Алгоритм процесса. А что с обучением? Современный взгляд на алгоритмизацию

Алгоритм описания процессов

Рисунок 11 – Алгоритм описания процессов
Литература

1. Обеспечение качества обучения государственных и муниципальных служащих Российской Федерации. Выпуск 11. Инструктивно-методические материалы. Часть 1. Практические рекомендации по выбору типовой модели системы управления качеством образования. – М.: РАГС, 2006. – с.:38-44.

2. ГОСТ Р ИСО 9000-2001 Системы менеджмента качества. Основные положения и словарь.

3. Репин В.В., Елиферов В.Г. Процессный подход к управлению. Моделирование бизнес-процессов. – 3-е изд., испр. – М.: РИА «Стандарты и качество», 2005г. – с.: 305-314, ил. – (Серия «Практический менеджмент»).

4. http://slovar.plib.ru/ Толковый словарь Ожегова.


Приложение 1

Пример заполнения реестра типовых процессов и видов деятельности ОУ

№ п/п Наименование вида деятельности или процесса Иден. №
Основные процессы
1.1 Маркетинговые исследования рынка научных, образовательных услуг и рынка труда
1.2 Проектирование и разработка образовательных программ
1.3 Довузовская подготовка и прием студентов
1.4 Реализация основных образовательных программ
1.5 Воспитательная и внеучебная работа с обучаемыми
1.6 Проектирование и реализация программ дополнительного образования
1.7 Подготовка кадров высшей квалификации (аспирантура, докторантура)
1.8 Научно-исследовательская и инновационная деятельность
Вспомогательные процессы
2.1 Бухгалтерско-финансовое обеспечение научно-образовательного процесса
2.2 Кадровое обеспечение
2.3 Закупки и взаимодействие с поставщиками материальных ресурсов
2.4 Управление образовательной средой
2.5 Издательская деятельность
2.6 Библиотечное и информационное обслуживание
2.7 Управление инфраструктурой и производственной средой
2.8 Обеспечение безопасности жизнедеятельности
2.9 Социальная поддержка студентов и сотрудников ОУ

Приложение 2

Пример заполнения таблицы 2 «Спецификация процесса»

1. Наименование процесс Научно-исследовательская деятельность (НИД)
2. Цель процесса Создание условий для реализации научно-исследовательской деятельности студентов и преподавателей
3. Владелец процесса Проректор по научно-исследовательской работе
4. Входы процесса Поставщик входа – процесс(ы), предоставляющий(ие) вход
4.1 Аспиранты, докторанты. Процесс управления докторантуры и аспирантуры
4.2 Соискатели Процесс управления докторантуры и аспирантуры; Внешний поставщик
4.3 Студенты Учебный процесс
4.4 Данные маркетинговых исследований (требования потребителей) Маркетинг и планирование набора
5. Выходы процесса Потребитель выхода – процесс(ы), использующий(ие) выход
5.1 Статьи, изобретения Учебный процесс; Отдел интеллектуальной собственности; Процесс управления докторантуры и аспирантуры; Библиотечное и информационное обслуживание; Внешний потребитель* и др.
5.2 Дипломы, гранты Учебный процесс, Процесс управления финансовым обеспечением; Внешний потребитель и др.
5.3 Защитившие кандидатские, докторские диссертации
5.4 Научные школы Учебный процесс; Научно-исследовательская деятельность; Внешний потребитель и др.
6. Управляющая документация 6.1 Программа развития подразделения
6.2 Внутренние нормативные документы
6.3 Инструкция по организации научной и научно- технической деятельности, осуществляемой за счет собственных средств ТГУ с приложениями и др.
7. Механизмы процесса 7.1 Персонал
7.2 Финансы
7.3 Орг. техника
7.4 Библиотека и др.
8. Показатели процесса, ед. изм. Норматив Частота измерения Метод расчета показателя
8.1 Процент ППС с учеными степенями и (или) учеными званиями, % Не менее 60 ежегодно (Количество ППС с уч.степенями и званиями / Общ. количество ППС)*100
8.2 Процент докторов наук и профессоров, % Не менее 10 ежегодно (Кол-во докторов наук и профессоров / Общее количество ППС)*100
8.3 Объем НИР на единицу ППС, тыс. руб. За 5 лет – не менее 18 ежегодно … и др.

