себя при кодировании медиа данных.

Вычислительные задачи

Популярный бенчмарк SuperPi многопоточность не поддерживает. Поэтому в нём процессоры с двумя ядрами уступают одноядерным CPU.

Тест ScienceMark 2.0 весьма интересен. Во-первых, он поддерживает все современные наборы инструкций и многопоточность, а во-вторых, существует и в версии для Microsoft Windows XP Professional x64 Edition. Причём, использование 64-битного кода для математического моделирования физических процессов, выполняемого в рамках этого бенчмарка, позволяет получить довольно-таки весомый рост производительности, который в подтесте Molecular Dynamics превышает даже 100%.

Процессоры AMD в этом тесте, задействующем вычислительные ресурсы CPU по полной программе, показывают более высокие результаты, нежели конкурирующие продукты от Intel. При этом новый двухъядерный CPU Athlon 64 X2 3800+ в обоих подтестах опережает одноядерного собрата Athlon 64 3800+, автоматически становясь лидером.

Профессиональные приложения

В Adobe Photoshop CS2, поддерживающем многопоточность, Athlon 64 X2 3800+ оказывается быстрее всех остальных процессоров той же ценовой категории, включая и двухъядерный Pentium D 830.

Выигрывает у конкурентов Athlon 64 X2 3800+ и в 3ds max во время измерения производительности при финальном рендеринге. Следует заметить, что подобные задачи хорошо распараллеливаются, и благодаря этому Athlon 64 X2 3800+ обгоняет одноядерный Athlon 64 3800+ на 49%, то есть даже сильнее, чем при кодировании в Windows Media Encoder 9.

А вот работа в 3ds max в Viewports быстрее осуществляется всё-таки при применении одноядерных CPU.

Кстати, заметим сильное падение производительности в данном тесте при использовании 64-битной версии операционной системы. Создаётся впечатление, что проблема заключается в не до конца оптимизированных драйверах.

Photoshop и 3ds max – это 32-приложения. К сожалению, производители не предлагают (пока?) версии этих программ, скомпилированные специально для Microsoft Windows XP Professional x64 Edition. Однако, к счастью, один из профессиональных пакетов 3D графики уже доступен в версии для x86-64. Это – CINEMA 4D от MAXON. Естественно, мы не смогли обойти стороной это приложение и измерили производительность в нём при помощи специального теста CINEBENCH 2003.

Как и в 3ds max, двухъядерный процессор демонстрирует наивысшую производительность при финальном рендеринге и в CINEMA 4D. При этом следует заметить, что скорость финального рендеринга в 64-битных режимах возрастает ещё сильнее, так что в задачах подобного типа сам бог велел использовать двухъядерные 64-битные CPU.

При работе в OpenGL мы можем наблюдать тот же эффект, который наблюдался и в 3ds max, только в данном случае он проявляется на нативном 64-битном приложении. Использование Microsoft Windows XP Professional x64 Edition и приложения, использующего процессорный Long Mode, приводит к некоторому падению производительности. Списать этот эффект, видимо, вновь придётся на драйвера. Что же касается производительности рассматриваемого процессора, то в тестах, использующих OpenGL, вновь лучше себя показывают одноядерные CPU.

Разгон

Поскольку новый процессор Athlon 64 X2 3800+ стал младшей моделью в линейке двухъядерных CPU от AMD, именно он в первую очередь будет интересовать оверклокеров. Для тестирования разгонных возможностей этого процессора мы собрали систему из тех же комплектующих, что и использовались во время измерения производительности, то есть на основе отлично зарекомендовавшей себя материнской платы DFI NF4 Ultra-D. В качестве устройства охлаждения CPU нами был использован воздушный кулер Thermaltake CL-P0200.

Штатный коэффициент умножения процессора Athlon 64 X2 3800+ - 10x, изменять его можно лишь в сторону уменьшения (благодаря поддержке технологии Cool’n’Quiet). Соответственно, разгонять процессор приходится увеличением частоты тактового генератора. Чтобы при оверклокинге не "упереться" в предельные режимы других комплектующих, во время наших испытаний частоты шин PCI Express и PCI фиксировались на штатных значениях, а коэффициент для шины HyperTransport уменьшался до 4x. Для частоты памяти также устанавливался уменьшающий делитель, гарантирующий полную работоспособность модулей DIMM при увеличении частоты тактового генератора.

