На чем специализируется сельское хозяйство канады. Канада: общая характеристика хозяйства

СТРОЕНИЕ ЗЕМЛИ.

Давайте совершим воображаемое путешествие к центру Земли. Представим, что мы движемся вглубь, «проходя» толщу Земли в каком-нибудь фантастическом снаряде, вместе с героями книги Жюля Верна «Путешествие к центру Земли».

Самый верхний покров Земли - земная кора. Если сравнить Землю с яблоком, то земная кора будет только его тонкой кожицей. Но именно эта «кожица» интенсивно используется человеком. На ее поверхности построены города, заводы и фабрики, из ее недр добывают различные полезные ископаемые, она дает человеку воду, энергию, одежду и многое-многое другое. Поскольку земная кора самый верхний слой Земли, то и изучена лучше всех. В её недрах залегают очень ценные для человека горные породы и минералы, который он научился использовать в хозяйстве.

Толщина Земной коры (внешней оболочки) изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков). Сфера земной коры очень небольшая, на ее долю приходится всего около 0,5% общей массы планеты. Основной состав коры - это окислы кремния, алюминия, железа и щелочных металлов. В составе континентальной коры, содержащей под осадочным слоем верхний (гранитный) и нижний (базальтовый), встречаются наиболее древние породы Земли, возраст которых оценивается более чем в 3 млрд. лет. Океаническая же кора под осадочным слоем содержит в основном один слой, близкий по составу к базальтовым. Возраст осадочного чехла не превышает 100-150 миллионов лет.

Верхний слой земной коры состоит из достаточно мягких горных пород. Они образованы в результате разрушения твёрдых пород (например, песок), отложения остатков животных (мел) или растений (уголь), осаждения на дно морей и океанов разных веществ (поваренная соль).
Следующий слой земной коры – гранитный. Гранит называют магматической породой. Он образовался из магмы в толще земной коры в условиях высоких температур и давления. «Магма» в переводе с греческого означает «густая мазь». Она представляет собой расплавленное вещество земных недр, которое заполняет трещины в земной коре. При ее застывании образуется гранит. Химический анализ гранита показывает, что он содержит большое количество самых разных минералов - кремнезема, алюминия, кальция, калия, натрия.

После «гранитного» слоя, находится слой, сложенный преимущественно из базальта - горной породы глубинного происхождения. Базальт тяжелее гранита, он содержит больше железа, магния и кальция. Эти три слоя земной коры - осадочный, «гранитный» и «базальтовый» - хранят все полезные ископаемые, используемые человеком. Толщина земной коры не везде одинакова: от 5 км под океанами до 75 км под материками. Под океанами, как правило, отсутствует «гранитный» слой.

На рисунке видно, что под океанами земная кора более тонкая, т.к. состоит из двух слоёв (верхнего осадочного и нижнего базальтового).
Далеко не везде, углубляясь в Землю, мы будем наблюдать строгую последовательность, при которой за более молодым слоем располагается более древний. Пласты горных пород по праву называют страницами истории Земли, но они могут быть перепутаны, измяты, изорваны. В основном это происходит в результате горизонтальных сдвигов происходящих в земной коре.
Смещение горных пород показано рисунке справа.

За земной корой, если двигаться к центру Земли следует, самый толстый слой Земли – мантия (учёные говорят «самый мощный»). Никто никогда не видел ее. Ученые предполагают, что состоит она из магния, железа и свинца. Температура здесь около +2000° С!

От низлежащей мантии земную кору отделяет во вмогом еще загадочный Слой Мохо (назван так в честь сербского сейсмолога Мохоровичича, открывшего его в 1909 году), в котором скорость распространения сейсмических волн скачкообразно увеличивается.

На долю Мантии приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой - самой жесткой оболочкой Земли. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой, менее вязкий и более пластичный по отношению к выше и ниже лежащим слоям, называют астеносферой. Считается, что вещество мантии находится в непрерывном движении, и высказывается предположение, что в относительно глубоких слоях мантии с ростом температуры и давления происходит переход вещества в более плотные модификации. Такой переход подтверждается и экспериментальными исследованиями.

В нижней мантии на глубине 2900 км отмечается резкий скачок не только в скорости продольных волн, но и в плотности, а поперечные волны сдесь исчезают совсем, что указывает на смену вещественного состава пород. Это внешняя граница ядра Земли.

Ученые установили, что температура горных пород с глубиной возрастает: в среднем на каждые 30 м глубины Земли становится теплее на 1 С. Мантия получает огромное количество тепла от ядра Земли, которое ещё горячее.

При огромной температуре породы мантии должны быть в жидком, расплавленном виде. Но этого не происходит, потому что вышележащие горные породы давят на мантию, и давление на такой глубине в 13 тысяч раз больше, чем на поверхности. Иначе говоря, на каждый 1 см 2 горной породы давят 13т. Столько весит КАМАЗ, груженый асфальтом. Поэтому, по-видимому, породы мантии и ядра находятся в твердом состоянии. Выделяют нижнюю и верхнюю мантию.

Состав мантии:
алюминий, магний, кремний, кальций

Люди давно заметили, что на дне глубоких шахт температура горных пород выше, чем на поверхности. Некоторые шахты даже приходилось забрасывать, потому что там становилось невозможно работать, так как температура достигала +50° С.

Ядро Земли - пока загадка для науки. С определенной достоверностью можно говорить лишь о его радиусе - примерно 3500 км и температуре - около 4000 °С. Это пока все, что известно науке о строении глубин Земли. Некоторые учёные придерживаются мнения о том, что наше ядро состоит из железа, другие допускают возможным существования огромной пустоты в центре нашей планеты. Выделяют внешнее и внутреннее ядро. Но каково ядро Земли на самом деле пока не знает никто.

Земное ядро открыто в 1936 году. Получить его изображение было чрезвычайно трудно из-за малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Земное ядро разделяется на 2 отдельные области: жидкую (ВНЕШНЕЕ ЯДРО ) и твердую (BHУTPEHHE ), переход между ними лежит на глубине 5156 км. Железо - элемент, который соответствует сейсмическим свойствам ядра и обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

ВНУТРЕННЕЕ ТВЕРДОЕ ЯДРО не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра 3емли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При зтом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.

Состав ядра:
железо, никель.