Всеобщий менеджмент качества (Total Quality Management – TQM) - интегрированный метод менеджмента, целиком ориентирующий деятельность организации на полную удовлетворенность потребителей (внешних и внутренних), сотрудников и общества в целом, охватывающий все процессы организации, вовлекающий в деятельность по непрерывному улучшению качества всех ее сотрудников и направленный на достижение долговременного успеха и стабильности функционирования организации.

Потребитель (согласно ГОСТ Р ИСО 9000-2005) – организация или лицо, получающие продукцию. Примеры: клиент, заказчик, конечный пользователь, розничный торговец, покупатель, студент и др.

Продукция (согласно ГОСТ Р ИСО 9000-2005) – результат процесса, т.е. результат совокупности взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы.



Результативность

Эффективность (согласно ГОСТ Р ИСО 9000-2005) - степень реализации запланированной деятельности и достижения запланированных результатов.

Внутренний потребитель – потребитель, находящийся в организации и, в ходе своей деятельности, использующий результаты (выходы) предыдущего процесса.

Внешний потребитель – потребитель, находящийся за пределами организации и использующий результат (выход) процесса.

Планирование процессов включает в себя решение следующих задач:

    определение момента времени для смены выполняемого процесса;

    выбор процесса на выполнение из очереди готовых процессов;

    переключение контекстов "старого" и "нового" процессов.

Первые две задачи решаются программными средствами, а последняя в значительной степени аппаратно (см. раздел 2.3. "Средства аппаратной поддержки управления памятью и многозадачной среды в микропроцессорах Intel 80386, 80486 и Pentium" ).

Существует множество различных алгоритмов планирования процессов, по разному решающих вышеперечисленные задачи, преследующих различные цели и обеспечивающих различное качество мультипрограммирования. Среди этого множества алгоритмов рассмотрим подробнее две группы наиболее часто встречающихся алгоритмов: алгоритмы, основанные на квантовании, и алгоритмы, основанные на приоритетах .

В соответствии с алгоритмами, основанными на квантовании, смена активного процесса происходит, если:

    процесс завершился и покинул систему,

    произошла ошибка,

    процесс перешел в состояние ОЖИДАНИЕ,

    исчерпан квант процессорного времени, отведенный данному процессу.

Процесс, который исчерпал свой квант, переводится в состояние ГОТОВНОСТЬ и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый процесс из очереди готовых. Таким образом, ни один процесс не занимает процессор надолго, поэтому квантование широко используется в системах разделения времени. Граф состояний процесса, изображенный на рисунке 2.1, соответствует алгоритму планирования, основанному на квантовании.

Кванты, выделяемые процессам, могут быть одинаковыми для всех процессов или различными. Кванты, выделяемые одному процессу, могут быть фиксированной величины или изменяться в разные периоды жизни процесса. Процессы, которые не полностью использовали выделенный им квант (например, из-за ухода на выполнение операций ввода-вывода), могут получить или не получить компенсацию в виде привилегий при последующем обслуживании. По разному может быть организована очередь готовых процессов: циклически, по правилу "первый пришел - первый обслужился" (FIFO) или по правилу "последний пришел - первый обслужился" (LIFO).

Другая группа алгоритмов использует понятие "приоритет" процесса. Приоритет - это число, характеризующее степень привилегированности процесса при использовании ресурсов вычислительной машины, в частности, процессорного времени: чем выше приоритет, тем выше привилегии.

