Неизвестный космос. Легкий космический самолет (ЛКС) Челомея

Летчик-космонавт СССР, дважды Герой Советского Союза, кандидат технических наук, генерал-майор авиации В. Шаталов

Схема освоения приземного воздушного и космического пространства.

Коридор возможных высот и скоростей полета крылатых летательных аппаратов.

Экспериментальные самолеты Национального управления по аэронавтике и исследованию космического пространства США для изучения проблем, связанных с освоением гиперзвуковых скоростей полета и созданием многоразового космического транспортного корабля.

Самолет-носитель B-52, под фюзеляжем которого подвешен экспериментальный самолет Х-15.

Схема полета современного истребителя напоминает схему полета разрабатываемого многоразового космического транспортного корабля.

Взлет истребителя с пороховыми ускорителями.

Истребители, снабженные под фюзеляжным дополнительным топливным баком.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Когда летишь на современном сверхзвуковом истребителе, забираешься на самый «потолок», на предельную высоту, кажется, что совсем немного недостает машине, чтобы вырваться из пут земного тяготения и выйти на орбиту. А когда возвращаешься из космического полета и корабль входит в плотные спои атмосферы, невольно думаешь о том, как было бы хорошо, если бы он обладал качествами самолета: можно было бы выполнить необходимый маневр и совершить привычную посадку на аэродром.

К сожалению, пока ни самолет, ни космический корабль не обладают такими качествами. Но я глубоко убежден, что дело это временное.

Авиация подготовила научные и технические заделы в области силовых установок, конструкции аппаратов, бортовых систем, приборов и оборудования, которые явились базой для создания ракеткой техники, для рождения космонавтики. И хотя космические корабли пока мало походят на самолет, а их полет мало напоминает полет самолетов, тем не менее в их конструкции и оснащении есть много от крылатых машин.

Авиацию по праву называют колыбелью космонавтики: только овладев полетом на больших скоростях и высотах, научившись создавать совершенные конструкции летательных аппаратов и мощные реактивные двигатели, человечество смогло предпринять штурм космоса. Многие ученые, конструкторы, участвующие в исследовании и освоении космического пространства, были тесно связаны с авиацией. Не случайно и то, что первыми покорителями космоса стали летчики.

В то же время многие проблемы, решаемые при создании ракетно-космической техники, и многие результаты исследований, полученные в космических полетах, имеют важное значение для дальнейшего развития авиации. Это теплозащита конструкции, терморегулирование, биологическая защита от космического излучения и многое другое.

Наблюдая прогресс авиационной и космической техники, мы вправе задать себе такой вопрос: будет ли в дальнейшем происходить сближение этих областей, или их развитие пойдет разными путями? Есть серьезные основания считать, что в недалеком будущем произойдет заметное сближение авиации и космонавтики.

Дальнейший прогресс авиации связывают в основном с двумя направлениями; с созданием аэробусов - крупных самолетов, способных перевозить по нескольку сот пассажиров, и с переходом к еще большим скоростям полета.

В последние годы очень быстро растут пассажирские перевозки на воздушных линиях, связывающих крупные города с местами массового туризма, с курортами. А поскольку значительная часть перевозок приходится сейчас на самолеты небольшой и средней вместимости, некоторые аэропорты работают очень напряженно.

Выход из создавшегося положения авиационные конструкторы видят в создании аэробусов - крупных самолетов для обслуживания линий небольшой и средней протяженности. Это будут представители третьего поколения реактивных пассажирских лайнеров. Большая коммерческая нагрузка, высокая крейсерская скорость, низкий расход топлива на километр пути, небольшие затраты на техническое обслуживание, большой ресурс самолета, двигателей и всех агрегатов - таковы должны быть достоинства аэробусов.

В Советском Союзе конструкторским бюро Сергея Владимировича Ильюшина разрабатывается аэробус «Ил-86». Он сможет перевозить 350 пассажиров со скоростью 950 километров в час на дальность до 4 600 километров.

Граница скорости полетов в пределах Земли известна - ее уже достигли баллистические ракеты и искусственные спутники Земли. Это первая космическая скорость - 7,9 км/сек. До нее авиации пока еще далековато - мировые достижения скорости самолетов находятся где-то в районе 3-4 тысяч километров в час, то есть 1 км/сек.

Что же стоит на пути достижения авиацией больших скоростей полета?

Своим возникновением и развитием авиация обязана воздушной оболочке планеты. Воздух создает опору летящему самолету, позволяет маневрировать в пространстве, он же используется для «дыхания» двигателей. Но одновременно воздух создает и аэродинамическое сопротивление, на преодоление которого тратится значительная мощность двигателей, причем с увеличением скорости это сопротивление резко возрастает. Кроме того, воздух ставит на пути к большим скоростям полета ряд пороговых препятствий, барьеров. Это хорошо известный теперь звуковой барьер. Его уже преодолела не только военная, но и гражданская авиация. Однако далось это не легко и не сразу. Это также тепловой барьер - недопустимый нагрев самолетов при полете на скоростях, в три и более раз превышающих скорость звука. К этому барьеру несколько лет назад вплотную подошла военная авиация. Экспериментальные самолеты предпринимают вылазки за его пределы. Но пока это лишь проба сил.

Попутно хочется отметить, что само название «барьер» для авиации не совсем удачно. Это не барьеры в обычном понимании слова - преодолел, а дальше снова легкая дорога. Это скорее рубеж, на котором авиация встречается с новыми серьезными трудностями, причем, появившись однажды, они уже не исчезают, а требуют к себе постоянного внимания.

Самолет, превысив скорость звука, преодолев звуковой барьер, все время как бы несет его на себе в виде ударной волны и становится своеобразным источником непрерывного, бесконечно растянутого взрыва. Такое же положение с тепловым барьером.

По мере развития авиации конструкторам приходится решать все более сложные задачи.

Если, к примеру, для небольших скоростей полете в атмосфере аэродинамические расчеты производятся независимо от тепловых, то при полетах на сверхзвуковых скоростях в аэродинамических расчетах приходится уже учитывать теплообмен, решать вопрос о тепловой защите аппарата, то есть решать типичную задачу теории тепломассообмена.

Современные лайнеры летают обычно на высоте 8-10 километров со скоростью около 900 километров в час. В этих условиях аэродинамический нагрев незначителен, и его во внимание не принимают. Если же самолет будет лететь на этой высоте со скоростью в 3 тысячи километров в час, то, как показывают простейшие расчеты, температура заторможенного воздушного потока - слоев воздуха, омывающих поверхность самолета,- составит плюс 280 градусов Цельсия. На гиперзвуковых скоростях (превышающих скорость звука в пять и более раз) она превысит тысячу градусов. При скорости 10 тысяч километров температура достигнет уже 3 600 градусов,

С трудными задачами теплозащиты уже столкнулись создатели космической техники. Были разработаны так называемые абляционные покрытия, теплозащитные свойстве которых основываются на переходе материала из твердого состояния в газообразное, минуя жидкую фазу. Абляционные покрытия защищают спускаемый аппарат космического корабля, тормозящийся при спуске в атмосфере Земли, от тепловых потоков, достигающих 6-8 тысяч градусов. Но действие таких покрытий связано с укосом массы, а следовательно, с изменением формы покрытия, что совершенно нежелательно для аппаратов, использующих в полете подъемную силу крыльев и корпуса, снабженных аэродинамическими органами управления.

Но даже если бы удалось создать надежную тепловую защиту, попет с гиперзвуковыми скоростями на освоенных высотах был бы невыгоден по экономическим соображениям - расход энергии на преодоление аэродинамического сопротивления воздуха был бы слишком большим.

Вот почему летать с большими скоростями можно лишь в разреженной атмосфере. Здесь и задачи теплозащиты аппарата могут быть решены доступными средствами. Другими словами, надо подниматься в область не освоенных еще высот, в область верхней атмосферы, которая лежит между высотами 30 и 150 километров. Самолеты не могут здесь летать вследствие недостаточной подъемной силы крыльев и тяги воздушно-реактивного двигателя, а орбитальный полёт космического корабля на таких высотах невозможен из-за большого аэродинамического торможения. Эта область разреженной атмосферы пока разделяет авиацию и космонавтику, не дает установить между ними более тесное взаимодействие.

А нужно ли такое взаимодействие? Да, нужно. В околоземном космическом пространстве без него вряд ли можно будет обойтись. С дальнейшим расширением деятельности человека в этом районе все обслуживание между Землей и околоземными орбитами, очевидно, придется взять на себя аппаратам самолетного типа.

Есть ли какие-либо данные о том, что авиация и космонавтика стремятся освоить пространство верхней атмосферы?

Есть... И уже немало.

В частности, экспериментальные пилотируемые самолеты с ракетными жидкостными двигателями, запускаемые в США с самолетов-носителей, достигали высоты более 80 километров и скорости полета около 6 тысяч километров в час. После отделения от носителей самолеты разгонялись и выходили на баллистическую траекторию, Для управления вне пределов плотной атмосферы на них использовались не аэродинамические, а струйные рули. Однако ограниченный запас топлива позволял самолетам выполнять лишь своеобразный подскок вверх, после чего они планировали и совершали посадку.

В полетах экспериментальных ракетных самолетов ученым и конструкторам удалось получить ответы на многие вопросы. В частности, немало нового узнали они об аэродинамике и устойчивости аппаратов, летающих на гиперзвуковых скоростях, о воздействии аэродинамического нагрева на их конструкцию и на работоспособность систем, об особенностях входа в плотные слои атмосферы на больших скоростях с использованием подъемной силы.

Авиация подбирается к области неосвоенных высот снизу, космонавтика - сверху.

Как известно, снижение кораблей «Восток» и «Восход» происходило по баллистической траектории. Рассеивание (проще говоря, показатель неточности попадания в расчетную точку приземления) и перегрузки при таком спуске были довольно значительными, ибо аппарат полностью отдавался во власть стихии - управлять им не представлялось возможным.

Меньшие перегрузки при снижении и значительно большую точность приземления можно было получить лишь при управляемом спуске, то есть при таком спуске, когда в атмосфере происходит управление траекторией спуска корабля. Именно так происходит спуск «Союзов». Правда, этот способ снижения с орбиты потребовал преодоления ряда технических трудностей. Во-первых, нужно было придать спускаемому аппарату форму, обеспечивающую ему аэродинамическое качество. (Эта характеристика, пришедшая из авиации, есть отношение подъемной сипы аппарата к величине его лобового сопротивления.) Кроме того, нужно было создать систему, управляющую кораблем как на внеатмосферном, так и на атмосферном участках полета, и решить ряд других задач. Но зато управляемый спуск позволил снизить перегрузки в 2-3 раза (с 8-10 до 3-4 единиц) и значительно уменьшить рассеивание точки приземления.

От управляемого спуска космического корабля до управляемого полета в верхней атмосфере дистанция еще, конечно, огромного размера. Но тем не менее можно считать, что определенный шаг в этом направлении был сделан и космонавтикой.

В последние годы советские ученые провели ряд других экспериментов, имеющих важное значение для сверхвысотной и сверхскоростной авиации будущего. Я имею в виду эксперименты на автоматических ионосферных лабораториях «Янтарь».

На борту этих лабораторий, запускавшихся с помощью геофизических ракет, устанавливались электрореактивные двигатели. Испытания показали достаточно устойчивую работу этих двигателей на разных высотах и в разных режимах. Примечательно то, что на борту не было ни горючего, ни окислителя. Рабочим телом служил азот атмосферы, правда, предварительно ионизированный. Таким образом, была доказана реальная возможность применения электрических реактивных двигателей для транспортных средств, совершающих полет в верхней атмосфере.

Процесс взаимопроникновения авиации и космонавтики начался уже давно, а в последнее время идет особенно активно. Если лет десять назад еще трудно было говорить об аппаратах, сочетающих качества космического корабля и самолета, то теперь положение изменилось. Облик таких аппаратов предстает достаточно отчетливо. И не только потому, что проведены многие фундаментальные исследования. Главное - конкретнее, определеннее стали цели их создания.

Будущее космонавтики в значительной мере связано с долговременными орбитальными станциями и лабораториями различного назначения. Советская наука рассматривает их создание как магистральный путь человека в космос.

Опыт создания и эксплуатации орбитальных станций советской «Салют» и американской «Скайлэб» показал, что современной космонавтике такая задача уже по плечу.

Но сами станции представляют лишь часть космической системы. Для их эксплуатации- смены экипажей, доставки запасов продовольствия, топлива для двигателей и других материалов - нужны транспортные корабли, которые совершали бы регулярные рейсы по трассе Земля - орбита - Земля.

Это звено системы оказалось пока наиболее слабым. Современные ракетно-космические транспортные средства сравнительно дороги, недостаточно грузоподъемны, требуют долгого времени для подготовки к старту. Все космические аппараты (пилотируемые и беспилотные) выводятся сейчас в космос с помощью одноразовых ракет-носителей. Сложные космические корабли также предназначаются лишь для одного полета.

Разве можно примириться, например, с тем, чтобы крупный океанский лайнер, строящийся несколько лет, предназначался для одного-единствениого рейса? А в космонавтике именно так дело и обстоит.

Возьмем, к примеру, американскую ракету-носитель «Сатурн-5», которая обеспечивала полеты кораблей «Аполлон» к Луне. Этот исполин высотой более 100 метров и весом почти в 3 тысячи тонн фактически прекращал свое существование через несколько минут после старта. А ведь каждая такая ракета стоит ни много ни мало 280 миллионов долларов. Через 10-12 дней от всей сложнейшей системы «Сатурн» - «Аполлон» оставалась лишь небольшая обгоревшая в атмосфере и практически непригодная для дальнейшей эксплуатации спускаемая капсула, в которой экипаж возвращался на Землю. Победная дорога космонавтики усеяна сгоревшими обломками ракет, блоков космических кораблей и брошенными на орбитах спутниками.

Такая «одноразовость» техники превращается в серьезный тормоз дальнейшего развития космонавтики и космических исследований. На первых порах, когда запусков было не так много, а исследования не косили столь большого масштаба, с этим можно было мириться. В дальнейшем же подобное расточительство станет невозможным.

Выход из создавшегося положения специалисты видят в разработке принципиально новых космических транспортных кораблей. Существует много различных проектов, но все такие корабли по замыслу конструкторов должны «уметь» летать в атмосфере, выходить на околоземную орбиту, находиться на ней достаточно продолжительное время, а затем совершать посадку по-самолетному, на свой аэродром. И, что особенно важно, сохранять как можно больше элементов системы для повторного использования.

Чтобы удовлетворять этим требованиям, новые космические корабли должны существенно отличаться от нынешних. Во всяком случае, их орбитальные ступени должны обладать многим из того, что есть у современного самолета.

В поисках схемы нового космического транспортного корабля научно-техническая мысль прошла долгий и сложный путь. Идеальной схемой корабля, отвечающей самым строгим требованиям, сейчас считается двухступенчатая схема с параллельным расположением ступеней. Обе ступени, возвращаемые, пилотируемые, снабжены крылом; как и самолет, они стартуют с аэродрома и садятся на аэродром. Такой корабль можно представить в виде двух самолетов: внизу большой - самолет-разгонщик, а на нем меньший. Большой взлетает с аэродрома, и после того, как достигнута расчетная скорость, меньший отделяется от него и с помощью своих двигателей выходит на орбиту. Самолет-разгонщик тем временем возвращается на аэродром. Выполнив задачу, орбитальный самолет сходит с орбиты и также совершает посадку на аэродром.

Горизонтальный, или самолетный, старт предпочтительнее для многоразового космического корабля, хотя при ракетном старте выводится большая полезная нагрузка. Горизонтальный старт дает возможность выполнять боковой маневр при выведении корабля и запускать вторую ступень практически в любое время без ограничения по азимуту. А это значит, что транспортная система с горизонтальным стартом более маневренна.

Однако реализация такого проекта сегодня еще слишком сложна. Он опережает время, включает еще много нерешенных проблем.

Наиболее приемлемым пока считается проект транспортного корабля, у которого первая ступень - непилотируемая, частично восстанавливаемая для повторного использования, а вторая ступень - пилотируемая, самолетного типа. Отход от «идеальной» схемы означает прежде всего возвращение к вертикальному ракетному старту, утрату в полете некоторых элементов системы. Заметьте: утрату не всей ракеты-носителя и не всего корабля, как сейчас, а лишь некоторых элементов.