Литосфера - это твердая оболочка Земли, состоящая из земной коры и верхней части мантии (от греч. lithos - камень и sphaira - шар). Известно, что существует тесная связь между литосферой и мантией Земли.

Движение литосферных плит.

Многие ученые считают, что литосфера разделена глубинными разломами на блоки, или плиты, разной величины. Эти плиты перемещаются по разжиженному слою мантии относительно друг друга. Литосферные плиты бывают материковые и океанические (мы немного рассказывали чем они отличаются). При взаимодействии материковой и океанической плит одна надвигается на другую. Из-за своей меньшей толщины край океанической плиты как бы "ныряет" под край континентальной плиты. При этом образуются горы, глубоководные желоба, островные дуги. Наиболее яркий пример такого образования - Курильские острова и Анды.

Какая же сила передвигает плиты литосферы?
Движение их ученые связывают с перемещением вещества в мантии. Мантия несет на себе земную кору, как тонкий лист бумаги.
Границы литосферных плит в местах их разрыва и в местах стыковки - это активные участки литосферы, к которым приурочено большинство действующих вулканов и где часты землетрясения. Эти участки образуют сейсмические пояса Земли, протянувшиеся на тысячи километров. Повторим, что термин "сейсмический" происходит от греческого слова seismos - колебание.

Тепло ядра Земли заставляет мантийное вещество подниматься (как вода при кипении), образуя вертикальные потоки мантии, раздвигающие литосферные плиты. При остывании возникают нисходящие потоки. Тогда литосферные плиты сдвигаются, сталкиваются и образуются горы.

МЕТОДЫ ИЗУЧЕНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ЗЕМЛИ.

Объектами , которые изучает геология, являются земная кора и литосфера. Задачи геологии:

 изучение вещественного состава внутренних оболочек Земли;

 изучение внутреннего строения Земли;

 изучение закономерностей развития литосферы и земной коры;

 изучение истории развития жизни на Земле и др.

Методы науки включают как собственно геологические, так и методы сопряженных наук (почвоведения, археологии, гляциологии, геоморфологии и проч.). В числе главных методов можно назвать следующие.

1. Методы полевой геологической съемки  изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы  используются для изучения глубинного строения Земли и литосферы. Сейсмические методы , основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы , изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и, следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности  Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма  протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли).

ГИПОТЕЗА ПРОИСХОЖДЕНИЯ ЗЕМЛИ.

Согласно современным космологическим представлениям 3емля образовалась вместе с другими планетами около 4,5 млрд. лет назад из кусков и обломков, вращавшихся вокруг молодого Солнца. Она разрасталась, захватывая вещество, находившееся вокруг, пока не достигла своего нынешнего размера. Вначале процесс разрастания происходил очень бурно, и непрерывный дождь падающих тел должен был привести к ее значительному нагреванию, так как кинетическая энергия частиц превращалась в тепло. При ударах возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть силу земного притяжения и падало обратно, и чем крупнее были падающие тела, тем сильнее разогревали они Землю. Энергия падающих тел освобождалась уже не на поверхности, а в глубине планеты, не успевая излучиться в пространство. Хотя первоначальная смесь веществ могла быть однородной в большом масштабе, разогрев земной массы вследствие гравитационного сжатия и бомбардировки ее обломками привел к расплавлению смеси и возникшие жидкости под действием тяготения отделялись от оставшихся твердых частей. Постепенное перераспределение вещества по глубине в соответствии с плотностью должно было привести к его расслоению на отдельные оболочки. Более легкие вещества, богатые кремнием, отделялись от более плотных, содержащих железо и никель, и образовывали первую земную кору. Спустя примерно миллиард лет, когда 3емля существенно охладилась, земная кора затвердела, превратившись в прочную внешнюю оболочку планеты. Остывая, 3емля выбрасывала из своего ядра множество различных газов (обычно это происходило при извержении вулканов) - легкие, такие как водород и гелий, большей частью улетучивались в космическое пространство, но так как сила притяжения 3емли была уже достаточно велика, то удерживала у своей поверхности более тяжелые. Они как раз и составили основу земной атмосферы. Часть водяных паров из атмосферы сконденсировалась, и на 3емле возникли океаны.

Когда все материки были открыты и нанесены на географические карты, изучение Земли продолжалось. Новые экспедиции отправились к полюсам Земли, на дно самой глубокой океанической впадины и на самую высокую вершину.

Исследование полярных областей

Достижение Северного и Южного полюсов было целью жизни многих исследователей. Американец трижды пытался покорить Северный полюс и достиг его в 1909 году.

Узнав об успехе Р. Пири, норвежец Руал Амундсен решил покорить Южный полюс. В 1911 году, добравшись на корабле «Фрам» до антарктического берега, он вместе с четырьмя товарищами отправился в путь на санях, запряжённых собаками. Отважные путешественники достигли Южного полюса, подняв над ним норвежский флаг.

Начиная с 1959 года в Антарктиде стали размещать постоянные научные станции. Они принадлежат разным странам, поэтому называют материком мира. Исследования Антарктиды очень важны, поскольку она оказывает существенное влияние на климат даже далёких от неё частей Земли. Продолжаются и исследования Арктики. В них особенно активно участвуют страны, территории которых омываются Северным Ледовитым океаном. Преимущество в исследованиях принадлежит России. Она на протяжении уже почти целого века снаряжает в Арктику полярные экспедиции. Очень крупные исследования проводились в 2007 году на судне «Академик Фёдоров» при поддержке атомного ледокола «Россия». Учёные изучали , морские течения, толщину льдов, глубину океана. Па дно океана в районе Северного полюса были спущены глубоководные аппараты «Мир».

Исследование океанов

В результате специальных экспедиций на дне океанов в 20 веке были открыты огромные горные хребты, множество подводных вулканов, глубоких впадин. Вулканов в океанах оказалось гораздо больше, чем на суше. В 1960 году исследователи Жак Пикар и Дон Уолш в специальном аппарате - батискафе опустились на дно самой глубокой и мире Марианской впадины, на глубину 11 022 метра. Оказалось, что на дне даже самых глубоких впадин есть жизнь. Французский океанолог Жак Ив Кусто изобрёл акваланг, с помощью которого можно свободно плавать под водой.