Приоритет может выражаться целыми или дробными, положительным или отрицательным значением.Чем выше привилегии процесса, тем меньше времени он будет проводить в очередях. Приоритет может назначаться директивно администратором системы в зависимости от важности работы или внесенной платы, либо вычисляться самой ОС по определенным правилам, он может оставаться фиксированным на протяжении всей жизни процесса либо изменяться во времени в соответствии с некоторым законом. В последнем случае приоритеты называются динамическими.

Существует две разновидности приоритетных алгоритмов: алгоритмы, использующие относительные приоритеты, и алгоритмы, использующие абсолютные приоритеты.

В обоих случаях выбор процесса на выполнение из очереди готовых осуществляется одинаково: выбирается процесс, имеющий наивысший приоритет. По разному решается проблема определения момента смены активного процесса. В системах с относительными приоритетами активный процесс выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ОЖИДАНИЕ (или же произойдет ошибка, или процесс завершится). В системах с абсолютными приоритетами выполнение активного процесса прерывается еще при одном условии: если в очереди готовых процессов появился процесс, приоритет которого выше приоритета активного процесса. В этом случае прерванный процесс переходит в состояние готовности. На рисунке 2.2 показаны графы состояний процесса для алгоритмов с относительными (а) и абсолютными (б) приоритетами.

Рис. 2.2. Графы состояний процессов в системах (а) с относительными приоритетами; (б)с абсолютными приоритетами

Во многих операционных системах алгоритмы планирования построены с использованием как квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора процесса из очереди готовых определяется приоритетами процессов.

Алгоритмизация - это сложный научный, технический, математический термин, рассматриваемый разными науками и имеющий много значений, не совпадающих друг с другом.

Классический подход

Наиболее общее понятие алгоритмизации - это процесс формирования алгоритмов, программ. Предполагается систематический подход к составлению последовательности, позволяющей решить некоторую прикладную задачу. Если необходимо создать программу для компьютера, решить при помощи такого продукта четко определенную задачу, необходимо предварительно составить алгоритм этого решения - этот шаг считается обязательным.

Алгоритмизация - это детерминированный подход к решению задачи, что исключительно значимо для алгоритмов, программ прикладного класса. Одновременно результат должен быть массовым, эффективно рассчитывающим ответ. Правильно сформированный алгоритм - залог верного решения заранее сформулированного вопроса.

Возможные определения

Слово можно расшифровать не только описанным выше способом. В частности, в соответствии со словарными определениями, алгоритмизация - это этап работы над задачей, во время которого формулируют алгоритм, позволяющий решить проблему. Альтернативная трактовка - область информатики, посвященная методикам, способам создания алгоритмов. Кроме того, алгоритмизация рассматривает свойства алгоритмов. Иногда эту науку называют алгоритмикой.

В соответствии с иными понятиями алгоритмизация - описательный процесс, дающий представление об очередности действий, исполняемых для решения задачи. Другие издания формулируют суть алгоритма как точное описание заданного процесса и формулирование инструкций, в соответствии с которыми можно его исполнить. Создание алгоритма трудоемко и сложно, а алгоритмизация - техника, позволяющая сформулировать действительно эффективный, оптимизированный комплекс последовательных операций, реализуемых при помощи ЭВМ.

Процессы и этапы

Алгоритмизация - такая описательная работа, которая дает представление о происходящих внутри задачи процессах. Описывают их при применении математических символов. Это позволяет получить алгоритм, в котором заключены все элементарные акты задачи, присутствующие между ними связи, последовательности, причины и следствия. Сформированные в ходе алгоритмизации алгоритмы в общем случае разрабатываются именно для электронно-вычислительной техники.

Алгоритм и алгоритмизация - два очень важных понятия для любого, кто вынужден работать с поиском путей решения различных сложных задач. Формирование эффективной последовательности действий, которая отражала бы происходящие в реальности процессы, в большинстве случаев предполагает последовательное нахождение ответов на два вопроса:

  • Какие системы информационной обработки будут эффективными в конкретном случае?
  • Каковы математические методики функционирования применительны к крупным системам?