В США разрабатывается космический транспортный корабль под названием «Шаттл» («Челнок»). Он имеет двухступенчатую схему с параллельным расположением ступеней, обе ступени возвращаемые; двигательные установки ступеней включаются одновременно. Первая ступень состоит из двух спасаемых (то есть возвращаемых на Землю и пригодных для повторного использования) непилотируемых ракетных блоков с двигателями, работающими на твердом топливе. Вторая ступень крылатая, пилотируемая, оснащенная в водородно-кислородными ЖРД и сбрасываемым перед выходом на орбиту топливным баком. В этой схеме используются преимущества ракетной техники, в частности, применяется высокоэнергетическое топливо и вертикальный старт. Единственная часть системы, которая будет утрачиваться в полете, - топливный бак второй ступени.

Вся эта система чем-то напоминает истребитель, снабженный подфюзеляжным дополнительным топливным баком и двумя пороховыми ускорителями. Взлет такого самолета не раз демонстрировался на воздушных парадах. Только в отличие от него космический транспортный корабль будет иметь топливный бак огромных размеров, превышающий по размерам и весу сам корабль почти вдвое. А вместо компактных пороховых ускорителей - два больших спасаемых твердотопливных ракетных блока.

Отмечая недостатки существующих пилотируемых космических кораблей, мы назвали два: одноразовость и недостаточную грузоподъемность. В действительности недостатков гораздо больше, В частности, нынешние корабли мало маневренны, выполняют только парашютную поездку, для поиска и эвакуации их спускаемых аппаратов требуется специальная служба. Пока все они совершают полет по «жестким» орбитам, не производят маневра плоскостью орбиты, поскольку такой маневр связен с огромным расходом топлива. Вследствие этого корабли не могут спускаться в заданный район, если через него не проходит очередной виток.

Создание аппарата, обладающего большими маневренными возможностями на орбите, заметно расширило бы перспективы всей околоземной космонавтики. Можно было бы уже не запускать, а просто доставлять спутники не орбиты в грузовом отсеке корабля, обслуживать и ремонтировать их в космосе, возвращать на Землю материалы исследований и наблюдений, выполненные спутниками, и даже сами спутники е случае их выхода из строя. Не пришлось бы больше решать сложные проблемы, связанные, в частности, с отделением носовых обтекателей, раскрытием антенн, панелей солнечных батарей. На орбите перед отделением спутника от корабля можно проверить работу его аппаратуры. Значительно снизились бы затраты на разработку выводимых на орбиту аппаратов, поскольку менее жесткими оказались бы ограничения их веса и габаритов. Кроме того, можно было бы обходиться без сложных мер защиты от воздействия больших перегрузок, вибрации, шумов.

С помощью маневрирующих пилотируемых аппаратов может быть организована эффективная служба помощи в космосе.

Ныне спасательный корабль может сблизиться с кораблем, терпящим бедствие, лишь в том случае, если он запущен в тот момент, когда орбита корабля, терпящего бедствие, проходит над местом старта. А повторяется это лишь раз в сутки.

Теперь представим себе, что необходимо срочно эвакуировать экипаж орбитальной станции и что в космосе уже находится пригодный для этого корабль, но угол наклона его орбиты относительно плоскости земного экватора не такой, как у орбиты станции. Сейчас в подобной ситуации для сближения корабля и станции ничего сделать нельзя. А вот транспортный корабль, обладающий аэродинамическим качеством, в состоянии выполнить нужный маневр. Для этого ему придется погрузиться в атмосферу, проделать необходимые эволюции, а затем снова выйти на орбиту. Путем многократного погружения в атмосферу можно значительно изменить плоскость орбиты космического аппарата. Конечно, это также требует расхода топлива, но значительно меньшего, чем маневрирование на орбите, ибо в осуществлении маневра такому кораблю помогает атмосфера.

Когда в свете новых требований, предъявляемых к космическому полету, начинаешь думать: что же надо совершенствовать - современный космический корабль или современный самолет, то неизбежно приходишь к выводу, что путь к новому кораблю от авиации, пожалуй, ближе, чем от космонавтики. Орбитальная ступень этого корабля должна иметь все, чем располагает самолет: фюзеляж достаточно большой длины, крылья, систему для захода на посадку, шасси, аэродинамические органы управления.

Но разработка такого корабля (его с полным основанием можно назвать воздушно-космическим самолетом) - задача не простая. Ряд научных и технических проблем, решенных ранее применительно к нуждам космонавтики, приходится решать заново. Возьмем хотя бы теплозащиту орбитальной ступени при входе в плотные спои атмосферы. Возникает необходимость в разработке новых методов теплозащиты и новых теплозащитных материалов.

В отличие от спускаемого аппарата космического корабля орбитальная ступень воздушно-космического самолета должна рассеивать значительную часть кинетической энергии не в плотной атмосфере, а на больших высотах, вследствие чего ее нагрев будет определяться прежде всего углом входа в атмосферу. Облегчить тепловой режим орбитальной ступени при входе в плотные слои атмосферы может спуск ее на больших углах атаки. Тогда непосредственному воздействию набегающего потока будут подвергаться только нижние поверхности ступени, площадь которых составляет примерно одну треть от всей поверхности. То есть большая часть поверхности орбитальной системы не потребует сложной теплозащиты. И самое главное - не будет областей с очень большими температурами, что наблюдается при малых углах атаки.

Продолжительность полета на атмосферном участке снижения нового космического аппарата может возрасти с десяти минут, так обстоит дело сейчас, до часа и более. В этих условиях температура большей части, если не всей конструкции аппарата, будет близка к равновесной температуре излучения, что позволит не применять для теплозащиты абляционные материалы.

Однако проектирование конструкции, охлаждаемой излучением, требует точного знания местных тепловых потоков по всей поверхности. Выбор материалов должен быть сделан без ошибок, которые допустимы при более толстом теплозащитном покрытии из абляционного материала. Поскольку тепловые потоки связаны с распределением давления, выбор геометрической формы аппарата приобретает огромное значение.

При исследовании различных форм космических самолетов особое внимание уделяется их маневренности на гиперзвуковой скорости и величине аэродинамического качества. Чем большим аэродинамическим качеством будет обладать такой самолет, тем меньше ему придется ожидать момента схода с орбиты для возвращения в заданный район земного шара. При достаточно большом значении аэродинамического качества аппарат может достичь любой точки на земной поверхности, спускаясь с орбиты в любой момент.

У техники уже есть опыт создания универсальных транспортных средств, таких, скажем, как плавающие и летающие автомобили или самолеты-амфибии. В большинстве случаев в них механически объединены и самостоятельно действуют разные машины. Плавающий автомобиль, например, и до сих пор имеет все необходимое для движения по суше плюс водонепроницаемый корпус, винт или водометный движитель. Самолет-амфибия - это лодка или катамаран плюс самолет.

Полет в двух столь отличных друг от друга средах, как атмосфера и космический вакуум, потребует оснащения нового аппарата как аэродинамическими, так и газореактивными органами управления. Первые (киль, руль поворота, элевоны) будут предназначаться для полета в плотных слоях атмосферы, вторые (группы реактивных двигателей или газовых сопел) - для полета в космосе и в верхней разреженной атмосфере. Такое сочетание считается в технике вынужденным, нежелательным, но неизбежным,

В принципе новый аппарат можно было бы снабдить только газореактивными органами управления - реактивная тяга универсальна для обеих сред, но в этом случае пришлось бы отказаться от многих преимуществ, которые дает атмосфера, иметь значительно больший запас топлива или газа, причем носить этот запас до конца полета.

Боковой маневр и маневр по дальности (к примеру, при выборе точки приземления) космический самолет будет выполнять за счет аэродинамических сил, изменяя свои угол крена и угол атаки. Величина боковой дальности (максимальное отклонение вправо и влево) зависит от аэродинамического качества орбитальной ступени: чем оно выше, тем больше боковая дальность. Чтобы получить, например, боковую дальность ±2 000 км, орбитальная ступень должна иметь аэродинамическое качество на спуске около 1,3.

Напрасно стали бы мы рассматривать все проблемы, связанные с созданием космического аппарата нового типа - их очень много. Это устойчивость и управляемость аппарата, особенно при входе в атмосферу и при посадке, это двигательные установки для обеих ступеней, заправка и хранение топлива. Для нового космического аппарата понадобятся малогабаритные источники электроэнергии - на нем негде установить панели солнечных батарей. Не обойтись без усовершенствования командно-измерительного комплекса, разработки новых систем спасения космонавтов на всех этапах полета, без разрешения многих вопросов эксплуатации. Однако решение всех этих проблем по силам современной науке и технике. Создание космического самолета - вполне реальное дело, и, очевидно, недалеко время, когда мы станем свидетелями его первого полета.

От тесного содружества авиации и космонавтики, этих передовых областей науки и техники, выиграет не только космонавтика. Не менее впечатляющими могут стать в недалеком будущем достижения авиации. Освоение сверхзвуковых скоростей и больших высот даст толчок развитию гиперзвуковых самолетов как транспортного средства. Самолеты, которые придут на смену современным сверхзвуковым лайнерам, смогут за несколько часов доставлять людей и грузы в любую точку земного шара.


Глава 15 НАСЛЕДНИКИ «БУРАНА»

Оценивать программу создания ракетно-космического комплекса многократного применения «Энергия-Буран» можно по-разному. Одни считают, что комплекс появился слишком рано, а потому промышленность и экономика нашей страны оказались не готовы к поддержанию и дальнейшему развитию этой программы. Другие, наоборот, полагают, что комплекс опоздал - задачи, которые он был призван решать, утратили актуальность. Так или иначе, но он явно пришелся не ко времени и разделил судьбу множества других проектов, отложенных «под сукно» или в «долгий ящик».

Однако сама тема многоразовых аэро-космических систем осталась на повестке дня. Конструкторская мысль не стоит на месте, и, возможно, кому-то другому когда-нибудь удастся сделать то, чего не удалось сделать создателям «Бурана».

Легкий космический самолет Челомея

В главе 9 я уже рассказывал, что с начала 60-х годов в ОКБ-52 Владимира Челомея разрабатывались проекты орбитальных ракетопланов «МП-1», «М-12», «Р-1» и «Р-2». Выявлялась область применения таких аппаратов. Анализ показал, что наибольшие перспективы имеют чисто крылатые ракетопланы, позволяющие осуществлять маневрирование в широком диапазоне скоростей и направлений.

После известных событий 1964 года, когда в ОКБ-52 нагрянула проверочная комиссия, о перспективных проектах пришлось забыть.

Вновь о ракетопланах в ОКБ-52 (ЦКБМ) заговорили в 1975 году. Тогда же были возобновлены проектные работы над крылатыми космическими аппаратами. В частности, в 1979 году были представлены аванпроект и натурный макет легкого космического самолета многоразового использования «ЛКС» длиной 19 метров и массой 20 тонн. В качестве носителя планировалось использовать ракету «УР500К» («Протон-К»).

Бюро Челомея также предлагало проекты «ЛКС», имеющих в своем составе, кроме многоразового самолета, одноразовый грузовой отсек для доставки тяжелого груза на орбиту.

Возвращение части груза предполагалось осуществлять во внутреннем отсеке самолета.

Несмотря на то что за рубежом уже велись аналогичные работы, проект показался руководству отрасли слишком смелым и не нашел поддержки. В 1981 году разработка «ЛКС» была прекращена.

Проект «ОК-М»

На основе научно-технического опыта по созданию орбитального корабля «Буран» в НПО «Энергия» по указанию главного конструктора Юрия Семенова и под руководством Павла Цыбина в период с 1984 по 1993 год были развернуты проектно-конструкторские работы по совершенствованию ракетно-космических комплексов.

Приоритет отдавался решению задач транспортно-технического обслуживания и повышения эксплуатационной эффективности орбитальных станций типа «Мир», замены серии одноразовых кораблей типа «Союз» и «Прогресс» и применения средств выведения как с вертикальным, так и с горизонтальным стартом. Результатом этих разработок стало появление проектов многоразовых кораблей малой размерности «ОК-М»: «ОК-М», «ОК-М1» и «ОК-М2» с начальными массами от 15 до 32 тонн.

Аэродинамическая схема пилотируемого многоразового корабля «ОК-М» (начальная масса 15 тонн) аналогична аэродинамической схеме корабля «Буран». Его основные конструктивные элементы: цельный неразрезной фюзеляж, включающий кабину экипажа и грузовой отсек пенального типа, крыло двойной стреловидности, снабженное элевонами; вертикальный стабилизатор с рулем направления; носовое и основное колесное шасси. Внешняя поверхность корабля «ОК-М» покрыта плиточным теплозащитным покрытием на основе материалов, разработанных для «Бурана». Носовой «кок» выполнен открывающимся, из материала углерод-углерод; под ним в носовой части фюзеляжа размещен стыковочный агрегат андрогинного типа. Двигательная установка, состоящая из 36 ЖРД на высококипящих компонентах и вытеснительной системы подачи топлива, размещается в двух мотогондолах хвостовой части фюзеляжа и в носовом «коке». Система управления корабля «ОК-М» реализовывалась на основе бортового вычислительного комплекса, применяемого на корабле «Союз ТМ».

Электропотребление корабля составляло в среднем 2,5 кВт и обеспечивалось системой электроснабжения, состоящей из 16 аккумуляторных батарей. Предусматривалась возможность использования солнечных батарей площадью до 25 м?.

Габариты «ОК-М»: длина - 15 метров, высота - 5,6 метра, размах крыла - 10 метров, объем отсека полезного груза - 20 м?, масса - 15 тонн, масса полезного груза - до 3,5 тонны, посадочная масса - 10,2 тонны.

Экипаж «ОК-М» - 2 человека, количество пассажиров, доставляемых на орбиту в специальном модуле, - 4 человека.

Носителем «ОК-М» должна была стать двухступенчатая ракета «Зенит» конструкции НПО «Энергия». Силовая связь корабля с ракетой-носителем осуществлялась через переходный отсек, выполненный по типу «монокок», на котором с помощью сбрасываемых пилонов размещались четыре твердотопливных ускорителя. Блок ускорителей (средняя тяга каждого составляла 25 тонн) позволял увеличить мощность ракеты в штатном полете и обеспечивал экстренное отделение и управляемый увод «ОК-М» при аварии.

Многоразовые орбитальные корабли «ОК-М1» и «ОК-М2» рассчитывались на начальную массу в 32 тонны. Планеры этих кораблей выполнены по схеме «летающее крыло» со складными консолями двойной стреловидности в плане, которые крепятся к средней части фюзеляжа. С учетом увеличенных габаритов кораблей была повышена тяга орбитальных двигательных установок, работающих на компонентах: жидкий кислород + керосин («ОК-М1») и жидкий кислород + этанол («ОК-М2»), до 60 кВт увеличена мощность системы электроснабжения.

Габариты «ОК-М1»: длина - 19,08 метра, высота - 6,98 метра, размах крыла - 12,5 метра, объем отсека полезного груза - 40 м?, масса - 31,8 тонны, масса полезного груза - до 7,2 тонны, посадочная масса - 22,4 тонны.

Экипаж «ОК-М1» - 4 человека, количество пассажиров, доставляемых на орбиту в специальном модуле, - 4 человека.

Габариты «ОК-М2»: длина - 18,265 метра, высота - 7,050 метра, размах крыла - 12,5 метра, объем отсека полезного груза - 40 м?, масса - 30 тонн, масса полезного груза - до 10 тонн, посадочная масса -17,6 тонны.

Экипаж «ОК-М2» - 4 человека, количество пассажиров, доставляемых на орбиту в специальном модуле, - 4 человека.

Существенным отличием корабля «ОК-М1» являлась его ориентация на параллельное силовое сопряжение с ракетно-космическим комплексом и размещение в хвостовой части корабля двух маршевых трехкомпонентных ЖРД с высотными сопловыми насадками.

Как возможные средства выведения кораблей «ОК-М1» и «ОК-М2» рассматривались одноразовые ракеты-носители «Зенит», «Энергия-М» и многоразовая крылатая разгонная ступень вертикального старта на базе корабля «Буран». Параллельно оценивалась возможность использования транспортного самолета-носителя (типа «Руслан» или «Мрия») в качестве 1-й ступени авиационно-космической системы при организации так называемого «воздушного старта» 2-й ступени (разгонной ракеты).