Другие исследования

В 1953 году новозеландец Эдмунд Хиллари и представитель Непала Норгеи Тенсинг впервые покорили самую высокую точку Земли - гору Джомолунгма. Поднявшись на вершину, они водрузили на ней флаги своих стран и флаг ООН, посвятив свою победу всем людям Земли.

Важнейшим достижением в исследовании Земли в 20 веке стало изучение верхних слоев атмосферы. Со второй половины 20 века космические корабли с космонавтами на борту участвовали в изучении Земли из космоса. С тех пор в географии появились новые космические методы исследования, с помощью которых учёные получают информацию о нашей планете и сегодня.

Исследования Земли ещё не завершены. До сих пор точно не установлен исток реки Амазонки, остаются неизученными многие растения и животные, распространённые в лесах но берегам этой реки. Лишь на глубину 12 километров проникли учёные в земную твердь, пробурив на сверхглубокую скважину. Продолжаются исследования льдов Антарктиды и глубин Мирового океана.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт экологии и географии

Кафедра географии и картографии

Реферат

Дистанционные методы исследования Земли

Выполнил студент III курса

группы № 02-106

Ялалов Д.

Научный руководитель:

Денмухаметов Р.Р.

Казань - 2013

Введение

1. Дистанционные методы

2. Возникновение космических методов

3. Аэрофотосъемка

3.1. Возникновение аэрофотосъемки

3.2. Использование аэрофотосъемки в народном хозяйстве

4. Дистанционные исследования при поисках полезных ископаемых

5. Методики автоматизации дешифрирования космических материалов

Заключение

Список использованных источников

Введение

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства, выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле: география, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение.

Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет

1. Дистанционные методы

Дистанционные методы - общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра (Рис.1). Дистанционные методы позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире искусственного спутника Земли и съёмки обратной стороны Луны советской автоматической станцией "Зонд-3" (1959).

Рис. 1. Основные геометрические параметры сканирующей системы: - угол обзора; Х и У - линейные элементы сканирования; dx и dy - элементы изменения мгновенного угла зрения; W - направление движения

Различают активные дистанционные методы, основанные на использовании отражённого объектами излучения после облучения их искусственными источниками, и пассивные , которые изучают собственное излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников дистанционные методы подразделяют на наземные (в том числе надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры дистанционные методы различают самолётные, вертолётные, аэростатные, ракетные, спутниковые дистанционные методы (вгеолого-геофизических исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагнитного излучения позволяют распознать объекты и получить информацию об их размере, плотности, химическом составе, физических свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления химического состава горных пород и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растительного покрова, инфракрасная (ИК) - даёт оценки температур поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.

По типу приёмника излучения дистанционные методы подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографические приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют различную чувствительность в разных областях спектра (селективны). Фотоэлектрические приёмники (энергия излучения преобразуется непосредственно в электрический сигнал при помощи фотоумножителей, фотоэлементов и других фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абсолютных энергетических измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в другие виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и других носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и другими системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.

2. Возникновение космических методов

В истории космического фотографирования может быть выделено три этапа. К первому этапу следует отнести фотографирование Земли с высотных, а затем с баллистических ракет, относящееся к 1945--1960 гг. Первые фотография земной поверхности были получены еще в конце XIX в. - начале ХХ в., то есть еще до использования в этих целях авиации. Первые опыты по подъему фотоаппаратов на ракетах начал проводить в 1901--1904 гг. немецкий инженер Альфред Мауль в Дрездене. Первые снимки были получены с высоты 270--800 м, имели размер кадра 40х40 мм. В этом случае фотографирование проводилось при спуске ракеты с фотоаппаратом на парашюте. В 20--30 гг. ХХ в. в ряде стран производились попытки использования ракет для съемки земной поверхности, однако в связи с малыми высотами подъема (10-12 км) они оказались не эффективными.

Съемки Земли с баллистических ракет сыграли важную роль в предыстории изучения природных ресурсов с различных космических летательных аппаратов. С помощью баллистических ракет были получены первые мелкомасштабные изображения Земли с высоты более 90-100 км. Самые первые космические фотографии Земли были сделаны в 1946 г. с помощью баллистической ракеты "Викинг-2" с высоты около 120 км на полигоне Уайт-Сэнд (Нью-Мексико, США). В течение 1946--1958 гг. на этом полигоне производились запуски баллистических ракет в вертикальном направлении и после достижения максимальной высоты (около 400 км) происходило их падение на Землю. На траектории падения осуществлялось получение фотографических изображений земной поверхности в масштабе 1:50 000 - 1:100 000. В 1951--1956 гг. на советских метеорологических ракетах также стала устанавливаться фотоаппаратура. Снимки выполнялись при спуске на парашюте головной части ракеты. В 1957--1959 гг. для съемок в автоматическом режиме использовались геофизические ракеты. В 1959--1960 гг. на высотных стабилизированных в полете оптических станциях были установлены фотографические камеры кругового обзора, с помощью которых были получены фотографии Земли с высоты 100-120 км. Фотографирование производилось в разные стороны, в разное время года, в разные часы дня. Это позволило проследить сезонные изменения космического изображения природных особенностей Земли. Снимки, полученные с баллистических ракет, были весьма несовершенны: были большие расхождения в масштабе изображения, малая площадь, нерегулярность запусков ракет. Но эти работы были необходимы для отработки техники и методики съемок земной поверхности с искусственных спутников Земли и пилотируемых кораблей.

Второй этап фотографирования Земли из Космоса охватывает период с 1961 по 1972 г. и носит название экспериментального. 12 апреля 1961 г. первый космонавт СССР (России) Ю. А. Гагарин впервые вел визуальное наблюдение Земли через иллюминаторы корабля "Восток". 6 августа 1961 г. космонавт Г. С. Титов на корабле "Восток-2" выполнял наблюдение и съемку земной поверхности. Съемка производилась через иллюминаторы отдельными сеансами на протяжении всего полета. Уникальную научную ценность имеют исследования, выполненные в этот период на космических пилотируемых кораблях серии "Союз". С борта корабля "Союз-3" проводилось фотографирование дневного и сумеречного горизонта Земли, земной поверхности, а также наблюдение тайфунов, циклонов, лесных пожаров. С борта корабля "Союз-4" и "Союз-5" велись визуальные наблюдения за земной поверхностью, фото- и киносъемка, в том числе районов Каспийского моря. Эксперименты большого хозяйственного значения были выполнены по совместной программе научно-исследовательским судном "Академик Ширшов", спутником "Метеор" и пилотируемым космическим кораблем "Союз-9". Программой исследований в этом случае было предусмотрено наблюдение Земли с использованием оптических приборов, фотографирование геолого-географичеких объектов с целью составления геологических карт и возможных районов залегания полезных ископаемых, наблюдение и фотографирование атмосферных образований с целью составления метеорологических прогнозов. В этот же период была проведена радиолокационная и тепловая съемка Земли и экспериментальное фотографирование в разных зонах видимого солнечного спектра, позднее названного многозональным фотографированием.