Особенности вопроса

Рассматривая методы информобработки, следует сперва создать алгоритм, который бы детально описывал, как система работает. Затем формируется последовательность действий, позволяющая определить оптимальные решения, а также алгоритмизируется управленческий процесс. В некоторых случаях требуется создание последовательности для выявления значений, характеризующих управление.

Задачи по алгоритмизации, рассматривающие второй вопрос, предполагают наличие большой системы. В ней можно одновременно проводить не только качественные, но и количественные исследования. Это позволяет оценивать ключевые особенности системы - надежность, результативность.

Как это работает?

Этапы алгоритмизации предполагают последовательное выделение элементарных актов. Каждый из них должен быть такого уровня, чтобы удалось описать его математическими функциями, применяя подходы алгебры логики. Пользу при построении алгоритма принесут также теории конечных автоматов, случайных процессов, массового обслуживания. При этом выявляются соотношения, которые описывают взаимные связи между элементарными актами. На основании таких данных формулируется система, которая и становится полноценным алгоритмом, применимым для дальнейшей работы.

Процедуры, операции, включенные в описание процесса через алгоритм, наиболее удобно фиксировать, применяя специальные языки программирования. Особенно актуально это, если процесс построения алгоритма необходим для последующего воплощения кода на электронно-вычислительной машине. Созданный человеком код затем обрабатывается транслятором и переводится в операционный язык, понятный для заданной машины. Нередко один шаг алгоритма - это несколько реализуемых машиной операций.

Кому и как?

О том, что такое алгоритм в информатике, могут рассказать программисты. Но эта наука в целом и техники программирования в частности - совершенно особенный вопрос, требующий отдельного рассмотрения. Что касается алгоритмизации применительно к прочим областям, то решением связанных с формированием последовательностей действий должен заниматься узкоспециализированный персонал - алгоритмисты. Последовательность действий включает в себя:

  • анализ исходных данных;
  • выявление самых значимых аспектов;
  • формализацию ключевых моментов;
  • представление данных символами;
  • формирование цельной последовательности операций.

Фактически алгоритмизация - сложный процесс, сам по себе в некоторой степени описываемый алгоритмом. Важная особенность - четкость, математичность, логичность подхода и результата.

Зачем это нужно?

Где можно встретить примеры алгоритмизации на практике? Иным может показаться, что это «наука в себе», не слишком применимая для чего-либо. На самом деле алгоритмизация - это эффективный метод автоматизации широчайшего спектра задач, рабочих процессов, в которых участвуют люди. Формирование программ, алгоритмов в первую очередь используется для упрощения вычислительных задач, которые раньше можно было решить только вручную. Несколько реже алгоритмизация позволяет создать последовательность действий управления машинами.

Алгоритмизация позволяет эффективно переформулировать исходный (зачастую довольно хаотичный) объем информации в алгоритмический вид, четкий, упорядоченный и структурированный. При этом выделяют все объекты, которые участвуют в операциях, идентифицируют их, определяют исполнителей и задают алгоритм последовательных действий. Важное условие - обязательная однозначность толкования любого этапа. После А всегда следует В, а не «может, В, а может, С, вы уж решите сами, как лучше». Это правило - основа алгоритмизации.

Информация и алгоритмы

Представленные в алгоритмической форме сведения - данные, продуцируемые алгоритмизацией. Для них невозможны многозначные интерпретации. Что такое алгоритм в информатике, математике, логике? Это такая последовательность, которую исполнитель может понять, имея перед собой только этот документ и никаких сторонних источников, условий, объяснений операциям. В алгоритме всегда указывается порядок действий. Без этой информации система не может считаться полноценной и применимой на практике.