Сравнительный анализ показал, что на данном этапе гораздо большую надежность и безопасность полета могут обеспечить только ракеты-носители. Поэтому конструкторы «ОК-М1» и «ОК-М2» остановили свой выбор на ракетно-космических комплексах, создаваемых на базе многоразовой космической системы «Энергия-Буран».

Так, «ОК-М1» введен в состав многоразового многоцелевого космического комплекса (ММКК), являющегося составной частью многоразовой многоцелевой космической системы, а «ОК-М2» - в состав комплекса РН «Энергия-М».

ММКК состоял из разгонного возвращаемого корабля, подвесного топливного отсека и многоразового орбитального корабля «ОК-М1». Беспилотный разгонный корабль использовался в качестве 1-й ступени, разрабатываемой на основе конструкции планера с максимальным использованием элементов и систем корабля «Буран». Внутри корпуса разгонного корабля устанавливались топливные баки, пневмо-гидравлические средства подачи компонентов топлива и четыре двухрежимных трехкомпонентных ЖРД с необходимым вспомогательным оборудованием, работающих на жидком кислороде, жидком водороде и углеводородном горючем.

При этом в составе разгонного корабля были предусмотрены запасы только жидкого кислорода и углеводородного горючего, жидкий водород размещался в подвесном топливном отсеке.

Для обеспечения полета по трассе возвращения разгонный корабль оснащался двумя воздушно-реактивными двигателями, расположенными по обе стороны в средней части фюзеляжа. Подвесной топливный бак представлял собой силовую конструкцию с несущими топливными баками диаметром 5,5 метра с продольной (последовательной) компоновкой баковых емкостей окислителя и горючего.

Многоразовый корабль «ОК-М1» крепился к подвесному топливному баку с помощью трех разрывных силовых узлов по параллельной схеме, выполняя функции 2-й ступени и используя в качестве маршевой двигательной установки два трехкомпонентных ЖРД.

Для спасения в экстремальных ситуациях корабля «ОК-М1» с экипажем и разгонного корабля или только экипажа в составе ММКС были предусмотрены специальные технические средства (катапультные кресла, средства аварийной защиты двигателей, спасательные скафандры, средства экстренного отделения орбитального корабля, средства предупреждения) и разработаны специальные режимы функционирования составных частей.

В ракетно-космическом комплексе «ОК-М2-Энергия-М» силовая связь корабля «ОК-М2» осуществлялась с ракетным блоком 2-й ступени ракеты-носителя «Энергия-М» и в конструктивном плане была подобна привязке корабля «ОК-М» к ракете «Зенит».

Проект «МАКС»

В 1982 году, задолго до первого и последнего полета системы «Энергия-Буран», Генеральный конструктор НПО «Молния» Глеб Лозино-Лозинский, оценив перспективы создания авиационно-космических систем и обобщив свой опыт работы над космопланом «Спираль», предложил новый проект, получивший название «МАКС», то есть «Многоразовая авиационно-космическая система».

В 1988 году большой кооперацией (около 70 предприятий авиационной и космической промышленности) был разработан эскизный проект системы «МАКС» в 220 томах.

В подтверждение проектных технических характеристик выполнен большой объем исследовательских работ по аэродинамике, газодинамике, прочности элементов конструкции и другим направлениям.

Система «МАКС» состоит из дозвукового самолета-носителя и установленной на нем орбитальной ступени с внешним топливным баком. В качестве первой ступени «МАКС» планируется использовать тяжелый самолет «Ан-225» («Мрия») или (в перспективе) сверхмощный двухфюзеляжный самолет «Геракл».

Самолет «Мрия» чрезвычайно удобен тем, что он уже неоднократно испытывался как транспортная платформа при дальних перевозках орбитального корабля «Буран». При максимальной взлетной массе в 600 тонн «Ан-225» может поднимать полезный груз до 250 тонн, развивая при этом скорость 850 км/ч на высоте от 9000 до 11 000 километров.

По вариантам второй ступени система «МАКС» имеет три модификации: «МАКС-ОС», «МАКС-Т» и «МАКС-М».

Вторая ступень «МАКС-ОС» состоит из орбитального самолета многоразового использования и одноразового топливного бака.

Габариты орбитального самолета «МАКС-ОС»: длина - 19,3 метра, размах крыла - 13,3 метра, высота - 8,6 метра, масса - 27 тонн.

При этом стартовая масса всей системы составляет 620 тонн, 2-й ступени - 275 тонн, а полезной нагрузки, выводимой на орбиту до 400 километров, - 5,8–6,6 тонны.

Маршевая двигательная установка включает в себя два двигателя «РД-701», работающих на трехкомпонентном топливе (жидкий водород, керосин и жидкий кислород). Базовый пилотируемый вариант самолета «МАКС-ОС» имеет кабину для двух членов экипажа.

Разработаны варианты самолета «МАКС-ОС» для транспортно-технического обеспечения орбитальных станций. Вариант «ТТО-1» оборудован стыковочным модулем и второй герметичной кабиной на четырех человек. Вариант «ТТО-2» предназначен для доставки в негерметичном отсеке оборудования, устанавливаемого на наружной стороне орбитальных станций.

Для выведения на орбиту тяжелых (до 18 тонн) полезных нагрузок предназначена модификация «МАКС-Т», имеющая вторую беспилотную ступень одноразового применения.


В ней используется тот же внешний топливный бак, что и на «МАКС-ОС», только вместо орбитального самолета установлен закрытый обтекателем полезный груз с маршевым двигателем.

Вторая ступень «МАКС-М» представляет собой многоразовый беспилотный орбитальный самолет. Топливные баки «МАКС-М» включены в конструкцию самолета.

«МАКС-ОС», «МАКС-Т» и «МАКС-М» должны по мере создания вводиться в совместную эксплуатацию на основе единых самолета-носителя и наземной инфраструктуры. Многоразовое применение их составных элементов и высокая степень унификации орбитальных ступеней обеспечат достижение основной цели разработчиков - многократного, по сравнению с существующими системами, снижения стоимости транспортных космических операций. Система «МАКС» позволит снизить стоимость выводимых в космос грузов до 1000 долларов за килограмм (против 12 000-15 000 долларов за килограмм у одноразовых систем).

Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для «МАКС» средствами заправки компонентами топлива, наземного технического и посадочного комплекса, и в основном вписывается в существующие средства наземного комплекса управления космическими системами.

В настоящий момент изготавливаются натурные макеты орбитального самолета и внешнего топливного бака. Разработка конструкторской документации по этим двум элементам практически завершена.



Для снижения технического риска создания полномасштабной системы «МАКС» и для равномерного распределения во времени финансовых затрат признана необходимой oпeрежающая разработка сравнительно недорогой экспериментальной системы-демонстратора технологий.

Исследования по первому варианту демонстратора «РАДЕМ» («RADEM») проводились в 1993–1994 годах НПО «Молния» совместно с фирмами «Бритиш Аэроспейс», АНТК Антонов и ЦАГИ по заказу Европейского космического агентства Современный вариант суборбитального демонстратора «МАКС-Д» также разработан с использованием задела по «РАДЕМ» и на базе конструкции и аэродинамической компоновки «МАКС-ОС». Взлетная масса экспериментального самолета - 62,3 тонны, посадочная - 12,8 тонны. В отличие от «РАДЕМ» в суборбитальном самолете «МАКС-Д» маршевая двигательная установка состоит лишь из одного кислородно-керосинового двигателя, что не только упрощает проект, но и, при заданных объемах баков, повышает энергетические возможности демонстратора При помощи демонстратора будут отработаны технологии и элементы системы выведения «МАКС» и исследованы в реальных условиях предстартовый маневр носителя, разделение ступеней, начальный участок выведения и автоматическая посадка орбитальной ступени. Помимо этого он может быть использован как летающая лаборатория для испытания перспективных воздушно-реактивных двигателей.

В проекте участвует и Летно-исследовательский институт имени Громова. Так, для системы «МАКС» там планируется создать и испытать самолет-лабораторию на базе истребителя «Су-27».



К настоящему времени на разработку системы «МАКС» израсходовано около 1,5 миллиарда долларов. Для того чтобы получить первый летающий образец, требуется еще около 1,8 миллиарда.

На состоявшемся в ноябре 1994 года в Брюсселе Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94» программа «МАКС» получила золотую медаль и специальный приз премьер-министра Бельгии.

Космопланы «МиГ-2000» и «МиГ-АКС»

Современные исследования тенденций развития и возможностей создания отечественных многоразовых средств космического выведения проводятся в соответствии с Государственной космической программой в рамках научно-исследовательской и экспериментальной работы «Орел», выполняемой по заказу Российского космического агентства.

С 1993 по 1996 год работы по теме «Орел» велись в ЦНИ И машиностроения, ЦАГИ имени Жуковского, Исследовательском центре имени Келдыша и в других организациях.

Проведенные в ЦНИИ Машиностроения параметрические расчеты и сравнительный анализ многоразовых одно- и двухступенчатого носителей с различными двигателями показали, что при снижении сухой массы летательного аппарата примерно на 30 % по сравнению с системой «Спейс Шаттл» или «Энергия-Буран» одноступенчатый носитель грузоподъемностью от 10 до 20 тонн должен иметь преимущества перед двухступенчатыми той же массы как по затратам на разработку, так и по удельной стоимости выведения.

Среди выдвинутых проектов воздушно-космических самолетов в особую группу можно выделить аппараты, разрабатываемые в авиационном конструкторском бюро имени Микояна - «МиГ-2000» и «МиГ-АКС».

«МиГ-2000» - одноступенчатый воздушно-космический самолет (длина фюзеляжа - 54,1 метра, базовый диаметр - 19,7 метра) со взлетным весом 300 тонн, способный выводить полезную нагрузку до 9 тонн на орбиту высотой 200 километров с наклонением 51°. После разгона ускорителем на ЖРД до 0,8 Махов, прямоточный воздушно-реактивный двигатель с дозвуковым горением обеспечивал дальнейший разгон до 5 Махов. В качестве ракетного топлива должен был использоваться переохлажденный водород и жидкий кислород. При возращении был возможен боковой маневр до 3000 километров.

«МиГ-АКС» - двухступенчатый воздушно-космический самолет, создаваемый на основе оригинальной концепции электромагнитной левитации «ЭТОЛ».

Эта концепция была впервые выдвинута специалистами КБ имени Микояна и ЦАГИ на Международном авиакосмическом салоне «МАКС"99». Летательные аппараты, базирующиеся на концепции электромагнитной левитации, должны садиться и взлетать с электромагнитной ВПП, позволяющей ускорить разгон при взлете и обеспечить торможение при посадке с помощью известного принципа взаимодействия движущегося тела с магнитным полем. Идея была уже испытана в лаборатории на алюминиевых макетах «электромагнитного беспилотного моноплана» массой от 2 до 10 килограммов, который разгоняли и тормозили с помощью методики «ЭТОЛ» на полосе длиной 5 метров.





Разгонная взлетно-посадочная полоса длиной 4 километра, проектируемая под «МиГ-АКС», формируется из 40 компонентов мощностью 1010 Дж, которые позволят за 1015 секунд осуществить взлет самолета массой от 200 до 700 тонн. При этом ускорение составит от 2 до 30 g, а скорость - 300–500 м/с. Не исключается возможность разгона до 100 м/с аппарата без шасси массой от 50 до 150 тонн.

Дальнейший разгон аппарата и выведение его на орбиту осуществляется комбинированной двигательной установкой на основе турбопрямоточных и жидкостных ракетных двигателей.

Стартовая масса «МиГ-АКС» составляет 420 тонн, максимальная полезная нагрузка, выводимая на орбиту высотой 400 километров, - до 7 тонн, возвращаемый с орбиты груз - до 7 тонн.

Та же методика электромагнитных запусков предложена и для многоцелевого беспилотного самолета (противолавинные и противоградовые меры, геологоразведка, наблюдение за экологией и состоянием лесов), а также для самолета для спасения на море массой от 15 до 40 тонн, который будет взлетать (и совершать посадку туда же) с палубы авианосца, имеющего электромагнитную ВПП длиной от 150 до 200 метров.

Воздушно-космический самолет НПО «Энергия»

В ответ на разработку в США трансатмосферного бомбардировщика «Икс-30» («Х-30», «NASP») вышли постановления Правительства СССР от 27 января и 19 июля 1986 года о создании советского эквивалента. 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). МВКС должен был обеспечить эффективную и экономичную доставку грузов военного назначения на околоземную орбиту. На конкурс были представлены проекты ОКБ Туполева («Ту-2000»), ОКБ Яковлева («МВКС») и НПО «Энергия» («ВКС»).

Воздушно-космический самолет «ВКС», разработанный под руководством Павла Цыбина, представлял собой гиперзвуковой ракетоплан с комбинированной многорежимной двигательной установкой на основе турбопрямоточного воздушно-реактивного двигателя и линейного ЖРД. Начальная масса «ВКС» не превышала 700 тонн (масса конструкции составляла 140 тонн), масса полезного груза - не менее 25 тонн при выведении на опорную орбиту высотой 200 километров и наклонением 51°.

Габариты «ВКС»: длина - 71 метр, размах крыла - 42 метра, высота - 10 метров.

«ВКС» конструкции НПО «Энергия» предназначался для оперативного экономически эффективного выведения полезных нагрузок на низкие орбиты, технического обслуживания орбитальных группировок, трансконтинентальных транспортировок, а также для решения оборонных задач в космосе и из космоса.

Этот проект остался невостребованным, поскольку предпочтение было отдано конкурсной разработке «Ту-2000».

Космический бомбардировщик «Ту-2000»

Практически все работы, связанные с авиационно-космической тематикой, в ОКБ-156 Андрея Туполева были свернуты в начале 60-х годов. Вновь к этой тематике бюро вернулось в 70-е годы, когда в СССР были начаты перспективные работы над авиационными воздушно-космическими системами.

С 1968 по 1971 год в проработке у ОКБ Туполева находилось несколько технических предложений по воздушно-космическим самолетам с горизонтальным стартом и посадкой.

Взлетная масса летательных аппаратов согласно проектам достигала 300 тонн. В качестве силовой установки предлагалось использовать ЖРД на тепловыделяющих элементах с использованием ядерной силовой установки, в качестве рабочего тела - водород. Рассматривались варианты многоэтапного вывода полезных нагрузок на воздушно-космических системах, находящихся на орбите вокруг Земли, на межпланетные орбиты с использованием ионных и плазменных маршевых двигателей.

Однако в тот период основное внимание ОКБ было сосредоточено на теме многорежимных боевых самолетов. На развертывание крупномасштабных и дорогостоящих исследовательских работ по одноступенчатым воздушно-космическим системам не было ни средств, ни свободных людских ресурсов. Кроме того, до первых полетов по американской программе «Спейс Шаттл» военные не проявляли особого интереса к проектам отечественных воздушно-космических аппаратов, делая ставку на ракетные системы. Поэтому все эти оригинальные предложения ОКБ-156 не вышли из стадии эмбрионального состояния.

С появлением на Западе проектов одноступенчатых воздушно-космических систем работы по данной тематике оживились и в Советском Союзе. К середине 80-х годов совместно с ЦАГИ, ОКБ Николая Кузнецова, с другими предприятиями и организациями отечественного военно-промышленного комплекса ОКБ-156 подготовило ряд конкретных технических предложений по созданию авиационно-космической системы на базе одноступенчатого орбитального самолета с маршевой и корректирующей силовыми установками на основе ЖРД, с наземным или воздушным стартом с тяжелых самолетов-носителей.

Следующим этапом в создании одноступенчатого воздушно-космического самолета в ОКБ Туполева стало начало проектирования летательного аппарата с маршевой силовой установкой, построенной на комбинации двигателей принципиально различного типа: ТРД + ПВРД + ЖРД.

За эти годы по теме одноступенчатого орбитального воздушно-космического самолета ОКБ подготовило несколько проектов, отличавшихся различными техническими решениями в части компоновки летательного аппарата и его силовой установки. Одним из последних стал проект, получивший обозначение самолет «2000» или «Ту-2000», с комбинированной силовой установкой.



Исследования, проведенные в ОКБ Туполева, дали основание утверждать, что одноступенчатый воздушно-космический самолет способен стать реальностью, если решить, в частности, проблемы существенного повышения экономичности силовой установки и значительно поднять относительный запас топлива на взлете летательного аппарата.