3. Аэрофотосъемка

Аэрофотосъемка - это фотографирование земной поверхности с самолета или вертолета. Оно производится вертикально вниз или наклонно к плоскости горизонта. В первом случае получаются плановые снимки, во втором - перспективные. Чтобы иметь изображение обширного района, делается серия аэрофотоснимков, а затем они монтируются вместе. Снимки делаются с перекрытием, чтобы один и тот же участок попал на соседние кадры. Два кадра составляют стереопару. Когда мы рассматриваем их в стереоскоп, изображение выглядит объемным. Аэрофотосъемка производится с использованием светофильтров. Это позволяет видеть особенности природы, которые не заметишь невооруженным глазом. Если произвести съемку в инфракрасных лучах, то можно увидеть не только земную поверхность, но и некоторые черты геологического строения, условия залегания грунтовых вод.

Аэрофотосъемка широко используется для изучения ландшафтов. С ее помощью составляются точные топографические карты без проведения многочисленных трудных съемок местности на поверхности Земли. Она помогает археологам находить следы древних цивилизаций. Открытие в Италии погребенного этрусского города Спины было осуществлено с помощью аэрофотосъемок. Об этом городе упоминали географы прошлых лет, но найти его никак не удавалось, пока в болотистой дельте реки По не стали проводить осушительные работы. Мелиораторы использовали аэрофотоснимки. Некоторые из них привлекли внимание ученых-специалистов. На этих снимках была запечатлена плоская поверхность низины. Так вот, на снимках этой местности просматривались контуры каких-то правильных геометрических фигур. Когда начали раскопки, стало ясно, что здесь процветал некогда богатый портовый город Спина. Аэрофотоснимки позволили по неприметным с земли изменениям растительности, заболоченности увидеть расположение его домов, каналов, улиц.

Большую помощь аэроснимки оказывают геологам, помогая прослеживать простирание горных пород, рассматривать геологические структуры, обнаруживать выходы коренных пород на поверхность.

В наше время в одних и тех же районах аэрофотосъемка многократно проводится в течение долгих лет. Если сравнить полученные снимки, можно определить характер и масштабы изменений природной обстановки. Аэрофотосъемка помогает регистрировать степень воздействия человека на природу. Повторные снимки показывают участки нерационального природопользования, и на основе этих снимков планируются мероприятия по охране природы.

3.1 Возникновение аэрофотосъемки

Возникновение аэрофотосъемки относится к концу XIX в. Первые фотографии земной поверхности были сделаны с воздушных шаров. Хотя они отличались множеством недостатков, сложностью получения и последующей обработки, изображение на них было достаточно четким, что позволяло различить множество деталей, а также получить общую картину исследуемого региона. Дальнейшее развитие и совершенствование фотографии, фотоаппаратов а также воздухоплавания привели к тому, что съемочные устройства стали устанавливать на летающих аппаратах, называемых аэропланами. Во время Первой мировой войны фотографирование с аэропланов производилось с целью воздушной разведки. Фотографировались расположение войск противника, их укрепления, количество техники. Эти данные использовались для разработки оперативных планов ведения боевых действий.

После окончания Первой мировой войны, уже в послереволюционной России, аэрофотосъемку стали использовать для нужд народного хозяйства.

3.2 Использование аэрофотосъемки в народном хозяйстве

В 1924 г. под г. Можайск был создан аэрофотосъемочный полигон, на котором производилось испытание вновь создаваемых аэрофотоаппаратов, аэрофотосъемочных материалов (фотопленки, специальной бумаги, оборудования для проявления и печатания снимков). Эту аппаратуру устанавливали на существовавшие тогда самолеты типа Як, Ил, новый самолет Ан. Эти исследования давали положительные результаты, что и позволило перейти к широкому использованию аэрофотосъемки в народном хозяйстве. Аэрофотографирование производилось с помощью специального фотоаппарата, который устанавливался в днище самолета с приспособлениями, устраняющими вибрацию. Кассета фотоаппарата имела пленку длиной от 35 до 60 м и шириной 18 или 30 см, отдельный снимок имел размеры 18х18 см, реже - 30х30 см. До 50-х гг. ХХ в. изображение на снимках было черно-белым, позже стали получать цветные, а затем спектральные изображения.

Спектральные изображения выполняются с помощью светофильтра в определенной части видимого солнечного спектра. Например, возможно фотографирование в красной, синей, зеленой, желтой части спектра. При этом используется двухслойная эмульсия, покрывающая пленку. Такой способ фотографирования передает ландшафт в необходимых цветах. Так, например, смешанный лес при спектральном фотографировании дает изображение, которое легко можно подразделять по породам, имеющим на снимке разные цвета. После проявления и сушки пленки готовят контактные отпечатки на фотобумаге размером соответственно 18х18 см или 30х30 см. Каждый снимок имеет номер, круглый уровень, по которому можно судить о степени горизонтальности снимка, а также часы, фиксирующие время в момент получения данного снимка.

Фотографирование какой-либо местности осуществляется в полете, при котором самолет совершает перелеты с запада на восток, затем с востока на запад. Аэрофотоаппарат работает в автоматическом режиме и выполняет снимки, располагающиеся по маршруту самолета один за другим, перекрывая друг друга на 60 %. Перекрытие снимков между маршрутами составляет 30 %. В 70-х гг. ХХ в. на базе самолета Ан был сконструирован для этих целей специальный самолет Ан-30. Он снабжен пятью фотоаппаратами, управление которыми осуществляется с помощью счетной машины, а в настоящее время - с помощью компьютера. Кроме того, самолет обеспечен противовибрационным устройством, исключающим боковой снос за счет ветра. Он может выдерживать заданную высоту полета. Первые опыты использования аэрофотосъемки в народном хозяйстве относятся к концу 20-х гг. ХХ в. Снимки были использованы в труднодоступных местах в бассейне реки Мологи. С их помощью производилось изучение, обследование и определение качества и продуктивности (таксация) лесов этой территории. Кроме того, немного позже производилось изучение фарватера Волги. Эта река на некоторых участках часто меняла фарватер, возникали мели, косы, пересыпи, сильно мешающие судоходству до создания водохранилищ.