Алгоритмизация и языки программирования были разработаны людьми, но не только лишь для себя. Исполнять готовый результат может и машина, причем не только высокопродуктивный и сложноорганизованный компьютер, но и более простое автоматизированное устройство. Применяются следующий типы последовательности операций:

  • линейные;
  • циклические;
  • ветвления;
  • смешанные.

А если поподробнее?

Если внимательно изучить основы алгоритмизации, можно найти подробное описание всех типов последовательностей действий. Разберем их детальнее.

Линейная предполагает наличие четкой последовательности по шагам: есть первая операция, вторая и так далее. Отклонения от схемы не допускаются, вариантов корректировки не предусмотрено.

Ветвление - возможность несколько корректировать последовательность. Для этого формулируются условия, решаемые в ходе предыдущих операций (одной или нескольких). Ветвление - это не переход к уже прошедшей ранее операции, а лишь выбор одного из путей продолжения последовательности.

Продолжая тему

Цикл практически идентичен ветвлению, но позволяет возвращаться к операции, уже пройденной в ходе исполнения алгоритма.

Наконец, в основах информатики рассматривается смешанный вариант последовательности алгоритмизованных действий. В таком будут участки линейные, циклические, ветвления - все возможные формы. Если программа, алгоритм являются сложными, можно с уверенностью говорить, что они принадлежат именно к такой форме, ее просто невозможно избежать. Причем сложность - понятие очень и очень растяжимое. То, что для обычного человека кажется элементарной задачей, при формулировании ее в виде алгоритма может превратиться длительную последовательность действий разного плана и характера. Задача алгоритмиста - учитывать все возможные состояния всех включенных в систему объектов.

Инструкции и алгоритмы

Фактически с алгоритмизацией, как и с основами информатики, мы сталкиваемся в повседневной жизни, просто привыкли к этому и не замечаем, не обращаем внимание. К примеру, технологические инструкции - это классический образец алгоритма.

Исполнительные инструкции обычно составляются применительно к разнообразным объектам - клапанам, агрегатам, вытяжкам, двигателям. В инструкции описываются физические операции - взять, поднять, закрыть. Когда речь идет о вычислительной машине, объекты в алгоритме будут математические, действия, соответственно, такие же. Алгоритм может быть посвящен формулам, таблицам, в которые скомпонованы значения, а действия бывают самыми разными - от простейших вычислений до довольно сложных для человека матричных табличных операций. Инструкция обычно содержит условие, соответствующее правилам логики. Если удалось достигнуть необходимого показателя - можно продолжать движение по алгоритму или завершить его, в противном случае придется пройти еще один цикл. Также алгоритмы в норме имеют «запасной выход» на случай внештатной ситуации. Применительно к человеческой повседневности можно найти аналог в виде «Сообщить руководству о неполадке».

Алгоритмизация: подход расширенный и специализированный

Некоторые считают, что алгоритмизация - это в первую очередь процесс переформатирования данных в более упорядоченный вид. Сперва исследуется исходная ситуация, анализируется сопровождающая ее информация, документация, особенности, пожелания. Одновременно с этим алгоритмизация - это вполне четкая и ограниченная по масштабу задача создания инструкций. Она имеет свои сложности и особенности.

Объект алгоритмизации

Принято говорить о таких объектах, которые могут совершать действия, а также тех, над которыми таковые производятся. Для каждого объекта характерно некоторое определенное состояние и возможность перехода между ними. Знание полного набора атрибутики позволяет создать корректный и точный алгоритм, который будет работать, не требуя дополнительных действий, за исключением уже вписанных в программу.

Ключевое условие, первое, которое проверяется применительно к объекту - присутствие его именно в таком состоянии, которое допускает исполнение предусмотренных алгоритмом функций. В случае если объект не прошел предварительную подготовку, он неисправен, не подходит (словом, любое препятствие), состояние становится неработоспособным, следовательно, действия, предписанные алгоритмом, не могут выполняться.