По мнению конструкторов бюро, существенно повысить экономичность силовой установки можно, используя в качестве окислителя кислород воздуха, то есть применяя воздушно-реактивные двигатели. Единственным типом ВРД, который можно использовать при гиперзвуковых скоростях полета, является прямоточный воздушно-реактивный двигатель.

Использование в качестве окислителя атмосферного воздуха позволяет уменьшить секундный расход топлива, однако существенное снижение общей массы самолета может быть достигнуто только при условии работы ПВРД в широком диапазоне чисел Маха полета (широко-диапазонный ПВРД - ШПВРД). Это дает существенную разность между уменьшением массы топлива и увеличением массы конструкции, связанным с использованием ПВРД, и обеспечивает выигрыш в относительной массе полезной нагрузки.

Другим определяющим условием реализации одноступенчатого воздушно-космического самолета является использование в качестве топлива жидкого водорода. Это позволяет создать более легкие и компактные двигатели с требуемым удельным расходом топлива. Кроме того, использование хладоресурса жидкого водорода дает возможность спроектировать достаточно легкую охлаждаемую конструкцию планера и воздухозаборника, а также обеспечивать необходимые температурные режимы бортовых систем и оборудования.

Из условий применения на воздушно-космическом самолете основной разгонной силовой установки на базе ПВРД для него наиболее рационально применение комбинированной силовой установки, включающей экономичные ТРД, работающие в диапазоне скоростей, соответствующих диапазону от 0 до 2,5 Маха, ПВРД (ШПВРД), обеспечивающих разгон до 20–25 Махов, и ЖРД для доразгона до орбитальной скорости и маневрирования на орбите.

Для того чтобы одноступенчатый воздушно-космический самолет был конкурентоспособен в сравнении с другими транспортными средствами, при его проектировании необходимо обеспечить выполнение ряда требований к летным характеристикам. Он должен обладать способностью совершать взлеты и посадки со стандартных взлетно-посадочных полос длиною до 3000 метров, совершать полеты с разворотом на дозвуковой скорости после взлета для выхода в заданную точку начала разгона и перед посадкой для захода на заданный аэродром, осуществлять перелеты для изменения аэродрома базирования, быстро выполнять разгон до заданной скорости и высоты, включая выход на круговую орбиту, выполнять неоднократные орбитальные маневры, выполнять автономный орбитальный полет продолжительностью до суток, выполнять крейсерский полет в атмосфере с гиперзвуковыми скоростями, выполнять торможение со снижением при возвращении с орбиты, в процессе разгона до орбитальных параметров и в процессе снижения выполнять маневрирование для прохода заданной трассы и выхода на заданную орбиту и заданный аэродром, изменять плоскость орбитального полета.

Принципиальная новизна разрабатываемого летатель ного аппарата, отсутствие проверенных технических реше ний по ряду направлений, а также необходимого набора конструкционных материалов и полуфабрикатов обуславливают необходимость поэтапной разработки и испытаний экспериментального воздушно-космического самолета. Поэтому вся программа по созданию экспериментального «Ту-2000» была разбита на два этапа: создание экспериментального гиперзвукового самолета «Ту-2000А» с максимальной скоростью полета до 5–6 Махов и создание экспериментального «ВКС» - прототипа одноступенчатого многоразового воздушно-космического самолета, обеспечивающего проведение летного эксперимента во всей области полетов, вплоть до выхода в космос.

Для воздушно-космического самолета «Ту-2000» была принята аэродинамическая схема «бесхвостка». Все элементы самолета конструктивно интегрированы вокруг силовой установки, состоящей из четырех ТРД, находящихся в хвостовой части, основного разгонного ШПВРД, расположенного под фюзеляжем в задней его части, и двух ЖРД для маневрирования в космическом пространстве, установленных между ТРД.

Самолет имеет треугольное крыло относительно небольшой площади и малого удлинения, большую роль в создании подъемной силы берет на себя фюзеляж с плоской нижней поверхностью.

Органы управления традиционные для данной схемы летательного аппарата элевоны на крыле и руль поворота на киле.

Основной двигатель - ШПВРД включает в себя воздухозаборник внешне-внутреннего сжатия, регулируемые камеры сгорания с косым срезом и многоканальную систему подачи топлива. Основной разгонный режим выполняется на ШПВРД. Воздушные каналы ТРД после достижения скорости 2–2,5 Маха и начала работы ШПВРД закрываются заслонками, которые в открытом состоянии образуют входное устройство воздухозаборника ТРД.

Фюзеляж самолета большого размера в основном занят топливными баками с жидким водородом.

В носовой части фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа.

На экспериментальном «Ту-2000А» будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.

За кабиной экипажа находится технический отсек радиоэлектронного оборудования, в этот же отсек убирается передняя стойка шасси. Средняя и задняя части фюзеляжа заняты топливным баком с жидким водородом. Для питания ЖРД окислителем в хвостовой части фюзеляжа установлен кислородный бак. Все двигатели в качестве горючего используют жидкий водород из единой топливной системы.

Шасси «Ту-2000А» нормальной трехточечной схемы с носовым колесом: передняя стойка со спаренными колесами малого диметра с высоким давлением в пневматиках колес, основные стойки - одноколесные, убираются в фюзеляж в отсеки в районе крыла.

Габариты «Ту-2000А»: длина - 60 метров, размах крыла - 14 метров, стреловидность крыла по передней кромке - 70, масса пустого - 40 тонн, взлетная масса - от 70 до 90 тонн.

Экспериментальный «ВКС» второго этапа должен иметь взлетную массу до 210–280 тонн. Подобный аппарат сможет доставлять на околоземную орбиту 200–400 километров полезный груз от 6 до 10 тонн. Компоновочно он будет повторять экспериментальный «Ту-2000А», но на нем планируется устанавливать более мощный ШПВРД, число ТРД увеличить до шести.

На втором этапе, помимо многоразового воздушно-космического самолета, намечалось создать варианты космического бомбардировщика «Ту-2000Б» и пассажирского гиперзвукового самолета.

«Ту-2000Б» проектировался как двухместный бомбардировщик с дальностью 10 000 километров и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость в 6 Махов на высоте 30 километров.

До приостановки работ в 1992 году для «Ту-2000А» были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.

По утверждению специалистов, на сегодняшнем этапе весь объем научно-исследовательских и конструкторских работ по проекту можно выполнить за 13–15 лет с начала необходимого финансирования. Стоимость постройки одного «Ту-2000» (при затратах на опытно-конструкторские работы в 5,29 миллиарда долларов) составит около 480 миллионов долларов. Предполагаемая цена запуска - 13,6 миллиона долларов (при периодичности - 20 пусков в год).

Концепция «АЯКС»

В 1991 году мир узнал о новом прорывном проекте российских ученых.

Используя перспективные военные технологии, руководитель СКБ «Нева» ленинградского концерна «Ленинец» (ныне - Санкт-Петербургское Научно-исследовательское предприятие гиперзвуковых систем «Ленинец») Владимир Фрайштадт предложил оригинальную концепцию одноступенчатого аэро-космического самолета, получившую название «Аякс».

Согласно концепции «Аякс», гиперзвуковой летательный аппарат является открытой неизолированной аэротермодинамической системой, в которой на всех этапах атмосферного полета часть кинетической энергии обтекающего гиперзвукового воздушного потока ассимилируется бортовыми подсистемами, повышая общий ресурс аппарата и преобразуясь в химическую и электрическую энергии.

«Аякс» состоит из двух вложенных один в другой корпусов.

Между ними - специальный катализатор, куда поступает поток традиционного авиакеросина или более перспективного топлива - сжиженного метана. Когда аппарат совершает гиперзвуковой полет в атмосфере, то под влиянием высоких температур происходит термохимическое разложение углеводородного топлива. Процесс забирает большое количество энергии и охлаждает реактор. В результате термохимического разложения топлива выделяется свободный водород.

В смеси с тем же топливом он образует очень эффективное горючее для самолета.

Кроме того, часть обтекающего аппарат воздушного потока поступает в тракт уникального по своей концепции магнитоплазмохимического прямоточного воздушно-реактивного двигателя со сверхзвуковым горением. В этом двигателе находятся магнитогазодинамический (МГД) генератор и ускоритель. Первый создает мощное магнитное поле, в котором тормозится набегающий поток. Заторможенный и предварительно ионизированный поток воздуха поступает в камеру сгорания, куда подается обогащенное водородом топливо (керосин или метан). Истекающие продукты сгорания попадают в сопло, дополнительно разгоняются МГД-ускорителем и, расширяясь, выходят наружу. Таким образом, летящий в атмосфере аппарат сможет преобразовывать кинетическую энергию набегающего воздушного потока в широкий спектр различных видов энергии и использовать бортовой энергетический комплекс мощностью 100 МВт для самых различных задач планетарного характера.

И еще. На аппарате, созданном по концепции «Аякс», будет осуществляться управление обтеканием поверхности аппарата за счет воздействия направленного излучения бортового лазера и внешнего электромагнитного поля летательного аппарата на пограничный слой и скачки уплотнения ударных волн. Это позволит существенно снизить силу сопротивления воздушной среды.

Одноступенчатый воздушно-космический самолет «Нева»

На базе концепции «Аякс» сотрудниками Научно-исследовательского предприятия гиперзвуковых систем разработано целое семейство гиперзвуковых летательных аппаратов «Нева», предназначенных для транспортировки полезных грузов на дальние расстояния или на орбиту.

Среди них - многоцелевой гиперзвуковой самолет «Нева» для метеорологических и астрофизических исследований, геологической разведки, экологического контроля и даже для генерации озона; легкий административный аппарата «Нева»; гиперзвуковые самолеты «Нева-М1», «Нева-М6», «НеваМ7» для транспортных операций; гиперзвуковой гражданский самолет «Нева-7А» для перевозки 77 пассажиров и 4 членов экипажа со скоростью 15000 км/час.


Характеристики многоцелевого гиперзвукового самолета «Нева»: взлетная масса - 200 тонн, масса полезной нагрузки - 10 тонн, максимальная скорость - 4000 м/с, максимальная высота - 36 километров, дальность - 10 000 километров.

Характеристики гиперзвукового транспортного самолета «Нева-М1»: взлетная масса - 390 тонн, масса полезной нагрузки - 10 тонн, максимальная скорость - 4600 м/с, максимальная высота - 36 километров, дальность - 12 000 километров.

Особый интерес для нас представляет воздушно-космический самолет «Нева». Его характеристики таковы: взлетная масса - 364 тонны, масса полезной нагрузки, выводимой на орбиту (высота орбиты - до 250 километров, наклонение - произвольное), - 3 тонны, масса подвесных топливных баков - 37 тонн, максимальная скорость полета на высоте 100 километров - 7500 м/с.

Вполне естественно, что концепция «Аякс» имеет не только сторонников, но и противников. Многим отечественным специалистам представляется достаточно спорной рациональность и эффективность технического исполнения вышеперечисленных нововведений. До настоящего времени ни одно из них не получило признания. Финансовая поддержка проекта со стороны государства также отсутствует.

В результате создание гиперзвуковых летательных аппаратов типа «Нева» в обозримом будущем представляется маловероятным.

Космический корабль «Заря»

Кроме кораблей на базе «Союза» (пилотируемых «Союз Т», «Союз ТМ» и беспилотных «Прогресс» и «Прогресс-М»), конструкторы НПО «Энергия» неоднократно предлагали проекты различных аппаратов, рассчитанных на более мощные ракеты-носители, чем «семерка» Сергея Королева, но менее дорогих, чем орбитальный корабль «Буран». Одним из них был проект многоразового транспортного корабля «Заря», запускаемого на орбиту с помощью ракеты «Зенит».

Работы по многоразовому кораблю «Заря» («Изделие 14Ф70») были развернуты в соответствии с постановлением от 27 января 1985 года. 22 декабря 1986 года Военно-промышленная комиссия Совета Министров СССР приняла решение о выпуске эскизного проекта многоразового многоцелевого корабля «Заря».

Корабль предполагалось создавать в два этапа на первом этапе должен был разрабатываться базовый многоразовый пилотируемый транспортный корабль, на втором - его модификации для решения специальных задач в автономных и совместных с другими космическими аппаратами полетах в широком диапазоне высот и наклонений (до 97) орбит. Эскизный проект базового корабля был выпущен в первом квартале 1987 года и защищен на Научно-техническом совете Минобщемаша. Корабль «Заря» создавался с учетом возможностей новой ракеты-носителя «Зенит-2» и был предназначен: для доставки экипажей численностью от 2 до 8 человек и полезных грузов на долговременную орбитальную станцию типа «Мир» и возвращения их на Землю; для дежурства на станции с целью обеспечения возвращения ее экипажа на Землю в нужный момент (допустимая длительность полета корабля - не менее 195 суток, в последующем - до 270 суток); для доставки и возвращения грузов в беспилотном варианте; для проведения операций по спасению экипажей пилотируемых объектов станции типа «Мир» и орбитального корабля «Буран»; для решения отдельных задач в автономных полетах в интересах Министерства обороны и Академии наук СССР.

Габариты космического корабля «Заря»: длина - 5 метров, диаметр - 4,1 метра максимальная масса - 15 тонн.

Согласно проекту, корабль «Заря» мог выводить на опорную орбиту высотой до 190 километров и наклонением 51,6 полезный груз массой от 2,5 тонны (при экипаже из двух космонавтов) до 3 тонн (при полете без экипажа). Вместо груза в специальном модуле могли разместиться до восьми пассажиров.

При проектировании корабля был максимально использован опыт разработки, производства и эксплуатации предшествующих кораблей. Так, аэродинамическая форма возвращаемого на Землю корабля была аналогична форме спускаемого аппарата космического корабля «Союз»; часть бортовых систем, приборов и агрегатов была заимствована с космического корабля «Союз ТМ» и так далее. Вместе с тем при проектировании «Зари» были применены конструкторские решения, предполагавшие использование новых материалов и бортовых систем на базе современной вычислительной техники.

Первоначально планировалось, что все бортовые системы будут находиться внутри корабля. Однако впоследствии, из-за нехватки объема в возвращаемом аппарате, проектанты пошли на введение небольшого агрегатного отсека с двигательной установкой орбитального маневрирования и радиатором системы терморегулирования в нижней части корабля. После отработки тормозного импульса перед входом в атмосферу агрегатный отсек сбрасывался.

Для стыковки с орбитальными станциями типа «Мир» на корабле предусматривался стыковочный агрегат типа «штырь-конус» или андрогинный периферийный агрегат стыковки (с переходным люком диаметром 800 миллиметров), который на начальном участке выведения корабля закрывался сбрасываемым защитным конусом.

Возвращаемый корабль как основная часть являлся многоразовым и мог эксплуатироваться в течение 30–50 полетов.

Многоразовость достигалась как за счет применения теплозащитных материалов многократного использования (по опыту корабля «Буран»), так и новой схемы вертикальной посадки на Землю - с помощью многоразовых жидкостных ракетных двигателей для гашения вертикальной и горизонтальной скоростей посадки. Кроме функции торможения при посадке, эти ЖРД выполняли роль двигателей ориентации и причаливания в космосе. Сопла двигателей были наклонены под углом к оси корабля, с тем чтобы их струи не повредили обшивку аппарата.

Принцип посадки на ЖРД, кроме многоразовости, открывал перспективу применения возвращаемого корабля «Заря» для полетов на Луну и другие планеты. Однако использование тормозящих двигателей при посадке на Землю вызывало сомнения у ряда специалистов. Поэтому до поры до времени было решено в комплекс средств посадки включить отработанные и надежные резервные средства.

Так, на кораблях первого этапа разработки предполагалось использовать катапультные кресла для спасения космонавтов в аварийных ситуациях при посадке и на начальном участке выведения на орбиту, хотя размещение таких кресел в возвращаемом корабле ограничивало бы численность экипажа до четырех космонавтов. В составе основной системы посадки планировалось использовать 24 посадочных двигателя объединенной двигательной установки тягой 1,5 тонны каждый, работающих на компонентах перекись водорода-керосин, а для управления спуском - 16 однокомпонентных двигателей тягой 62 килограмма каждый. Бортовой комплекс управления и комплекс средств посадки должен был обеспечивать точность посадки с разбросом не более 2,5 километра и перегрузку при посадке - не более 10 g.