Аэрофотосъемочные материалы позволили выявить закономерности в образовании и отложении речных наносов. Во время Второй мировой войны аэрофотосъемка также широко использовалась в народном хозяйстве для разведки полезных ископаемых, а также на фронте для выявления перемещения живой силы и техники противника, съемки укреплений, возможных театров военных действий. В послевоенный период аэрофотосъемка также использовалась во многих направлениях.

4. Дистанционные исследования при поисках полез ных ископаемых

Так, для обеспечения разведки месторождений углеводородного сырья, проектирования, строительства и эксплуатации объектов добычи, переработки и транспортировки нефти и газа с использованием аэрокосмической информации производят изучение рельефа, растительности, почв и грунтов, их состояния в разные времена года, в том числе в экстремальных природных условиях, например, при наводнениях, засухах или сильных морозах, анализ наличия и состояния селитебной и транспортной инфраструктуры, изменений компонентов ландшафтов в результате хозяйственного освоения территории, в том числе в результате аварий на нефтяных и газовых промыслах и трубопроводах и т.д.

При необходимости применяют цифрирование, фотограмметрическую и фотометрическую обработку изображений, их геометрическую коррекцию, масштабирование, квантование, контрастирование и фильтрацию, синтезирование цветных изображений, в том числе с использованием различных фильтров и т.д.

Подбор аэрокосмических материалов и дешифрирование изображений производятся с учетом времени суток и сезона проведения съемки, влияния метеорологических и иных факторов на параметры изображения, маскирующего действия облачности, аэрозольного загрязнения.

Для того, чтобы расширить возможности анализа аэрокосмической информации, используются не только прямые дешифровочные признаки, априорно известные или выявляемые в процессе целенаправленного исследования аэрокосмических изображений, но и косвенные признаки, широко используемые при визуальном дешифрировании. Они, прежде всего, основаны на индикационных свойствах рельефа, растительности, поверхностных вод, почв и грунтов.

Различные результаты наблюдаются при съемке одних и тех же объектов в разных зонах спектра. Например, съемки в инфракрасном и радиотепловом диапазонах лучше фиксируют температуру и влажность земной поверхности, наличие на водной поверхности нефтяной пленки, но точность результатов такой съемки может быть перечеркнута сильным влиянием физической неоднородности поверхности суши или волнения на водной поверхности.

5. Методики автоматизации дешифрирования космических материалов

Специфика использования материалов космических съемок связана с целевым подходом к дешифрированию дистанционных материалов, которые содержат информацию о многих территориально связанных параметрах (географических, сельскохозяйственных, геологических, техногенных и т.п.) природной среды. В основу компьютерного визуального дешифрирования положены измерения четырехмерных (две пространственных координаты, яркостная и временная) и пятимерных (дополнительно, цветное изображение при многозональной съемке) распределений радиационных потоков, отражаемых элементами и объектами местности. Тематическая обработка изображения включает в себя логические и арифметические операции, классификации, фильтрацию и/или линеаментный анализ и серию других методических приемов. Сюда же следует отнести визуальное дешифрирование изображения на экране компьютера, которое осуществляется с помощью стереоэффекта, а также и всего арсенала средств компьютерной обработки и преобразования изображений. Широкие возможности для исследователя открывают автоматические классификации многозональных изображений (с предварительным обучением на эталонах или с задаваемыми параметрами). Классификации основаны на том, что различные природные объекты имеют в разных диапазонах электромагнитного спектра отличающиеся друг от друга яркости. Анализ яркостей объектов в разных зонах (СОХ - спектральные оптические характеристики) позволяет идентифицировать и оконтурить представительные виды ландшафта, структурно-вещественные (производственные и социальные) комплексы и конкретные геологические и техногенные тела. Технология обновления по космическим снимкам цифровых топографических карт на основе визуального дешифрирования должна обеспечивать следующую совокупность функций:

1) экспорт/импорт цифровой картографической информации и цифровых изображений местности;

2) дешифрирование космических фотоснимков с соблюдением оптимальных условий их обработки:

Подготовка исходных материалов для идентификации элементов местности на увеличенных позитивах (на пленке);

Оценка разрешения снимков до и после первичной обработки;

Определение прямых и косвенных дешифровочных признаков, а также использование фотообразов типовых элементов местности и справочных материалов;

4) оцифровку космических снимков и результатов дешифрирования;

5) трансформирование (ортотрансформирование) цифровых космических снимков;

6) подготовку статистических и иных характеристик информационных признаков элементов местности;

7) редактирование элементов содержания цифровой карты по результатам дешифрирования снимков;

8) формирование обновленной цифровой топографической карты;

9) оформление цифровой топографической или тематической карты для пользователя совместно со снимком - создание композитной цифровой фототопографической карты.

При автоматическом и интерактивном дешифрировании дополнительно возможно моделирование полей сигналов на входе приемной аппаратуры аэрокосмических систем мониторинга окружающей среды; фильтрация изображения и операции распознавания образов.

Но совместное наблюдение на экране слоя, получение которого возможно различными методами, векторной цифровой карты и растрового снимка создают новые, ранее не использованные, возможности для автоматизированного дешифрирования и обновления карт.

Координаты контура площадного или линейного элемента местности на цифровой карте могут служить "песмейкером" - указателем для снятия данных с пикселов растрового изображения местности с последующим вычислением осреднённых характеристик окрестной области, задаваемых размеров, и оконтуриванием площади или нанесением соответствующей кривой в новом слое. При нестыковке параметров растра в очередном пикселе изображения возможен переход на следующий соответствующий тому же элементу на карте и с последующей интерактивной ликвидацией разрывов. Возможен алгоритм прерывного получения статистических характеристик осреднённых окрестностей пикселов (точек отрезков между экстремумами или на сплайнах) с учетом допустимого изменения характеристик растротона, а не всего массива равноотстоящих пробных областей вдоль кривой.