В процессе наших экспериментов мы установили максимальную частоту тактового генератора, при которой процессор сохраняет стабильность. Она составила 240 МГц. Для покорения этого предела нам даже пришлось несколько увеличить напряжение питания процессорного ядра – до 1.45В. Достигнутая частота процессора при этом составила 2.4 ГГц.

Таким образом, в процессе экспериментов по разгону нам удалось поднять частоту Athlon 64 X2 3800+ на базе ядра Manchester на 20%. Надо отметить, что это не так уж и много, на такой же частоте работают двухъядерные процессоры Athlon 64 X2 4800+ и Athlon 64 X2 4600+. Причём, последний основывается как раз на ядре Manchester. То есть, нам удалось разогнать Athlon 64 X2 3800+ только лишь до уровня Athlon 64 X2 4600+. Видимо, для производства младшей модели в своей двухъядерной линейке AMD использует не самые лучшие ядра. Например, при испытаниях Athlon 64 X2 4800+, правда, на ядре Toledo, нам удалось добиваться работы процессора на частоте в 2.7 ГГц.

Впрочем, чем богаты, тем и рады. Чтобы понять, насколько быстр разогнанный Athlon 64 X2 3800+ по сравнению со старшими процессорами от AMD, мы провели несколько тестов, в которых сравнили нашего "подопытного кролика" с Athlon 64 FX-57 и Athlon 64 X2 4800+. Для чистоты эксперимента память во всех тестах работала на частоте 200 МГц с минимальными таймингами 2-2-2-10.

Как видим, разогнанный до 2.4 ГГц Athlon 64 3800+ ни в одном из проведённых тестов лидирующей позиции не занимает. Однако его производительность при этом всё равно находится на очень хорошем уровне. Например, в приложениях, поддерживающих многопоточность, он может обгонять Athlon 64 FX-57. Отставание же от Athlon 64 X2 4800+, оснащённого кеш-памятью второго уровня объёмом по 1 Мбайту на каждое из ядер, составляет в среднем лишь 1-2%.

Впрочем, при этом встречаются и приложения, весьма критичные к объёму кеш-памяти. В них уровень отставания разогнанного Athlon 64 X2 3800+ от Athlon 64 X2 4800+ может доходить и до 10%. Хотя, конечно, это вряд ли может расстроить владельцев Athlon 64 X2 3800+, который стоит втрое дешевле, чем Athlon 64 X2 4800+ и Athlon 64 FX-57.

Выводы

С выпуском процессора Athlon 64 X2 3800+ компания AMD понизила ценовую планку для систем, основанных на двухъядерных CPU. Теперь платформы среднего уровня могут оснащаться процессорами с двумя ядрами не только от Intel, но и от AMD. Таким образом, выход Athlon 64 X2 3800+ внёс некоторую симметрию: в предложениях обоих компаний теперь есть не только экстремально дорогие двухъядерные CPU, но и аналогичные процессоры среднего уровня.

Мы не будем повторяться, рассказывая о том, в каких приложениях выгодно использование двухъядерных архитектур. Скажем лишь то, что в среднем, по результатам наших тестов, Athlon 64 X2 3800+ показал себя более быстрым процессором, чем двухъядерный конкурент от Intel, Pentium D 830. Таким образом, у этой новинки от AMD есть очень неплохие рыночные перспективы. Особенно, если принять во внимание совместимость двухъядерных процессоров от AMD с существующей инфраструктурой, относительно низкое тепловыделение, поддержку технологии Cool’n’Quiet и возможность перехода на 64-битные операционные системы и соответствующие приложения.

В качестве "ложки дёгтя" для Athlon 64 X2 3800+ следует разве только заметить, что этот процессор почему-то не смог нас поразить чудесами оверклокинга, разогнавшись всего лишь до 2.4 ГГц. Впрочем, даже в таком режиме его производительность такова, что он уступает старшим процессорам в семействах Athlon 64 X2 и Athlon 64 FX не столь значительно.