Работа над космическим кораблем «Заря» проводилась под личным контролем Генерального конструктора Валентина Глушко. Однако в январе 1989 года тема была закрыта в связи с недостаточностью финансирования. К этому моменту удалось только выпустить основную конструкторскую документацию.

Двухмодульный воздушно-космический корабль

Объединение научного и конструкторского задела, накопленного в ходе работ по орбитальным кораблям типа «ОК-М» и космическому корабль «Заря», позволили выдвинуть новый перспективный проект корабля многоразового использования. Он обсуждался в НПО «Энергия» в 1991 году, но, к сожалению, не получил поддержки ведущих конструкторов.

Тем не менее концепция «ВКК» (сокращение от «воздушно-космический корабль») заслуживает внимания, поскольку позволяет решить несколько серьезных проблем, связанных с проектированием и эксплуатацией многоразовых космических систем.

При разработке воздушно-космического корабля были учтены следующие требования: вместимость - от 2 до 6 человек, масса полезной нагрузки - от 2 до 3 тонн, возвращаемого груза - от 0,5 до 1 тонны, многоразовость применения основных элементов корабля, необходимость обеспечения аварийного спасения экипажа на старте и начальном участке полета.



А кроме того - возможность полета и маневра в космосе и в атмосфере, использование при необходимости грузового контейнера и другого космического аппарата, самолетная посадка на обычный аэродром. В результате проектных изысканий получился корабль «ВКК», состоящий из двух аппаратов-модулей: один - крылатый, другой выполнен по схеме несущего корпуса Модули соединены не последовательно, как у «Союза», а параллельно.

При этом самолет (пилотируемый модуль) устанавливается на несущий корпус (служебный модуль) с некоторым утоплением, крепится жестко в двух или трех точках при помощи быстроразъемных соединений - например, пироболтов.

Аналогично закреплен и защитный кожух-обтекатель.

Пилотируемый модуль используется многократно, служебный - один раз, но при этом он является сменным, что расширяет функциональные возможности корабля за счет установки той или иной его модификации. В зависимости от выполняемых задач служебный модуль имеет различное оборудование и разного объема топливные баки.

Другая особенность «ВКК» состоит в том, что технологическое соединение пилотируемого и служебного модулей происходит только после выхода корабля на орбиту на то время, пока он работает в космосе. Перед сходом «ВКК» с орбиты производится расстыковка кабелей и магистралей.

Внутренний стыковочный узел обеспечивает герметичное соединение обоих модулей для перемещения космонавтов в рабочий отсек служебного модуля. Такой подход позволяет использовать систему разделения модулей в аварийной ситуации на старте и начальном участке полета.

Как же устроены модули «ВКК»?

Пилотируемый имеет герметичную кабину для экипажа, крылья и двигательную установку, предназначенную для полета в атмосфере, в которой планируется использовать малогабаритные воздушно-реактивные двигатели. В нем установлены кресла для четырех-шести космонавтов, а сам он закрыт кожухом с иллюминаторами.

В служебном модуле размещается основное оборудование корабля. Здесь же находятся топливные баки, часть приборов, исполнительные элементы реактивной системы управления, при помощи которых «ВКК» совершает полет и ориентацию в космическом пространстве, внешний стыковочный узел.

Рабочий отсек предназначен для работы и отдыха космонавтов, выхода их в открытый космос, а также для перехода в другой космический аппарат через люки стыковочного узла.

По функциональному назначению его можно сравнить с бытовым отсеком «Союза».


Старт и выведение «ВКК» в космос осуществляются с помощью ракеты-носителя типа «Зенит» или с помощью самолета-носителя. При возникновении аварийной ситуации защитный кожух сбрасывается, и пилотируемый крылатый модуль уводится на безопасное расстояние; после этого он, используя собственную двигательную установку, совершает полет и посадку. В нормальном полете оба модуля скреплены до участка спуска на высоте 6-10 километров, когда они полностью расстыковываются. С этого момента каждый из них совершает самостоятельный полет и посадку. Крылатый модуль, имея малую массу и скорость и используя свой воздушно-реактивный двигатель, приземляется на обычный аэродром. Служебный модуль совершает торможение и спуск за счет аэродинамики несущего корпуса, а на последнем участке - на парашюте. Мягкая посадка обеспечивается амортизационными устройствами или ракетными двигателями, в зависимости от назначения служебного модуля и доставляемой на Землю полезной нагрузки.

«ВКК» может использоваться для решения самых разнообразных задач, включая и те, под которые создавались орбитальные корабли «Буран» и «Заря».

Программа «Холод»

Выше я уже упоминал, что с 1993 по 1996 год по заказу Российского космического агентства в рамках поддержанной государством научно-исследовательской и экспериментальной программы «Орел» проводились исследования тенденций развития и возможностей отечественных многоразовых средств космического выведения.

В результате было получено множество интересных предложений и проектов. Так, на основании теоретических изысканий КБ «Салют» разработало предложение по носителю с вертикальным стартом и горизонтальной посадкой, подобному американскому «Вентура Стар» («Venture Star»). КБ имени Макеева в инициативном порядке представило на суд комиссии проект легкой одноступенчатой многоразовой ракеты «Корона» с вертикальным стартом и посадкой, аналогичной американскому летательному аппарату «Дельта Клиппер» («Delta Clipper»). Однако для обоих отечественных проектов не проработано экономическое обоснование и не ясны источники финансирования.

Работа по теме «Орел» еще раз показала, что создание «реальных» экономически эффективных воздушно-космических систем возможно лишь с разработкой новых конструкционных материалов и многорежимных воздушно-реактивных двигателей. Поэтому Россия, несмотря на сегодняшние экономические трудности, осуществляет долгосрочную программу летных испытаний гиперзвуковых прямоточных воздушно-реактивных двигателей, известную под названием «Холод».

Первый ГПВРД был испытан в составе гиперзвуковой летающей лаборатории «Холод», созданной на базе зенитной ракеты ЗРК «С-200»: к маршевой ступени ракеты вместо боевой части пристыковываются головные отсеки лаборатории «Холод», в которых размещаются бортовая емкость с жидким водородом, система управления полетом, бортовая система измерений и передачи информации, система подачи жидкого водорода в камеру сгорания с регулятором расхода и, наконец, экспериментальный ГПВРД осесимметричной конструкции, расположенный в носовой части ракеты.

В такой конфигурации проведено пять полетов лаборатории «Холод». Максимальная достигнутая скорость полета составила 1855 м/с, что соответствует 6,49 Маха. Совершенная система охлаждения жидким водородом обеспечила работоспособность ГПВРД в течение заданных 77 секунд работы при температурах газов в камере выше 3300°К.

Успешные испытания ГПВРД привлекли к себе внимание и зарубежных разработчиков перспективных авиа-космических систем. Благодаря участию специалистов Франции и США удалось профинансировать ряд важных этапов программы.

На прошедшей в апреле 1998 года в США конференции по гиперзвуковым технологиям ученые и специалисты иностранных фирм дали высокую оценку результатам, полученным в ходе работ по программе «Холод».

В рамках научно-исследовательских работ по гиперзвуковым технологиям были созданы и создаются ГПВРД с кольцевыми и плоскими соплами, с центральным телом, на базе крылатых ракет, а также с аэродинамической схемой типа «несущий корпус». Разработаны и испытаны различные гиперзвуковые лаборатории, такие как: созданные МКБ «Радуга» «Модель-1» и «Модель-2» беспилотного гиперзвукового аппарата, испытания которых проводились в 1973–1978 и 1980–1985 годах соответственно; варианты гиперзвуковой лаборатории «Радуга Д2», созданные на базе крылатой ракеты «Х-22»; проект ЛИИ имени Громова «ВЛЛ-АС»; гиперзвуковые лаборатории «ГЛЛ-8» и «ГЛЛ-9», созданные ЛИИ имени Громова совместно с ЦИАМ и запускаемые ракетой «Рокот» по баллистической траектории.

Продолжением этих разработок стала гиперзвуковая летающая лаборатория «Игла», к разработке которой подключились НПО Машиностроения, КБ Автоматики, авиационные французские фирмы и Европейское Космическое агентство.



На базе этого проекта была разработана ракетно-космическая система скорой помощи «Призыв» для терпящих бедствие в рамках системы КОСПАС-САРСАТ.

Для демонстрации гиперзвуковых технологий НПО Машиностроения в 1995 году предложило аэро-космическую систему «Демонстратор» на базе самолета-носителя «Ил76МФ», несущего на себе беспилотный самолет-разгонщик с экспериментальным блоком или с ракетным блоком со спутником.

Все эти и другие разработки направлены на создание «РАКС» - национальной российской авиационно-космической системы многоразового использования. Понятно, что ее появление - дело будущего. Однако уже сейчас находятся энтузиасты, которые предлагают построить облегченный вариант «РАКС» на основе существующих технологий. Главной задачей этого варианта будет устроение аэро-космического ралли.

Ракетоплан «АРС» («Аэро-космическое ралли»)

В 1996 году американский фонд «Икс-прайс» («X-Prize») учредил грант - 10 миллионов долларов на создание тренировочного и туристического ракетоплана, который мог бы доставить на высоту более 100 километров трех астронавтов.

В ходе полета астронавты могли бы испытать ракетный разгон, невесомость и перегрузки при спуске.

Предварительные разработки представили до четырех десятков частных фирм, научных организаций и университетов.

Включилась в конкурс и Центральная научно-исследовательская лаборатория «Астра» Московского авиационного института. В этой лаборатории занимаются разработкой вопросов выведения в околоземное пространство малых спутников (до 100–200 килограмм) посредством систем «воздушного старта». Сотрудники лаборатории сочли, что «воздушный старт» будет наиболее оптимальным способом для выведения туристского ракетоплана на орбитальную высоту.

В разработке проекта приняли участие специалисты Экспериментального машиностроительного завода имени Мясищева, ОКБ имени Микояна, ЦАГИ имени Жуковского, Института авиационной медицины и НИИ парашютостроения.

В качестве носителя выбрали истребитель «МиГ-31», который создавался для борьбы с крылатыми ракетами и сверхзвуковыми бомбардировщиками типа «Валькирия».

«МиГ-31» способен развивать скорость до 2,3 Маха, его «потолок» превышает 25 000 метров, а радиус действия составляет 1500 километров.

Выводимый на орбиту объект размещается под фюзеляжем на узле подвески. Выйдя в зону пуска, «МиГ-31» набирает скорость около 2500 км/ч, поднимается на 20 километров, выходит на кабрирование и отстреливает ракетоплан или ракету-носитель, у которых через 6 секунд включается бортовой двигатель.

Многоцелевой суборбитальный ракетоплан «АРС» (сокращение от «Аэрокосмическое ралли») разработан с учетом опыта создания орбитальных систем «Бор». Это бесхвостка с крылом малого удлинения большой переменной стреловидности с шайбами-килями на концах.

Габариты «АРС»: длина - 5,8 метра, ширина фюзеляжа - 1,015 метра, полная ширина - 3,7 метра, высота - 1,5 метра, взлетная масса - 1700 килограммов, масса топлива - 500 килограммов, масса полезной нагрузки - 350 килограммов.

В передней части герметичной кабины «АРС» находится место пилота-космонавта, за ним располагаются штурман и бортинженер либо туристы. В течении трехминутного полета экипаж «АРС» проходит все стадии космического путешествия.

После отделения от «МиГ-31» ракетоплан разгоняется собственным двигателем до скорости 1200–1300 м/с, поднимается до высоты 120–130 километров, затем входит в атмосферу, испытывая аэродинамический нагрев и перегрузки до 6 g, переходит в режим планирования и совершает посадку на аэродром по-самолетному или под крылом-парашютом.

Пилот-космонавт выбирает режимы набора высоты и захода на посадку, но полет может обеспечиваться и дистанционно летчиком самолета-носителя или наземной службой слежения и управления.

Ракетоплан может применяться для тренировки космонавтов, для исследования верхних слоев атмосферы. Кроме того, «АРС» может положить начало новой разновидности авиационного спорта. Летчики смогут соревноваться на максимальную скорость, точность выхода к цели, выполнять фигуры высшего пилотажа и так далее. Ресурс ракетоплана «АРС» - 100 запусков.

Вместо ракетоплана на «МиГ-31» можно установить малую ракету-носитель «Микрон», предназначенную для выведения на орбиты высотой 250–300 километров полезной нагрузки в 150–200 килограммов.

«Микрон» выполнен по модульной схеме в двух- или трехступенчатых вариантах. Габариты ракеты «Микрон»: длина - 7,250 метра, полная ширина - 3,7 метра, ширина без рулей - 2,4 метра, стартовая масса - 7000 килограммов, масса топлива - 5850 килограммов.

После отделения от «МиГ-31» и израсходования топлива первая ступень должна отойти от блока и по команде с носителя опуститься в расчетном месте для повторного использования.

По экономичности эта система превосходит все существующие, и, надо полагать, у нее есть перспектива к развитию.

Суборбитальный корабль «Космополис-XXI»

Еще один проект в рамках конкурса «Икс-Прайс» разрабатывается в Акционерном обществе «Суборбитальная корпорация» при участии Экспериментального машиностроительного завода имени Мясищева.

Запуск ракетного модуля «Космополис-XXI» с пассажирской капсулой осуществляется с самолета-носителя при выполнении динамического маневра «горка» на высотах от 17 до 20 километров. В качестве самолета-носителя используется высотный самолет «М-55» («Геофизика») разработки завода имени Мясищева. Его летные характеристики таковы: максимальная скорость - 2650 км/ч, практический потолок - 22 километра, максимальная дальность - 35004000 километров. Ракетный модуль «Космополис-XXI» выполнен в виде цилиндрического объекта с небольшими складными аэродинамическими поверхностями и состоит из спасаемой трехместной пассажирской капсулы, двигательного блока, отсека оборудования с системами управления, жизнеобеспечения и спасения. Ракетный модуль устанавливается на высотный самолет-носитель «Геофизика» на специальных узлах крепления, снабженных управляемыми механическими замками.

Между самолетом-носителем и ракетным модулем осуществляется электрическая связь при помощи кабеля с быстроразмыкаемым электрическим разъемом. Самолет-носитель оборудуется контрольно-записывающей аппаратурой и системой тестирования работоспособности ракетного модуля.



Пассажирская капсула выполнена в виде оживального тела вращения. Внутри капсулы размещаются три пассажирских кресла, представляющие собой анатомические ложементы, изготавливаемые по индивидуальному заказу на каждого пассажира. Для снижения посадочных перегрузок пассажирские кресла снабжены системой демпфирования.

Пассажирская капсула имеет иллюминаторы, закрываемые изнутри светофильтрами. Система жизнеобеспечения позволяет поддерживать внутри пассажирской капсулы нормальные условия для жизнедеятельности космических пассажиров без применения индивидуальных дыхательных приборов.

Для управления и контроля режимов полета капсула снабжена рычагами управления и панелью приборов. Посадка пассажиров в капсулу и эвакуация из нее осуществляются через герметичный люк.

Порядок полета выглядит следующим образом. Ракетный модуль устанавливается на самолет-носитель и фиксируется механическими замками с электрическим управлением. Система энергопитания и контроля работы бортового оборудования ракетного модуля и самолета-носителя соединяются электрическим кабелем при помощи быстроразмыкающего разъема. Пассажиры-космонавты усаживаются в пассажирской капсуле ракетного модуля. Входной люк герметизируется и проверяется герметичность в пассажирской капсуле. Самолет-носитель с установленным на нем ракетным модулем набирает заданную высоту полета и разгоняется для выполнения маневра «горка». При его выполнении самолет-носитель вместе с ракетным модулем набирает дополнительную высоту до 20 километров и угол наклона траектории достигает 40–60 к горизонту. В этот момент происходит размыкание механических замков и включается ускоритель на ракетном модуле, который обеспечивает отход ракетного модуля от самолета-носителя.

При отходе на безопасное расстояние автоматически включаются ракетные двигатели основной двигательной установки ракетного модуля. Сразу после разделения самолетноситель выполняет резкий маневр ухода со снижением в сторону от траектории ракетного модуля.

Набор высоты ракетного модуля выполняется по оптимальной траектории, постепенно переходя до вертикального положения. После отработки ракетных двигателей происходит расстыковка пассажирской капсулы и двигательного отсека. Пассажирская капсула, получившая импульс, продолжает по инерции движение вверх вплоть до точки остановки (точки наибольшего набора высоты). При снижении по бокам пассажирской капсулы происходит раскрытие небольших аэродинамических поверхностей, снабженных рулями, которые обеспечивают управляемый аэродинамических спуск. Это позволит снизить возникающие перегрузки и выполнить маневр по выбору посадочной площадки. Посадка выполняется по-самолетному на выпускаемые шасси. В качестве альтернативного варианта возможна посадка пассажирской капсулы на парашюте.