Использование данных карты о рельефе местности позволяет значительно усилить автоматизацию алгоритмов дешифрирования, особенно для гидрологических и геологических массивов информации по прямым признакам, используя тот же приём сопоставления, на базе геологических и гравитационных отношений.

Заключение

Применение аэрокосмических технологий в дистанционном зондировании является одним из наиболее перспективных путей развития этого направления. Конечно, как и любые методы исследования аэрокосмическое зондирование имеет свои достоинства и недостатки.

Одним из основных недостатков этого метода является его относительная дороговизна и на сегодняшний день недостаточная четкость получаемых данных.

Выше перечисленные недостатки являются устранимыми и малозначимыми на фоне тех возможностей, которые открываются благодаря аэрокосмическим технологиям. Это возможность наблюдать обширные территории на протяжении длительного времени, получение динамической картинки, рассмотрение влияние различных факторов на территорию и их взаимосвязь между собой. Это открывает возможность системного изучения Земли и ее отдельных районов.

аэрофотосъемка земная дистанционные космические

Список использованных источников

1. С.В. Гарбук, В.Е. Гершензон «Космические системы дистанционного зондирования Земли», «Скан-Экс», Москва 1997г., 296 стр.

2. Виноградов Б. В. Космические методы изучения природной среды. М., 1976.

3. Методики автоматизации дешифрирования космических материалов - http://hronoinfotropos.narod.ru/articles/dzeprognos.htm

4. Дистанционные методы изучения земной поверхности-http://ib.komisc.ru

5. Аэрокосмические методы. Фотосъемки - http://referatplus.ru/geografi

Размещено на Allbest.ru

Подобные документы

    дипломная работа , добавлен 15.02.2017

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Геология как наука, объекты исследований и ее научные направления. Геологические процессы, формирующие рельеф земной поверхности. Месторождение полезных ископаемых, классификация их по применению в народном хозяйстве. Руды черных и легированных металлов.

    контрольная работа , добавлен 20.01.2011

    Гидрогеологические исследования при поисках, разведке и разработке месторождений твердых полезных ископаемых: задачи и геотехнологические методы. Сущность и применение подземного выщелачивания металлов, выплавки серы, скважинной гидродобычи рыхлых руд.

    реферат , добавлен 07.02.2012

    Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация , добавлен 19.10.2014

    Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.

    презентация , добавлен 19.02.2011

    Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат , добавлен 10.09.2014

    Этапы разработка пластов полезных ископаемых. Определение ожидаемых величин сдвижений и деформаций земной поверхности в направлении вкрест простирания пласта. Вывод о характере мульды сдвижения и необходимости применения конструктивных мероприятий.

    практическая работа , добавлен 20.12.2015

    Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация , добавлен 19.12.2013

    Метод геологических блоков и параллельных разрезов подсчета запасов ископаемых. Преимущества и недостатки рассматриваемых методов. Применение различных методов по оценке эксплуатационных запасов подземных вод. Определение расхода подземного потока.

В свое время я тоже заинтересовался тем, что находится у нас под ногами, и начал изучать ее подробнее. Проблема изучения внутреннего строения и состава нашей планеты с давних времен привлекала внимание ученых. Наиболее значимых результатов удалось добиться в XX веке, потому что по сложности и важности эта задача стоит в одном ряду с изучением космоса.

Методы изучения Земли

При изучении внутреннего строения Земли используются различные методы, которые можно объединить в две группы: методы прямого наблюдения и методы косвенного исследования. Первый тип – наиболее простой для понимания, ученые просто изучают горные породы, шахты и материалы, которые получают при бурении скважин. Интересно, что сегодня самые глубокие шахты достигают глубины 6 км, нефтяные скважины – 9 км. Отдельно стоит упомянуть об очень занимательной Кольской сверхглубокой скважине, расположенной на Кольском полуострове. Её глубина достигает 12,5 километров, что делает ее самой глубокой скважиной в мире. Она была создана специально для научно-исследовательской работы. Короче говоря, методом прямого наблюдения можно узнать о строении Земли до глубины около 20-ти километров.


Косвенные методы исследования

Другой, более сложный, тип методов исследования – косвенные методы. Они используются для изучения недр Земли, т.е. того, что находится ниже 20-ти км. Вот их перечень:

  • Сейсмический.
  • Гравиметрический.
  • Геомагнитный.
  • Геоэлектрический.

Самый важный из них – сейсмический, который использует сейсмические волны, они изменяют свою скорость распространения в зависимости от материала, через который они проходят. Этих волн существует два типа: продольные и поперечные.

Проще говоря, данный метод позволил определить границы, отделяющие разные оболочки Земли друг от друга, и установить то, в каком состоянии они находятся: вязком, жидком, твердом и т.д.


Итог

Сегодня мы знаем, что у Земли есть три оболочки: земная кора, мантия и ядро. Сейсмическая модель внутреннего строения Земли выглядит так, как показано на рисунке выше.

Объектами , Задачи геологии:

Методы

1.

2. Геофизические методы Сейсмические методы Гравиметрические методы Палеомагнитный метод

3.

4. Методы моделирования

5. Метод актуализма



6.

Нутреннее строение Земли

Чтобы понять каким образом геологи создали модель строения Земли, надо знать основные свойства и их параметры, характеризующие все части Земли. К таким свойствам (или характеристикам) относятся:

1. Физические - плотность, упругие магнитные свойства, давление и температура.

2. Химические - химический состав и химические соединения, распределение химических элементов в Земле.

Исходя из этого, определяется выбор методов исследования состава и строения Земли. Кратко рассмотрим их.

Прежде всего, отметим, что все методы разделяются на:

· прямые - опираются на непосредственное изучение минералов и горных пород и их размещении в толщах Земли;

· косвенные - основаны на изучении физических и химических параметров минералов, пород и толщ с помощью приборов.

Прямыми методами мы можем изучить лишь верхнюю часть Земли, т.к. самая глубокая скважина (Кольская) достигла~12 км. О более глубоких частях можно судить по вулканическим извержениям.

Глубинное внутреннее строение Земли изучается косвенными методами, в основном комплексом геофизических методов. Рассмотрим основные из них.