Алгоритмизация применительно к реальности

В повседневности алгоритмы применимы к самым разным реальным объектам - персоналу, оборудованию. Состояние его должно быть таким, чтобы возложенные в соответствии с программой операций функции исполнялись бы успешно, качественно, без сбоев. важно при формулировании инструкций. Так, если речь идет о каком-либо оборудовании, его нужно предварительно собрать, почистить, протестировать, только после этого ознакомить персонал с правилами использования и начать применять инструкцию в деле.

Применительно к машинному алгоритму ситуация сходная, разве что в качестве объекта будут выступать устройства, а сами шаги обычно должны быть более детальными, дабы аппарат смог правильно их интерпретировать и исполнить. При этом последовательность должна быть предельно четкой, иначе агрегат просто не сможет догадаться - ведь это не человек, обладающий волей, интуицией, способностью рассуждать на примере уже полученного опыта.

А что с обучением?

Важное понятие - алгоритмизация обучения. Оно предполагает составление такой последовательности действий, которая поможет научить целевой объект (машину или человека) исполнять заданные операции. В качестве начального этапа рассматривается состояние полного отсутствия знаний и представлений о целевом объекте. Алгоритм обучения должен содержать такую последовательность операций, которая позволит получить объекту представление о процессе, полезную информацию, применяемую дальше на практике. Формулирование сложных и эффективных алгоритмов обучения в последнее время стало особенной областью внимания передовых умов нашего мира в силу повышения интереса к искусственному интеллекту и обучаемости машин.

Алгоритм обучения начинается с рассмотрения простейших задач. Если предстоит работа с людьми, то даются поручения, которые позволяют освоить базовые понятия и процессы системы. Постепенно задачи усложняются, и в какой-то момент объекты алгоритма обучения могут не просто с легкостью решать поставленные перед ними задачи, но и учить других - особенно актуально это, конечно, применительно к людям.

– система правил, сформулированная на понятном исполнителю языке, которая определяет процесс перехода от допустимых исходных данных к некоторому результату и обладает свойствами массовости, конечности, определенности, детерминированности.

Слово «алгоритм» происходит от имени великого среднеазиатского ученого 8–9 вв. Аль-Хорезми (Хорезм – историческая область на территории современного Узбекистана). Из математических работ Аль-Хорезми до нас дошли только две – алгебраическая (от названия этой книги родилось слово алгебра) и арифметическая. Вторая книга долгое время считалась потерянной, но в 1857 в библиотеке Кембриджского университета был найден ее перевод на латинский язык. В ней описаны четыре правила арифметических действий, практически те же, что используются и сейчас. Первые строки этой книги были переведены так: «Сказал Алгоритми. Воздадим должную хвалу Богу, нашему вождю и защитнику». Так имя Аль-Хорезми перешло в Алгоритми, откуда и появилось слово алгоритм. Термин алгоритм употреблялся для обозначения четырех арифметических операций, именно в таком значении он и вошел в некоторые европейские языки. Например, в авторитетном словаре английского языка Webster"s New World Dictionary , изданном в 1957, слово алгоритм снабжено пометкой «устаревшее» и объясняется как выполнение арифметических действий с помощью арабских цифр.

Слово «алгоритм» вновь стало употребительным с появлением электронных вычислительных машин для обозначения совокупности действий, составляющих некоторый процесс. Здесь подразумевается не только процесс решения некоторой математической задачи, но и кулинарный рецепт и инструкция по использованию стиральной машины, и многие другие последовательные правила, не имеющие отношения к математике, – все эти правила являются алгоритмами. Слово «алгоритм» в наши дни известно каждому, оно настолько уверенно шагнуло в разговорную речь, что сейчас нередко на страницах газет, в выступлениях политиков встречаются выражения «алгоритм поведения», «алгоритм успеха» и т.д.