Кампания фонда «Икс-Прайс» по организации конкурса на разработку космического корабля, способного выполнять недорогие суборбитальные полеты, является многообещающим предприятием. Привлечение к конкурсу различных групп специалистов позволит на альтернативной основе выбрать рациональные технические идеи, удачные конструктивные решения и с привлечением минимальных финансовых средств решить актуальнейшую задачу. И кто знает, может уже завтра любой из нас сможет купить билет в космос…




17 февраля 1976г. ЦК КПСС и Совет министров СССР приняли постановление No132-51 «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплексов и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой до 200 км полезных грузов массой до 30 т и возвращения с орбиты грузов массой до 20 т».

Другими словами, речь шла о создании «Бурана». Космический самолет «Буран» и по настоящее время вызывает бурные дискуссии, но большинством специалистов признается, что технически это был совершенный проект. Однако мало кому известно, что куда более перспективной альтернативой «Бурана», способной сделать качественный скачок в развитии мировой космонавтики был воздушно-космический атомный самолет В.М. Мясищева М-19 с ядерным двигателем на борту. Создание этого космического самолета могло изменить ход мировой истории…

В 1966г. было восстановлено, хотя и в более скромном варианте, КБ Мясищева. Владимир Михайлович сразу же развил бурную деятельность, предложив целый ряд самолетов короткого и вертикального взлета, самолет-перехватчик высотных аэростатов. Одной из задач, стоявшей перед Мясищевым, была разработка воздушно-космического самолета.

В рамках многоплановой темы «Холод-2» в 1974 г. на ЭМЗ была разработана комплексная программа, которая предусматривала выполнение работ сразу по нескольким направлениям одновременно. Выполнение работ проводилось под шифром тема «19» и предусматривало следующее:
1. Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
2. Тема 19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
3. Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
4. Тема 19-4; 9-5. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.
В программе явно просматривался поэтапный подход и систематизация в разработке будущего ВКС. Работы по перспективному ВКС проводились на предприятии под индексом М-19.

При непосредственном руководстве Генерального конструктора В.М.Мясищева, работы по теме «19» воглавил заместитель Генерального конструктора, начальник проектного комплекса, ближайший соратник Мясищева - А.Д.Тохунц. Ведущим конструктором по теме был назначен И.3.Плюснин. У истоков идеи перспективного ВКС М-19 с комбинированной силовой установкой стояли ближайшие подвижники В.М.Мясищева - сотрудники проектного комплекса: начальник отдела аэродинамики А.А.Брук и начальник отдела силовых установок Н.Д.Барышов. Проектно-конструкторские проработки проводились в отделе проектов под руководством начальника отдела проектов И.С.Говора ведущими специалистами А.Н.Уразовым, В.А.Петровым и многими другими. Комбинированную силовую установку с ядерным реактором разрабатывал Генеральный конструктор Куйбышевского моторостроительного завода Н.Д.Кузнецов.
О работах того периода вспоминает А.Д.Тохунц:
«Когда в начале 70-х годов всем стало ясно, что создание в США МТКС «Спейс-Шаттл» - это реальность, а не очередной миф, во что очень хотелось верить руководству страны, так как все понимали, какими затратами это ляжет на экономику всей страны, Минавиапром в числе многих других предприятий стал все больше привлекать ЭМЗ к работам по космической тематике. Результатом этих работ явился проект воздушно-космического самолета с горизонтальным взлетом и посадкой, размерность которого должна была обеспечить выведение такого же полезного груза (30 т), какой был заявлен для американской МТКС «Спейс Шаттл».
Первоначально Владимир Михайлович отнесся к идее ВКС скептически. Ход его рассуждений был прост. Вес конструкции обычной ракеты, как известно, составляет всего несколько процентов от стартового веса (примерно 7-8 %), в то время как вес конструкции самолета, даже хорошего в весовом отношении (Владимир Михайлович приводил в качестве примера сверхзвуковой стратегический бомбардировщик ВВС США В-58 «Хастлер») составляет примерно 30% от взлетного веса (и это без учета теплозащиты, ЖРД и т. п. будущего ВКС).

Возникает естественный вопрос - какой же эффективностью должна обладать силовая установка этого ВКС, чтобы вывести такую тяжелую конструкцию в космос? На поиски ответа на этот вопрос ушло примерно полгода.
По результатам предварительной проработки проекта ВКС Владимиру Михайловичу был предоставлен солидный отчет, который он «изучал» около месяца никак его не комментируя.
И вот однажды утром, помнится это было в начале весны, Владимир Михайлович вызвал меня и спросил как о чем-то совершенно обыденном:
- А где же план-график работ по ВКС?
После этого мне стало ясно - наши доказательства реальности заявляемых характеристик проекта ВКС Генеральным приняты, и можно срочно начинать работу. В связи с этим уместно вспомнить пословицу: «Медленно запрягает, но быстро едет». План-график всех этапов создания ВКС был составлен очень оперативно. Для развертывания работ была задействована обширная кооперация со смежниками. Как то раз, рассматривая график работ по ВКС, Владимир Михайлович заметил:
- Эта тема, видимо, станет моей «лебединой песней», окончания ее я конечно, не застану, но ведь очень важно пойти в правильном направлении.

В тот же период был сформирован проект технического задания на будущий ВКС, где определялись основные технические характеристики и требования к будущему аппарату. Эти требования, в частности, предусматривали то, что М-19 мог использоваться:
- как основа для перспективной многоразовой транспортной космической системы многоцелевого применения в интересах народного хозяйства и науки;
- как составной элемент перспективных систем космического оружия;
- как составной элемент перспективных космических средств обеспечения и ведения военных действий на театрах военных действий на земле.
Применение ВКС М-19 в качестве транспортного средства позволяло решать следующие задачи:
- доставка и смена экипажей на орбитальных станциях;
- материально-техническое снабжение орбитальных объектов;
- возвращение грузов на Землю;
- аварийное спасение экипажей;
- доставка и смена отдельных блоков орбитальных станций;
- транспортировка космических аппаратов в космосе с опорных орбит на рабочие и наоборот;
- проведение на орбите профилактических и регламентных работ, выполнение ремонтных и восстановительных работ и др.;
- проведение военно-научных исследований и экспериментов в космосе.

С самого начала проект М-19 рассматривался как одноступенчатый ВКС с горизонтальными взлетом и посадкой (по-самолетному). Благодаря многоразовости ВКС, все перечисленные задачи должны были выполняться более эффективно, чем обычными средствами. Эта эффективность выражалась в возможности периодической доставки на орбиту различных объектов и грузов одним и тем же аппаратом с восполнением лишь необходимого запаса горючего и расходуемых запасов спецгазов и спецжидкостей.
Разрабатывая проект отечественного ВКС, проектантам важно было учитывать одно безусловное обстоятельство, которое заключалось в том, что для получения в условиях СССР транспортной системы, обладающей, как минимум, такими же энергетическими и транспортными характеристиками как американская «Space Shuttle», отечественная система должна была быть даже более совершенной, чем американская. Это было обусловлено тем, что точки старта в СССР имели менее благоприятное географическое положение, чем у американцев, (это, в первую очередь, наличие жестких ограничений на азимуты пусков, необходимость в отчуждении огромных территорий по направлению пусков ракет, ограничения мест пуска по широте), а также усугублялось уже имеющимся отставанием СССР от США в этой области. Создание подобной системы в СССР явилось бы наиболее крупным качественным шагом в развитии авиационно-космической науки и техники, который следовало рассматривать как важнейшую общегосударственную задачу на конец 70-х начало 80-х годов.

Проведенный анализ возможных сроков создания подобной МТКС показывал, что при условии принятия решения о начале работ и выделении необходимых финансовых средств, а также выполнения единой общегосударственной координации всех работ можно было обеспечить её создание уже в 1986-1987 гг.
Учитывая высокий риск и сложность создания подобной системы программа создания МТКС носила поэтапный характер.
Для ускорения сроков создания многоразовой космической системы в СССР на первом этапе прототип ВКС мог бы использоваться в качестве гиперзвукового бомбардировщика со скоростями полета М~6,0 на высотах до Н~30 км и с дальностью полета порядка 10000 км. или в качестве самолета-разгонщика на жидком водородном топливе, способного выводить на опорную орбиту орбитальную ступень весом до 40 т.

Если сравнивать потенциальные возможности проектируемого ВКС М-19 с американской МТКС типа «Space Shuttle», то принципиально новыми и отличительными качествами нашего аппарата являлись:
- в первую очередь возможность всеазимутального запуска с максимальным сокращением площади отчуждаемых земель (для СССР с учетом географического положения места существующего старта эта проблема приобретала первостепенное значение);
- возможность самостоятельного возврата к месту старта и самостоятельного перебазирования на другие площадки базирования;
- получение высокой степени надежности (на уровне больших самолетных систем, достигаемой за счет авиационных принципов эксплуатации: опробование двигателей перед стартом, создание ремонтно-пригодных агрегатов, использование встроенных систем автоконтроля и др.);
- высокая экономическая эффективность, обусловленная меньшими эксплуатационными расходами, снижением затрат на средства поиска, спасения, транспортировку отдельных ступеней и т. п., снижением затрат на аренду отчуждаемых земель, высвобождением значительных производственных мощностей, необходимых для воспроизводства одноразовых ракет-носителей и т. п.
- расширение технических возможностей за счет увеличения типов возможных орбит различного наклонения; значительно большей автономности системы (отсутствие разделяемых ступеней, самостоятельные взлет, «осадка, перебазирование).
- высокие маневренные характеристики ВКС, обеспечивающие возможность погружения в атмосферу до высот Н=50-б0 км с обратным выходом на орбиту.

Использование ВКС с комбинированной ядерной двигательной установкой потенциально обеспечивало неограниченные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области удаленного космоса, в том числе Луну и окололунное пространство. Энергетика бортовой ядерной установки обеспечивала автономное длительное пребывание и свободное маневрирование в космосе. Наличие на борту ВКС ядерной установки, позволяло бы также использовать ее в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.). От таких перспектив захватывало дух и это была поистине фантастика.
Если систематизировать возможные области применения ВКС с ядерной двигательной установкой, то получалась довольно многообещающая картина.
1. В научных целях:
- изучение околоземного космического пространства;
- проведение научных экспериментов в прикладных целях;
- медико-биологические исследования;
- изучение планет и дальнего космоса.
2. В интересах народного хозяйства:
- создание космических служб, обеспечивающих связь, навигацию, экологический мониторинг, метеопрогноз и т. п.;
- создание космического комплекса новых промышленных технологий.
3. В интересах обороноспособности:
-техническая основа создания космического рода войск, для боевого использования, космической разведки, транспортного обеспечения на орбите.

При взлетной массе 500 т., ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30 т. Создание подобного проекта одноступенчатого ВКС базировалось на реализации следующих физико-технических принципов:
- использование бортового ядерного реактора;
- использование устройства для эффективной передачи тепла набегающему потоку;
- использование окружающей среды в качестве рабочего тела и окислителя (кислород из атмосферы);
- использование водорода в качестве бортового запаса горючего, рабочего тела и теплоносителя в контуре ЯРД;
- использование аэродинамической подъемной силы аппарата.
По предварительным оценкам, выполненным на начальном этапе работ, рациональное использование этих принципов позволяло:
- снизить почти в два раза потребный коэффициент заполнения топливом, составляющий в существующих ракето-носителях более 90% от стартового веса;
- исключить размещение запаса окислителя (кислорода) на борту аппарата, составляющего более 60% от стартового веса РН «Сатурн-5»;
- уменьшить более чем в два раза потребную стартовую тяговооруженность;
- резко уменьшить (примерно в 50 раз) расход топлива на атмосферном участке выведения (до режимов полета Н~25км, М~4,0);
- уменьшить более чем в три раза (при одной и той же полезной нагрузке) стартовый вес аппарата, по сравнению с МТКС, использующей обычное химическое топливо.

Большой объем работ по данной тематике был проведен институтом теоретической и прикладной механики Сибирского отделения академии наук СССР (ИТПМ СО АН СССР). Проводились экспериментальные исследования аэродинамических характеристик моделей гиперзвуковых ЛА и ВКС с моделированием тракта ВРД. Исследовалась динамика разделения объектов и оценивалась интерференция при больших скоростях полета.
В части исследований характеристик силовой установки нового типа проводились расчетно-экспериментальные работы по изучению процессов смешения и горения в камерах сгорания ВРД в сверхзвуковом и гиперзвуковом потоках, проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были разработаны математические модели систем аппарата и комбинированной силовой установки с ЯРД.
По программе летных полунатурных испытаний, рассчитанной на период с 1980 по 1985 гг предусматривалось:
1) непосредственно по МВКС:
- изготовление и бросковые испытания крупномасштабной модели МВКС;
- изготовление аналога для отработки спуска с орбиты;
2) по силовой установке:
- создание летающей лаборатории для отработки ядерной силовой установки (ЯРД);
- создание летающей лаборатории для отработки ПВРД и ГПВРД с использованием ракет.
Разработка эскизного проекта и изготовление полнонатурного макета ВКС М-19 планировалось на период с 1980 по 1982 г. Рабочее проектирование - 1982-1984 гг. Изготовление, стендовые и летные испытания комбинированной силовой установки и систем МВКС - 1982-1986 гг.
Создание базы для запуска и эксплуатации МВКС - 1981-1987 гг. В этот же период предполагалось изготовление трех опытных образцов МВКС. И, наконец, вершиной всех работ многочисленных предприятий и организаций по созданию МВКС должны были стать летные испытания в период 1987-1988 гг. Такими виделись основные вехи комплексной программы создания принципиально нового МВКС. Несмотря на всю кажущуюся фантастичность заявленных характеристик и преимуществ многоразового одноступенчатого ВКС нового типа, всё это не было пустым прожектёрством.
Авторитет Генерального конструктора В.М.Мясищева и его многолетний опыт были гарантией того, что проект подобного ВКС может быть реализован. В это твердо верил он сам, и эта уверенность Генерального заряжала его окружение. Окружающие отмечали, что у В.М.Мясищева до последних дней жизни сохранилось несмотря ни на что, желание снова вести работу с размахом, который был у него при осуществлении программ создания тяжелых бомбардировщиков в 50-60-е годы в ОКБ-23 в Филях.
Темпы и размах работ по теме М-19 приобретали все более значительный характер, об этом красноречиво говорит хотя бы такой факт. Вспоминает заместитель Генерального конструктора А.А.Брук:
«Работы по теме продвинулись достаточно далеко, и дело дошло даже до того, что однажды В.М.Мясищев поручил мне начать прорабатывать вопрос о подготовке передачи производственной базы в Филях (бывшее ОКБ-23, где раньше работал В. М. Мясищев) и перепрофилирование ее под новые задачи ЭМЗ».
Можно было только удивляться тому, с какой энергией взялся В.М.Мясищев за организацию работ по теме М-19 .
Учитывая то, что ему к тому времени уже было за 70 лет, а сроки создания подобных систем оценивались периодом порядка 10-15 лет Владимир Михайлович, несмотря на явно долгосрочный характер работ, сам активно работал и увлекал своей энергией своих ближайших помощников. Невзирая на свой уже почтенный возраст, Генеральный сам ездил по смежникам, участвовал в многочисленных совещаниях, делал доклады по теме ВКС. Как высказывались участники и очевидцы событий тех лет, со стороны создавалось впечатление, что В. М. Мясищев словно заново родился, интересная перспективная работа, видимо, придавала ему сил и смысл жизни.
Памятна встреча Генерального конструктора В.М.Мясищева с президентом Академии наук А.П.Александровым, которая состоялась на совместном совещании в Академии наук в 1974 г. На совещании была представлена демонстрационная модель ВКС М-19 и обсуждался вопрос о возможности использования водорода и ядерной энергии. Академик А.П.Александров заявил, что наша страна заинтересована в расширении применения водорода в авиации и всячески поддерживает предлагаемое направление с применением ядерной энергии в авиации. Особо он отметил, что применение ядерной энергии в авиации потребует создания необходимой биологической защиты от радиации и обеспечения очень высокой безопасности ядерных реакторов при аварийных ситуациях и падении на землю. Насколько это серьезная проблема и что такое опасность ядерного заражения местности, весь мир узнал спустя много лет после произошедшей 26 апреля 1986 г. Чернобыльской катастрофы.
Резюмируя итоги той памятной встречи, А.П.Александров сказал, что в течение 10 лет может быть создан серийный (он сказал «деловой») образец комбинированной двигательной установки с ядерным реактором.
Теоретические вопросы создания реактора были ясны, оставались проблемы технической реализации. Это вселяло уверенность у разработчиков М-19 в правильности выбранного направления работ.
В свете событий тех лет, небезинтересна позиция Минавиапрома, вернее его министра - П.В.Дементьева по отношению к проекту М-19. Когда в начале 70-х годов стало ясно, что создание в США системы «Спейс Шаттл» реальность, в недрах Министерства обороны СССР появился (поддерживаемый Д.Ф.Устиновым) лозунг о необходимости адекватного ответа на вызов США. Начались проработки различных вариантов этого адекватного «ответа». Генеральным конструктором НПО «Энергия» (теперь это РКК «Энергия») был назначен академик В.П.Глушко, которым был предложен проект МТКС «Энергия-Буран», внешне очень похожий на американский МТКС «Спейс Шаттл». Организацией работ по МТКС «Энергия-Буран» предусматривалось подключение к работам по орбитальному кораблю «Буран» предприятий Минавиапрома.
Министр авиационной промышленности Дементьев был этим фактом очень озабочен, так как опасался, что такое подключение авиационных предприятий к работам со временем может привести к очередному поглощению части предприятий Минавиапрома ракетным Министерством Общего Машиностроения (MOM). Как говорится, за примерами далеко ходить было не надо, такое уже было в конце 50-х годов, когда Н.С.Хрущев, решив, что стратегическая авиация больше не нужна (так как есть ракеты) передал чать предприятий Минавиапрома (включая, в частности, и ОКБ В.М.Мясищева, завод им. Хруничева и ряд других) МОМ"у.
Открыто противодействовать началу работ по МТКС «Энергия-Буран» П. В. Дементьев не мог. Поэтому была избрана стратегия «затягивания», в соответствии с которой надо было не спешить копировать американцев (такое уже было с лунной программой), а рассмотреть различные альтернативные варианты, учесть экономические аспекты проблемы и прочее, и прочее...
Для этих целей проект М-19, по мнению Дементьева, вполне подходил. Поэтому первоначально он, хотя и дистанцировался от открытой поддержки проекта, не препятствовал активной деятельности В.М.Мясищева по продвижению проекта М-19.
В результате такой негласной поддержки проект М-19 широко рассматривался во многих высоких инстанциях, и в какой-то момент В.П.Глушко решил лично ознакомиться с проектом, который тогда находился у зам. министра обороны по вооружению Н.Н.Алексеева. Адьютант зам. министра подполковник Н.И.Графов свидетельствовал, что В.П.Глушко более четырех часов знакомился с проектом. Будучи сам хорошим двигателистом, В.П.Глушко резюмировал: «Ядерную двигательную установку быстро не создать!» В.М.Мясищев и сам понимал, что быстро такой проект не реализуешь, но он рассуждал так: создавать «Энергию-Буран», которая уже на пять лет отстает от «Спейс Шаттла», значит заведомо планировать отставание.
- Проблему, - говорил он, - надо брать за горло, а не за хвост. Иначе всегда будешь в хвосте. Пусть мы затратим на создание М-19 лишние 5 лет, зато потом будем намного впереди.