1.Сейсмический метод (греч. сейсмос - трясение) - опирается на явление возникновения и распространения упругих колебаний (или сейсмических волн) в различных средах. Упругие колебания возникают в Земле при землетрясениях, падениях метеоритов или взрывах и начинают распространяться с разной скоростью от очага их возникновения (очага землетрясения) до поверхности Земли. Выделяют два типа сейсмических волн:

1-продольные P-волны (самые быстрые), проходят через все среды - твердые и жидкие;

2-поперечные S-волны, более медленные и проходят только через твердые среды.



Сейсмические волны при землетрясениях возникают на глубинах от 10 км до 700 км. Скорость сейсмических волн зависит от упругих свойств и плотности горных пород, которые они пересекают. Достигая поверхности Земли, они как бы просвечивают ее и дают представление о той среде, которую пересекли. Изменение скоростей дает представление о неоднородности и расслоенности Земли. Кроме изменения скоростей, сейсмические волны испытывают преломление, проходя через неоднородные слои или отражение от поверхности, разделяющей слои.

2.Гравиметрический метод основан на изучении ускорения силы тяжести Dg, которое зависит не только от географической широты, но и от плотности вещества Земли. На основании изучения этого параметра установлена неоднородность в распределении плотности в разных частях Земли.

3.Магнитометрический метод - основан на изучении магнитных свойств вещества Земли. Многочисленные измерения показали, что различные горные породы отличаются друг от друга по магнитным свойствам. Это приводит к образованию участков с неоднородными магнитными свойствами, которые позволяют судить о строении Земли.

Сопоставляя все характеристики, ученые создали модель строения Земли, в которой выделяют три главные области (или геосферы):

1-Земная кора, 2-Мантия Земли, 3-Ядро Земли.

Каждая из них в свою очередь разделяется на зоны или слои. Рассмотрим их и основные параметры суммируем в таблице.

1. Земная кора (слой А)- это верхняя оболочка Земли, ее мощность колеблется от 6-7км до 75км.

2.Мантия Земли подразделяется на верхнюю (со слоями: В и С) и нижнюю (слой D).

3. Ядро - подразделяется на внешнее (слой Е) и внутреннее (слой G), между которыми располагается переходная зона - слой F.

Границей между земной корой и мантией является раздел Мохоровичича, между мантией и ядром также резкая граница- раздел Гуттенберга.

Из таблицы видно, что скорость продольных и поперечных волн возрастает от поверхности к более глубоким сферам Земли.

Особенностью верхней мантии является наличие зоны, в которой резко падает скорость поперечных волн до 0.2-0.3 км/сек. Это объясняется тем, что наряду с твердым состоянием, мантия частично представлена расплавом. Этот слой пониженных скоростей называют астеносферой . Его мощность 200-300 км, глубина 100-200 км.

На границе мантии и ядра происходит резкое снижение скорости продольных волн и затухание скорости поперечных волн. На основании этого сделано предположение, что внешнее ядро находится в состоянии расплава.

Средние значения плотности по геосферам показывают ее возрастание к ядру.

О химическом составе Земли и ее геосфер дают представление:

1- химический состав земной коры,

2 - химический состав метеоритов.

Химический состав земной коры изучен достаточно детально - известен ее валовый химический состав и роль химических элементов в минерало- и породообразовании. Труднее обстоит дело с изучением химического состава мантии и ядра. Прямыми методами мы этого пока сделать не можем. Поэтому применяют сравнительный подход. Исходным положением является предположение о протопланетном сходстве между составом метеоритов, упавших на землю, и внутренних геосфер Земли.

Все метеориты, попавшие на Землю, по составу делятся на типы:

1-железные, состоят из Ni и 90% Fe;

2-железокаменные (сидеролиты) состоят из Fe и силикатов,

3-каменные, состоящие из Fe-Mg силикатов и включений никелистого железа.

На основании анализа метеоритов, экспериментальных исследований и теоретических расчетов ученые предполагают (по таблице), что химический состав ядра - это никелистое железо. Правда, в последние годы высказывается точка зрения, что кроме Fe-Ni в ядре могут быть примеси S, Si или О. Для мантии химический спектр определяется Fe-Mg силикатами, т.е. своеобразный оливино-пироксеновый пиролит слагает нижнюю мантию, а верхнюю - породы ультраосновного состава.

Химический состав земной коры включает максимальный спектр химических элементов, который выявляется в многообразии минеральных видов, известных к настоящему времени. Количественное соотношение между химическими элементами достаточно велико. Сравнение наиболее распространенных элементов в земной коре и мантии показывает, что ведущую роль играют Si, Al и О 2 .

Таким образом, рассмотрев основные физические и химические характеристики Земли, мы видим, что их значения неодинаковы, распределяются зонально. Тем самым, давая представление о неоднородном строении Земли.

Строение Земной коры

Рассмотренные нами ранее типы горных пород - магматические, осадочные и метаморфические участвуют в строении земной коры. По своим физико-химическим параметрам все породы земной коры группируются в три крупных слоя. Снизу вверх это: 1-базальтовый, 2-гранито-гнейсовый, 3-осадочный. Эти слои в земной коре размещены неравномерно. Прежде всего, это выражается в колебаниях мощности каждого слоя. Кроме того, не во всех частях наблюдается полный набор слоев. Поэтому более детальное изучение позволило по составу, строению и мощности выделить четыре типа земной коры: 1-континентальный, 2-океанский, 3-субконтинентальный, 4-субокеанский.

1. Континентальный тип - имеет мощность 35-40 км до 55-75 км в горных сооружениях, содержит в своем составе все три слоя. Базальтовый слой состоит из пород типа габбро и метаморфических пород амфиболитовой и гранулитовой фаций. Называется он так потому, что по физическим параметрам он близок базальтам. Гранитный слой по составу - это гнейсы и гранито-гнейсы.

2.Океанский тип - резко отличается от континентального мощностью (5-20 км, средняя 6-7 км) и отсутствием гранито-гнейсового слоя. В его строении участвуют два слоя: первый слой осадочный, маломощный (до 1 км), второй слой - базальтовый. Некоторые ученые выделяют третий слой, который является продолжением второго, т.е. имеет базальтовый состав, но сложен ультраосновными породами мантии, подвергшихся серпентинизации.

3.Субконтинентальный тип - включает все три слоя и этим близок к континентальному. Но отличается меньшей мощностью и составом гранитного слоя (меньше гнейсов и больше вулканических пород кислого состава). Этот тип встречается на границе континентов и океанов с интенсивным проявлением вулканизма.