Тьюринг А. Может ли машина мыслить ? М., Мир, 1960
Успенский В. Машина Поста. Наука, 1988
Кормен Т., Лейзерсон, Ривес Р. Алгоритмы. Построение и анализ . М., МЦНМО, 1999

Найти "АЛГОРИТМ " на

Планирование процессов включает в себя решение следующих задач:
определение момента времени для смены выполняемого процесса;
выбор процесса на выполнение из очереди готовых процессов;
переключение контекстов "старого" и "нового" процессов.

Первые две задачи решаются программными средствами, а последняя в значительной степени аппаратно. Существует множество различных алгоритмов планирования процессов, по разному решающих вышеперечисленные задачи, преследующих различные цели и обеспечивающих различное качество мультипрограммирования. Среди этого множества алгоритмов рассмотрим подробнее две группы наиболее часто встречающихся алгоритмов: алгоритмы, основанные на квантовании, и алгоритмы, основанные на приоритетах.

В соответствии с алгоритмами, основанными на квантовании, смена активного процесса происходит, если:

  • процесс завершился и покинул систему,
  • произошла ошибка,
  • процесс перешел в состояние ОЖИДАНИЕ,
  • исчерпан квант процессорного времени, отведенный данному процессу.

Процесс, который исчерпал свой квант, переводится в состояние ГОТОВНОСТЬ и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый процесс из очереди готовых. Таким образом, ни один процесс не занимает процессор надолго, поэтому квантование широко используется в системах разделения времени. Граф состояний процесса, изображенный на рисунке 2.1, соответствует алгоритму планирования, основанному на квантовании. Кванты, выделяемые процессам, могут быть одинаковыми для всех процессов или различными. Кванты, выделяемые одному процессу, могут быть фиксированной величины или изменяться в разные периоды жизни процесса. Процессы, которые не полностью использовали выделенный им квант (например, из-за ухода на выполнение операций ввода-вывода), могут получить или не получить компенсацию в виде привилегий при последующем обслуживании. По разному может быть организована очередь готовых процессов: циклически, по правилу "первый пришел - первый обслужился" (FIFO) или по правилу "последний пришел - первый обслужился" (LIFO). Другая группа алгоритмов использует понятие "приоритет" процесса. Приоритет - это число, характеризующее степень привилегированности процесса при использовании ресурсов вычислительной машины, в частности, процессорного времени: чем выше приоритет, тем выше привилегии. Приоритет может выражаться целыми или дробными, положительным или отрицательным значением. Чем выше привилегии процесса, тем меньше времени он будет проводить в очередях. Приоритет может назначаться директивно администратором системы в зависимости от важности работы или внесенной платы, либо вычисляться самой ОС по определенным правилам, он может оставаться фиксированным на протяжении всей жизни процесса либо изменяться во времени в соответствии с некоторым законом. В последнем случае приоритеты называются динамическими. Существует две разновидности приоритетных алгоритмов: алгоритмы, использующие относительные приоритеты, и алгоритмы, использующие абсолютные приоритеты. В обоих случаях выбор процесса на выполнение из очереди готовых осуществляется одинаково: выбирается процесс, имеющий наивысший приоритет. По разному решается проблема определения момента смены активного процесса. В системах с относительными приоритетами активный процесс выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ОЖИДАНИЕ (или же произойдет ошибка, или процесс завершится). В системах с абсолютными приоритетами выполнение активного процесса прерывается еще при одном условии: если в очереди готовых процессов появился процесс, приоритет которого выше приоритета активного процесса. В этом случае прерванный процесс переходит в состояние готовности. На рисунке 2 показаны графы состояний процесса для алгоритмов с относительными (а) и абсолютными (б) приоритетами.

Рис.1. Граф состояний процесса в многозадачной среде
(а) с относительными приоритетами; (б)с абсолютными приоритетами

Во многих операционных системах алгоритмы планирования построены с использованием как квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора процесса из очереди готовых определяется приоритетами процессов.