После принятия решения о создании МТКС «Энергия-Буран», разработка планера ВКС «Буран» поручалась вновь созданному в МАПе объединению «Молния», в которое ЭМЗ вместе с КБ «Буревестник» структурно входило в качестве подчиненного предприятия. В результате такой реорганизации ЭМЗ потеряло свою самостоятельность, а Генеральный конструктор В.М.Мясищев становился подчиненным Главного конструктора Г.Е.Лозино-Лозинского. Тематика работ ЭМЗ и их приоритеты становились прерогативой вышестоящего НПО «Молния», работы по теме М-19 постепенно стали сворачиваться, объемы проектно-конструкторских исследований с каждым годом уменьшались. Ставка была сделана на МТКС «Энергия-Буран», а ЭМЗ поручено участвовать в разработке модуля кабины ВКС «Буран» и его систем.
Отдельной большой работой предприятия становилось создание транспортного самолета-носителя ВМ-Т «Атлант», предназначенного для транспортировки элементов МТКС «Энергия-Буран».
После кончины Генерального конструктора В.М.Мясищева в октябре 1978 г. работы на ЭМЗ по теме М-19 в небольшом объеме еще продлились непродолжительное время и в 1980 г. были окончательно свернуты.

Если бы программа Мясищева была принята, то в конце 80-х мы обладали бы серийными образцами воздушно-космического самолета с ядерным двигателем. Именно при обсуждении этой программы в 1974 г. академик А.П. Александров заявил, что серийный образец ядерного двигателя с требуемыми характеристиками можно сделать за 10 лет!

Всего десяток атомных самолетов М-19 смог бы обеспечить весь грузопоток «Земля – ближний космос» до середины XXI в. Орбитальные станции и спутники при подобной транспортной системе были бы существенно масштабнее, функциональнее, а себестоимость выводимого на орбиту груза была бы существенно меньше. Военные возможности Советского Союза с М-19 выросли бы на порядки. Это решение действительно стало бы «асимметричным ответом» заокеанским авторам “стратегической оборонной инициативы”. К сожалению, руководство думало о другом (не исключено, что данный проект заблокировали вполне сознательно, не в первый раз предав интересы Родины). Данный проект решал целый комплекс задач: создание атомного сверхзвукового самолета, гиперзвукового самолета на криогенном топливе, воздушно-космический самолета и космического корабля с двигателем на основе ядерного реактора! Проект Буран», к сожалению, решал только одну из этих задач и являлся “симметричным” ответом США. Результат такого ответа известен: проект оказался никому не нужным, и на фоне распадающейся страны поставил под вопрос существование отрасли вообще. Атомный самолет М-19 же остался ждать своего часа…

ВКС М-19 был выполнен по аэродинамической схеме «несущий корпус». Корпус аппарата имел треугольную форму в плане с углом стреловидности по передней кромке 75°. Такая стреловидность была выбрана из условия сохранения высоких несущих свойств аппарата при малом сопротивлении и аэродинамическом нагреве передних кромок на больших скоростях полета. Носовая часть корпуса имела эллиптические поперечные сечения с соотношением полуосей 1/4.
Миделевое сечение располагалось в точке перехода носовой части корпуса в кормовую, на расстоянии 0,67 длины корпуса от носка. Конфигурация ВКС, выполненного по схеме «несущий корпус», обеспечивала достаточно высокий уровень аэродинамических характеристик. Так, например, аэродинамическое качество на дозвуке составляло величину порядка -7,0, а на гиперзвуке около 3,0, что подтверждалось экспериментальными исследованиями в ЦАГИ.
Проведенные исследования по определению оптимального облика крылатых космических аппаратов, совершающих горизонтальные взлет и посадку «по-самолетному», показали, что наиболее приемлемой формой многорежимного ВКС, летающего на до-, сверх- и гиперзвуковых скоростях в условиях интенсивного нагрева является форма типа «несущий корпус».
Придание ВКС такой формы обеспечивало ему следующие преимущества:
- хорошие маневренные возможности;
- малые перегрузки при спуске в атмосфере;
- устойчивость полета на гиперзвуковых скоростях;
- малое отношение поверхности аппарата к его объему;
- наличие больших внутренних полезных объемов;
- умеренные требования к тепловой защите.
Аэродинамическая подъемная сила ВКС создавалась крылом небольшой площади, стреловидные консоли которого располагались по бокам кормовой части корпуса, передним горизонтальным оперением и непосредственно самим несущим корпусом аппарата.
Приемлемые характеристики устойчивости и управляемости во всем диапазоне скоростей полета на ВКС М-19 обеспечивалось использованием так называемого верньерного управления в продольном канале. При такой схеме управления наряду с элевонами на крыле используются малые аэродинамические поверхности, расположенные в носовой части корпуса и имеющие большое плечо приложения силы относительно ЦТ аппарата.
Верньерные поверхности работали при больших, а основные поверхности крыла работали при малых значениях скоростного напора.
Вертикальное оперение было выполнено двухкилевым, разнесенным по ширине кормовой части корпуса, для уменьшения эффекта «затенения» при полете на больших углах атаки.
Геометрические параметры поверхностей стабилизации и управления выбирались с учетом минимальных волновых потерь и приемлемых характеристик аэродинамического нагрева.
Носовая часть и передние кромки корпуса, крыла и оперения были затуплены с целью уменьшения аэродинамических тепловых нагрузок при больших скоростях полета.
Как известно, важным показателем эффективности ВКС является его маневренность, то есть способность менять параметры своего движения. Для космического аппарата это прежде всего маневрирование на орбите как по высоте орбиты, так и по боковому маневру (посадка в стороне от плоскости орбиты). Имея достаточное аэродинамическое качество, ВКС М-19 был способен выполнять маневрирование на орбите с так называемым «погружением» в атмосферу до высот порядка 50-60 км.
Расчетами также было показано, что для КЛА, имеющих аэродинамическое качество около 3,0, при изменении плоскости орбиты на 90° аэродинамический маневр становится гораздо выгоднее (~ в 3 раза) чем орбитальный.
Днище несущего корпуса было выполнено плоским для образования так называемого «плато поджатия» перед входом в воздухозаборники двигателей, расположенных по корпусом аппарата. На нижней части корпуса аппарата располагалась мотогондола воздушно-реактивной силовой установки, скомпонованной по схеме «пакет» и обеспечивающей полет аппарата в атмосфере на всех скоростях.
Компоновка двигателей на нижней части корпуса в единый «пакет» обеспечивало благоприятные условия работы двигателей при различных углах атаки.
Использование предварительного поджатия сверхзвукового потока перед входом в двигатели позволяло уменьшить потребные размеры воздухозаборников, вес и соответственно теплозащиту единой мотогондолы.
В хвостовой части аппарата располагалось сопло ЯРД, непосредственно связанное с бортовым ядерным реактором. На атмосферном участке траектории полета, с целью снижения аэродинамического сопротивления, сопло было закрыто сбрасываемым каплевидным обтекателем.
Шасси аппарата трехстоечное с носовым управляемым колесом. Тележки основных стоек шасси шести колесные убирались в ниши корпуса аппарата, расположенные в местах сопряжения корпуса с консолями крыла.
Рабочие помещения для экипажа были оборудованы в носовой части корпуса аппарата и включали в себя саму кабину, бытовой отсек и шлюзовую камеру. Кабина экипажа имела остекление, аналогичное самолетному, что обеспечивало необходимый обзор при взлете и посадке ВКС. В зависимости от выполняемых задач и типа полезной нагрузки количество членов экипажа ВКС могло составлять от трех до семи человек
Шлюзовая камера располагалась за задней гермоперегородкой кабины и была предназначена как для выхода космонавтов в открытый космос, так и для обеспечения доступа в грузовой отсек. Стыковочное устройство располагалось на верхней поверхности носовой части для обеспечения визуального наблюдения за стыковочными операциями на орбите.

Для размещения полезной нагрузки в корпусе аппарата был предусмотрен достаточно большой грузовой отсек, закрываемый герметичными створками. Размеры грузового отсека 4,0x20,0x4,0 м позволяли разместить различные полезные нагрузки массой до 40 т. Крепление полезной нагрузки в грузовом отсеке обеспечивалось дистанционно управляемыми электромеханическими замками. Для выполнения на орбите операций погрузки и разгрузки в грузовом отсеке были предусмотрены дистанционные электромеханические манипуляторы.
Водородные баки были вкладными и не входили в силовую конструкцию корпуса аппарата. Для максимального использования всех внутренних объемов в корпусе аппарата топливные водородные баки были выполнены по так называемой «сиамской» схеме, когда форма сечения топливных баков была образована несколькими пересекающими окружностями. Такая схема обеспечивала оптимальное соотношение параметров конструкции баков, таких как: вес - прочность - коэффициент использования полезного объема. Для гашения колебаний жидкого водородного топлива в топливных баках были предусмотрены перфорированные демпфирующие перегородки.
Конструкция планера ВКС включала в себя: непосредственно сам корпус (фюзеляж), состоящий из переднего, центрального и хвостового отсеков, консоли крыла, двухкилевое вертикальное и переднее горизонтальное оперение, мотогондолу воздушно-реактивной силовой установки и водородные баки.
Силовая конструкция корпуса должна была быть выполнена в основном из алюминиевых сплавов, защищаемых многоразовым теплоизолирующим покрытием на наружной поверхности.
Передний отсек корпуса состоял из двух половин, между которыми располагался герметичный модуль кабины экипажа. Остекление кабины экипажа предполагалось выполнить из трехслойных панелей, аналогично иллюминаторам космических кораблей.
Средний и хвостовой отсеки предполагалось сделать ферменно-балочной конструкции с обшивкой из алюминиевого проката.
Теплозащита ВКС от аэродинамического нагрева на атмосферных участках выведения и спуска выполнялись по типу «холодной» конструкции, то есть силовые элементы конструкции были рассчитаны на нормальные температурные условия работы, а высокие температуры от кинетического нагрева воспринимались внешним теплоизолирующим покрытием. Тип внешней теплозащиты определялся условиями полета аппарата в атмосфере, его аэродинамической формой и т. д. Как показывали расчеты, максимальная температура на передних кромках корпуса, крыла и оперения могла достигать 19200°К. С учетом температурного «портрета» аппарата в разных местах его конструкции предполагалось использование различных теплоизолирующих материалов. В наиболее теплонагруженных местах предполагалось использовать материал на основе углерода с противоокислительным покрытием, состоящим из углеродных волокон и матрицы из того же материала с покрытием из карбида кремния.
Верхняя поверхность корпуса, нагреваемая до 5900°К, должна была защищаться плитками ~500x500 мм высокотемпературной многоразовой изоляции, состоящей из волокон чистого плавленого кварца. Наружная поверхность плиток защищалась плавленым боросиликатным покрытием, обеспечивающим необходимое соотношение между количеством поглощаемого и испускаемого излучения. Для менее нагреваемых частей корпуса предполагалось использование низкотемпературной многоразовой теплоизоляции в виде аналогичных плиток, отличающихся только типом покрытия и их толщиной.
В состав основных систем ВКС входили:
1. Система жизнеобеспечения, включающая подсистемы регенерации атмосферы, обеспечения жизнедеятельности экипажа, терморегулирования, обеспечение работы шлюзовой камеры.
2. Бортовое электронное оборудование, обеспечивающее навигацию и управление полетом, отработку полетных данных, связь, индикацию и контроль, измерение параметров подсистем, распределение электроэнергии и др.
3. Система управления полетом.
4. Система бортового электропитания, при этом источниками энергии на борту ВКС были как батареи топливных кислородно-водородных элементов, так и сам бортовой ядерный реактор.
5. Гидросистема, состоящая из четырех независимых подсистем с высокой степенью резервирования.
6. Система вспомогательных силовых установок, состоящая из двигателей орбитального маневрирования и двигателей газодинамического управления ориентацией ВКС.
7. Система орбитального маневрирования, состоящая из двух блоков, располагалась в хвостовой части корпуса ВКС. В состав каждого блока входил ЖРД, шар-баллон с гелием для подачи компонентов топлива. Для стабилизации и ориентации ВКС во время орбитального полета предусматривалась система ориентации, состоящая из блоков небольших двухкомпонентных ЖРД.
При возникновении аварийных ситуаций предусматривались следующие схемы возвращения аппарата на землю: непосредственное возвращение по штатной схеме или один виток вокруг земли по суборбитальной траектории, выход на низковысотную орбиту и вход в атмосферу по типовой программе. В случае экстренной необходимости, для спасения экипажа на любом участке полета предусматривалось отделение спасаемой капсулы с кабиной экипажа и спасение ее на парашюте.
Наличие на борту ВКС М-19 ядерного реактора предполагало безусловное выполнение соответствующих мероприятий по обеспечению радиационной безопасности, в том числе:
- создание круговой радиационной защиты вокруг реактора и установка радиационного экрана за кабиной экипажа;
- предотвращение разрушения оболочки реактора в случае аварии за счет создания специальной амортизационной системы (способной проглотить энергию при ударе о землю) и средств защиты реактора от прогорания;
- применение в конструкции комбинированной силовой установки теплообменника, предотвращающего прямой выброс из двигателя продуктов распада в атмосферу в виде радиоактивной газовой струи.
Вопросы радиационной безопасности применения ЯРД становились на первый план при реализации проекта. Хорошо известно, какими бедами может сопровождаться радиационное заражение окружающей среды для человека. Заражение радиоактивными продуктами может угрожать здоровью и жизни людей в течение даже многих тысячелетий. Так, например, период полураспада «плутония 239» составляет 24 тысячи лет а «цезия 137» - 33 года.
Что касается обеспечения радиационной защиты и безопасности при разрушении корпуса реактора в катастрофических ситуациях, то в СССР и за рубежом проводились подобные исследования. В частности, в качестве конструктивного решения на М-19 предлагалось использовать пластически-деформируемую оболочку, устанавливаемую вокруг корпуса ядерного реактора. Сам корпус реактора также изготавливался из пластичного высокопрочного материала. По расчетам пластическая деформация как самого корпуса реактора, так и его оболочки должны были обеспечить поглощение энергии удара при скоростях столкновения до 300 м/с.

Основным проблемным вопросом создания ВКС М-19 было создание комбинированной силовой установки. На ней, как на главной идее, строилась концепция всего проекта.
Схема силовой установки носила элементы новизны, и главное, с чем справились разработчики, это то, что был предложен специальный агрегат (теплообменник), благодаря которому радиоактивный контур был полностью изолирован, что исключало радиационное заражение атмосферы при включении двигателя у земли. Кстати, идея подобной комбинированной силовой установки была запатентована, среди авторов изобретения были: В.М.Мясищев, Н.Д.Кузнецов, Н.Д.Барышов, А.А.Брук, М.А.Борчев, О.В.Гурко, И.М.Яцунский, А.Б.Чернышев.
Комбинированная двигательная установка включала в себя:
- маршевый ядерный ракетный двигатель (ЯРД) включая ядерный реактор с радиационной защитой;
- десять двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и с форсажной камерой;
- гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
- два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
- распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД. Комбинированная двигательная установка ВКС М-19 предполагала поэтапное включение различных типов двигателей в зависимости от режима полета.
Работа комбинированной силовой установки ВКС регламентировалась оптимальными режимами работы на всех фазах полета и предусматривала следующие режимы:
1. Режим «взлет» и «начальный разгон» до скоростей, соответствующих числам М=2,5-2,7 на высотах 12-15 км.
На этом режиме работает ДТРДФ с подогревом воздуха перед турбиной от замкнутого контура с реактором при включенной форсажной камере.
2. Режим полета «разгон», соответствующий скоростям М=2,7-5,0 на высотах ~ 15 км.
На этом режиме работают только ДТРДФ в режиме авторотации с подогревом воздуха на входе в форсажную камеру от замкнутого контура с реактором при включенной форсажной камере.
В диапазоне скоростей, соответствующих числам М=3,5-4,5 к ДТРДФ подключаются ГПВРД, которые обеспечивают разгон аппарата до условий полета: высота -50 км, скорость М~16,0.

Только по достижении заданных высокоскоростных параметров происходит включение ЯРД. В этих условиях отстреливается хвостовой обтекатель и заглушка горловины сопла маршевого ЯРД, включается ЯРД.
На режимах полета с работающим воздушно-реактивным контуром мощность реактора могла изменяться в пределах 2100-4000 МВт.
Тяга силовой установки на режиме ЯРД (Н~50 км, М=1б,0) должна была составлять около 280-300 тс, при эффективной мощности ядерного реактора порядка N~14800-15600 МВт.
Исследуя концепцию ВКС с комбинированной ядерной установкой, разработчики прекрасно понимали, какие проблемы и трудности стоят на пути создания подобной системы. В том числе, одной из них было создание новых конструкционных материалов, и особенно проблематичным было получение материалов для создания активной зоны реактора и теплообменников. Так, например, максимальная температура воздуха перед турбиной ДТРДФ составляла 1600°К, а максимальная температура центрального тепловыделяющего элемента реактора доходила до 3300°К. В связи с этим рассматривался вопрос использования для изготовления теплообменников специального молибденового сплава, конструкции из которого для предотвращения интенсивного окисления имели специальное защитное покрытие.
В качестве входного устройства силовой установки был выбран регулируемый многорежимный двухскачковый воздухозаборник. При полетах на гиперзвуковых скоростях воздухозаборники переключались на гиперзвуковой режим путем изменения площади горла и углов стенок каналов воздухозаборников за счет поворотных плоских рамп.
Необходимо отметить, что при расчетах характеристик двигателя на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.

По материалам сайтов testpilot.ru, objectiv-x.ru

Таинственный космический самолет, управляемый ВВС США, завершил свой 600-й день на орбите, но мы до сих пор так и не узнали, что он на самом деле там делает.

Что известно о космическом самолете?

Космический самолет Boeing X-37B, который также называется Orbital Test Vehicle, был запущен 20 мая 2015 года с мыса Канаверал во Флориде. Это четвертая миссия в программе и вторая для этого транспортного средства. Предыдущая миссия в программе длилась 675 дней, с 11 декабря 2012 года по 17 октября 2014-го.

Несмотря на то что космические аппараты программы в общей сложности провели почти 2000 дней на орбите, цель космического самолета остается загадочной. X-37B представляет собой небольшой аппарат, 8,8 м в длину. Он также имеет грузовой отсек и может использовать роботизированную руку.

Самолет запускается вертикально ракетой и приземляется в горизонтальном положении на взлетно-посадочной полосе. Он работает на солнечных батареях, благодаря которым может оставаться на орбите так долго, путешествуя на скорости 28 тысяч км/ч.

Мы знаем о некоторых полезных задачах, которые этот космический аппарат осуществляет на орбите. Для этого аппарата, как известно, НАСА использовало ионный двигатель малой тяги. Но общая цель космического самолета до сих пор не ясна.

Теории

Согласно одной из теорий, самолет испытывает двигатели малой тяги на низкой орбите (примерно 320 км), с целью размещения там разведывательных спутников в будущем, чтобы получить изображения Земли с более высоким разрешением. Или же он уже может выполнять разведку.

Согласно данным веб-сайта ВВС США, первичные цели X-37B являются двойными: испытание многоразовых технологий космических аппаратов и операционные эксперименты, результаты которых могут быть возвращены на Землю для исследований. Но многие считают, что космический аппарат может служить и другим целям.

Во всяком случае, очень здорово, что на орбите существуют рабочие космические самолеты. Даже если мы никогда не узнаем, в чем заключается их миссия.

Тема освоения космоса в СССР всегда являлась сверхсекретной. К счастью, сегодня завеса таинственности приподнимается... Например, подобная таинственность витала над работами выдающегося конструктора Владимира Челомея. Главным образом его имя связывают с разработкой легендарной ракеты-носителя «Протон». На протяжении 22 лет данная ракета-носитель являлась в Советском Союзе самой мощной, выводившей на орбиту 20 тонн полезного груза. Даже сегодня, несмотря на наличие более мощной ракеты «Энергия», «Протон» остается космическим транспортом в выполнении настоящих и перспективных российских космических программ. В 2001 году в первый полет отправилась ракета «Протон-М», которая является модификацией «Протона», разработанной академиком Челомеем В.Н.


Однако существовало и другое направление деятельности конструктора, о которой знал лишь очень узкий круг специалистов. Данное направление связано с разработкой собственного варианта космического «челнока».

Владимир Николаевич никогда не прекращал заниматься конструированием ракетопланов. В 1960 году Королев С.П., мотивируя успешными полетами МБР, предложил закрыть в СССР проектирование крылатых ракет. Брежнев Л.И., отвечавший за оборонную технику, сразу же его поддержал, и тематика была прикрыта.

Однако в ОКБ Челомея В.Н. тема продолжалась, до логического конца доводилась почти подпольно. В 1960-е годы в конструкторском бюро Челомея (ОКБ-52) был начат проект перспективного крылатого орбитального многоразового пилотируемого космического корабля с запуском на ракете-носителе «Протон». В эти годы разрабатывались проекты ракетопланов «МП-1», «М-12», «Р-1» и «Р-2». В качестве базы для проекта использовались наработки по теме космического ракетоплана Цыбина для ракеты-носителя «Восток». Уже 21 марта 1963 г. с космодрома Байконур на ракете Р-12 был осуществлен суборбитальный запуск прототипа легкого космического самолета Р-1. На высоте 200 км ракетоплан отделился от носителя и при помощи бортовых двигателей набрал высоту 400 км, после чего начал спуск. Ракетоплан Р-1 вошел в атмосферу Земли на скорости 4 км/с, пролетел 1900 км и приземлился при помощи парашюта.

В 1964 году уже реально проступил облик ЛКС. Пилот данной сигарообразной машины с изменяющимся круговым оперением хвоста и боковыми килями при соответствующем оснащении мог производить срочную детальную разведку или перехват целей. Однако работу завершить не позволили.

После событий 1964 г., когда в ОКБ-52 с проверкой нагрянула проверочная комиссия, перспективные проекты были забыты. Проект легкого космического корабля приостановили. Причиной остановки послужила концентрация ресурсов на лунной программе СССР и создании кораблей «Союз», а также авиационно-космической системы «Спираль». В 1966 году материалы по данной разработке передали в ОКБ Микояна.

В 1976 году в СССР принимается правительственное решение о создании МТКС, которая во многом дублирует разработанную в США: советская партийная номенклатура к тому времени начинает воспринимать Запад в качестве эталона. Для этой программы нужно было разработать ракетный носитель «Энергия» (генеральный конструктор Глушко) и космический корабль «Буран» (генеральный конструктор Лозино-Лозинский).

Челомея также пригласили поучаствовать в программе. Однако конструктор отказался, так как являлся сторонником несимметричных решений, которые позволяют достичь желаемых результатов меньшими усилиями. Он доказывал, что разработка МТКС для СССР экономически невыгодна, и предложил проект легкого космического самолета, запускаемого ракетоносителем «Протон». В результате смета разработки транспортно-космической системы уменьшалась на порядок. Тогда же были возобновлены проектные работы.

После придирчивого анализа различных вариантов Челомеем был выбран проект, в котором ЛКС выводил бы на орбиту 4-5 тонн полезного груза. В самолете предусматривалось максимально применить результаты летно-конструкторских испытаний моделей ракетопланов 1960-х годов.

Для выведения ЛКС на орбиту предлагалось использовать готовую ракету-носитель «Протон К» («УР500К»). Использование готовой ракеты-носителя существенно снижало время и затраты на создание ЛСК. Внешне аппарат очень напоминал «Буран» в миниатюре. При этом их аэродинамические и эксплуатационные характеристики были весьма похожи. Для ускорения создания на самолете предлагалось использовать отработанные системы, агрегаты и узлы с ОПС «Алмаз» и ТКС. Полет ЛКС в пилотируемом варианте должен был длиться до 10 суток и в беспилотном – 1 год. Масса 19-метрового легкого космического самолета составляла 20 тонн при полезной нагрузке 4 тонны. Экипаж ЛКС состоял из двух человек.

Легкий космический самолет изначально разрабатывался как аппарат многоцелевого назначения, который позволяет решать широкий круг задач в интересах народного хозяйства, науки и обороны. На нем также предполагалось отработать технику полета космического самолета. Легкий космический самолет предназначался для транспортировки полезных космических грузов, а также для сборки орбитальных поселений, наподобие советского "Мира" и американской Международной космической станции, или для поражения крупных стратегических пунктов и нейтрализации межконтинентальных баллистических ракет.

На фото - натурный макет легкого космического самолета конструкции Челомея. Один из памятников советской космонавтики был спешно разобран и уничтожен в целях сохранения секретности.

Особенностью легкого космического самолета стало использование теплозащитного покрытия, применявшегося на многоразовом возвращаемом аппарате комплекса «Алмаз». Данная теплозащита обеспечивала сто циклов возврата из космического пространства. Кроме этого, она была гораздо дешевле и надежнее плиточного покрытия «Бурана» и «Спейс Шаттла». Также от «Алмаза» должны были «перекочевать» системы обеспечения жизнедеятельности экипажа, управления и тому подобное.

К сожалению, среди наших ведомств и министерств заказчика на гражданский транспорт не нашлось, тогда Челомей В.Н. развернул программу, которую Велихов Е.П., всемирно известный академик, назвал «Звездные войны». Проект был весьма смелым и ошеломляющим. Были выпущены тех. предложения по ЛКС в 25 томах, а также техническое предложение по созданию космического флота из легких космических самолетов в 15 томов. Сам ЛКС предлагалось создать в течение четырех лет. Данные предложения поддержки у руководства Минобороны и отрасли не нашли. Несмотря на это, Челомей В.Н. в инициативном порядке разработал эскизный проект космического самолета. Основное внимание в проекте уделялось военному применению легкого космического самолета. В качестве основной задачи было обозначено выведение на околоземную орбиту лазерного для предотвращения ядерного нападения. При этом на орбиту необходимо вывести было 360 орбитальных самолетов с лазерным оружием на борту. При этой «скорострельности» собирались довести до 90 запусков «Протонов» в год. Естественно, чтобы обеспечить дежурство легких космических самолетов на орбите в течение продолжительного времени, запускаться должны были беспилотные аппараты. В то же время, в случае снижения до безопасных пределов уровня военного противостояния, лазерное оружие возвращалось на Землю. Фактически данное предложения было «челомеевским» ответом на американскую СОИ (стратегическая оборонная инициатива).

В 1980 году на основании результатов эскизного проектирования изготовили полноразмерный макет легкого космического самолета.

Такое предложение, естественно, заинтересовало и военных, и руководителей СССР, которые были обеспокоены развертыванием СОИ. В сентябре 1983 года создали государственную комиссию по защите проекта легкого космического самолета. В состав комиссии вошли представители Минобороны, электронной промышленности, общего машиностроения, Александров А.П., Президент Академии наук СССР, и другие. Главным оппонентом на защите выступил Кисунько Г.В., генеральный конструктор систем ПРО, поскольку создание флота легких космических самолетов с лазерным оружием обесценивало наземные средства противоракетной обороны. По сути, Кисунько отстаивал собственные узковедомственные интересы. Тем не менее, он смог привлечь военных на свою сторону, и правительственная комиссия решила прекратить работы по ЛКС.

Дальнейшие работы были прекращены в пользу многоразовой транспортной космической системы «Энергия-Буран», а силы КБ были направлены на работы по космическому комплексу станции и корабля «Алмаз». В интересах секретности изготовленный макет ЛКС был разобран, а техническая документация засекречена. До настоящего времени сохранилось несколько фотографий макета легкого космического самолета Челомея.

Возможно, если бы работы по легкому космическому кораблю не прикрыли, сейчас в России имелся бы мобильный и сравнительно дешевый многоразовый транспортный корабль, который бы не постигла судьба «Бурана» (стоит на приколе). Однако трудно представить, чтобы Глушко В.П. позволил использовать ЛКС Челомея для снабжения своих орбитальных станций.

Технические характеристики:
Разработчик – МКБ Машиностроения (КБ Челомея В.Н.), 1980 год;
Длина ЛКС – 18,75 м;
Высота – 6,7 м;
Размах крыла - 11,6 м;
Длина отсека полезной нагрузки – 6,5 м;
Диаметр отсека полезной нагрузки – 2,5 м;
Масса полезной нагрузки – 4,0 тонны;
Масса самолета с АДУ САС – 25,75 тонны;
Контрольная масса на орбите (при наклонении 51,65 градуса на высоте 220-259 км) – 19,95 тонны;
Масса на посадке – 18,5 тонны;
Запас топлива для маневрирования – 2,0 тонны;
Максимальная продолжительность полета в пилотируемом варианте – 1 месяц;
Максимальная продолжительность полета в беспилотном варианте – 1 год;
Боковой маневр при снижении в атмосфере +/- 2000 км;
Максимальная скорость при посадке – 300 км/ч;

Подготовлено по материалам:
http://galspace.spb.ru
http://old.novosti-astronavtiki.ru
http://www.nkau.gov.ua
http://epizodsspace.no-ip.org
http://www.buran.ru