4. Субокеанский тип - располагается в глубоких прогибах земной коры (внутриконтинентальные моря типа Черного и Средиземного). От океанского типа отличается большей мощностью осадочного слоя до 20-25 км.

Проблема формирования земной коры .

По Виноградову- процесс формирования земной коры происходил по принципу зонной плавки . Суть процесса: вещество Протоземли, близкое к метеоритному, в результате радиоактивного прогрева расплавлялось и более легкая силикатная часть поднималась к поверхности, а Fe-Ni концентрировалась в ядре. Таким образом, происходило формирование геосфер.

Следует отметить, что земная кора и твердая часть верхней мантии объединяются в литосферу , ниже которой располагается астеносфера .

Тектоносфера - это литосфера и часть верхней мантии до глубин 700км (т.е. до глубины самых глубоких очагов землетрясений). Названа так потому, что здесь происходят основные тектонические процессы, определяющие перестройку этой геосферы.

Земная кора.

Земная кора в масштабе всей Земли представляет тончайшую пленку и по сравнению с радиусом Земли ничтожна. Она достигает максимальной толщины 75км под горными массивами Памира, Тибета, Гималаев. несмотря на маленькую мощность, земная кора имеет сложное строение.

Верхние ее горизонты довольно хорошо изучены при помощи бурения скважин.

Строение и состав земной коры под океанами и на континентах очень сильно различаются. Поэтому и принято выделять два основных типа земной коры – океаническую и континентальную.

Земная кора океанов занимает примерно56% поверхности планеты, и главной ее чертой является небольшая толщина – в среднем около 5-7 км. Но даже такая тонкая земная кора подразделяется на два слоя.

Первый слой – осадочный, представлен глинами, известковыми илами. Второй слой сложен базальтами – продуктами извержений вулканов. Мощность базальтового слоя на дне океанов не превышает 2 км.

Континентальная (материковая) земная кора занимает площадь меньше, чем океаническая, около 44% поверхности планеты. Континентальная кора толще океанической, ее средняя мощность 35-40км, а в области гор достигает 70-75 км. Она состоит из трех слоев.

Верхний слой слагают разнообразные осадки, их мощность в некоторых впадинах, например, в Прикаспийской низменности, составляет 20-22 км. Преобладают отложения мелководий – известняки, глины, пески, соли и гипс. Возраст пород 1,7 млрд.лет.

Второй слой – гранитный – он хорошо изучен геологами, т.к. имеются выходы его на поверхность, а также предпринимались попытки пробурить его, хотя попытки пробурить весь слой гранита оказались неудачными.

Состав третьего слоя не очень ясен. Предполагают, что он должен быть сложен породами типа базальтов. Мощность его составляет 20-25 км. В основании третьего слоя прослеживается поверхность Мохоровичича.

Повехность Мохо.

В 1909г. на Балканском полуострове, около г.Загреба, произошло сильное землетрясение. Хорватсякий геофизик Андрия Мохоровичич,изучая сейсмограмму, записанную в момент этого события, заметил, что на глубине примерно 30 км скорость волн существенно увеличивается. Данное наблюдение подтвердили и другие сейсмологи. Значит, существует некий раздел, ограничивающий снизу земную кору. Для его обозначения ввели особый термин – поверхность Мохоровичича (или раздел Мохо).

Мантия

Под корой на глубинах от 30-50 до 2900 км расположена мантия Земли. Из чего же она состоит? Главным образом из горных пород, богатых магнием и железом.

Мантия занимает до 82% объема планеты и подразделяется на верхнюю и нижнюю. Первая залегает ниже поверхности Мохо до глубины 670 км. Быстрое падение давления в верхней части мантии и высокая температура приводят к плавлению ее вещества.

На глубине от 400 км под материками и 10-150 км под океанами, т.е. в верхней мантии, был обнаружен слой, где сейсмические волны распространяются сравнительно медленно. Этот слой назвали астеносферой (от греч. “астенес” - слабый). Здесь доля расплава составляет 1-3%, более пластичная. Чем остальная мантия, астеносфера служит “смазкой”, по которой перемещаются жесткие литосферные плиты.

По сравнению с породами, слагающими земную кору, породы мантии отличаются большой плотностью и скорость распространения сейсмических волн в них заметно выше.

В самом “подвале” нижней мантии – на глубине 1000км и до поверхности ядра – плотность постепенно увеличивается. Из чего состоит нижняя мантия, пока остается загадкой.

Ядро.

Предполагают, что поверхность ядра состоит из вещества, обладающего свойствами жидкости. Граница ядра находится на глубине 2900км.

А вот внутренняя область, начинающаяся с глубины 5100км, ведет себя как твердое тело. Это обусловлено очень высоким давлением. Даже на верхней границе ядра теоретически рассчитанное давление составляет около 1,3 млн.атм. а в центре достигает 3 млн.атм. Температура здесь может превышать 10000 С. Каждый куб. см вещества земного ядра весит 12 -14 г.

Очевидно, вещество внешнего ядра Земли гладкое, почти как пушечное ядро. Но оказалось, что перепады “границы” достигают 260км.

Лист-конспект урока “Оболочки Земли. Литосфера. Земная кора.”

Тема урока. Строение Земли и свойства земной коры.

1. Внешние оболочки Земли:

Атмосфера - _______________________________________________________________

Гидросфера -_______________________________________________________________

Литосфера - ________________________________________________________________

Биосфера - _________________________________________________________________

2. Литосфера-____________________________________________________________

3. Строение Земли:

МЕТОДЫ ИЗУЧЕНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ЗЕМЛИ.

Объектами , которые изучаетгеология, являются земная кора и литосфера. Задачи геологии:

Изучение вещественного состава внутренних оболочек Земли;

Изучение внутреннего строения Земли;

Изучение закономерностей развития литосферы и земной коры;

Изучение истории развития жизни на Земле и др.

Методы науки включают как собственно геологические, так и методы сопряженных наук (почвоведения, археологии, гляциологии, геоморфологии и проч.). В числе главных методов можно назвать следующие.

1. Методы полевой геологической съемки - изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы - используются для изучения глубинного строения Земли и литосферы. Сейсмические методы , основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы , изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и,следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности - Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма - протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли).