Убрать цифровой шум с фотографии. Очистка изображения от шума, некоторые методы

Подавление шумов на изображениях

Довольно часто при формировании визуальных данных результирующие изображения получаются зашумленными. Это объясняется несовершенством аппаратуры, влиянием внешних факторов и т.п. В конечном результате это приводит к ухудшению качества визуального восприятия и снижению достоверности решений, которые будут приниматься на основе анализа таких изображений. Поэтому актуальной является задача устранения или снижения уровня шумов на изображениях. Решению задачи фильтрации шумов посвящено очень много работ, существуют различные методы и алгоритмы. В этой работе рассмотрим только некоторые подходы и возможности их реализации в системе Matlab.

Шаг 1: Считывание исходного изображения.

Шаг 2: Формирование зашумленных изображений.

Шаг 3: Использование медианного фильтра для устранения импульсного шума.

Шаг 4: Подавление шумовой составляющей с использованием операции сглаживания.

Шаг 5: Пороговый метод подавления шумов.

Шаг 6: Низкочастотная фильтрация с использованием шумоподавляющих масок.

Шаг 1: Считывание исходного изображения.

Считаем изображение из файла в рабочее пространство Matlab и отобразим его на экране монитора.

L=imread("kinder.bmp");

figure, imshow(L);

Рис.1 Исходное изображение.

Шаг 2: Формирование зашумленных изображений.

В системе Matlab (Image Processing Toolbox) существует возможность формирования и наложения на изображение трех типов шумов. Для этого используется встроенная функция imnoise, которая предназначена, в основном, для создания тестовых изображений, используемых при выборе и исследовании методов фильтрации шума. Рассмотрим несколько примеров наложения шума на изображения.

1) Добавление к изображению импульсного шума (по умолчанию плотность шума равна доле искаженных пикселей):

L2=imnoise(L,"salt&pepper", 0.05);

figure, imshow(L2);

Рис.2. Зашумленное изображение (импульсный шум).

2) Добавление к изображению гауссовского белого шума (по умолчанию математическое ожидание равно 0, а дисперсия - 0,01):

L1=imnoise(L,"gaussian");

figure, imshow(L1);

Рис.3. Зашумленное изображение (гауссовский шум).

3) Добавление к изображению мультипликативного шума (по умолчанию математическое ожидание равно 0, а дисперсия 0,04):

L3=imnoise(L,"speckle",0.04);

figure, imshow(L3);

Рис.4. Зашумленное изображение (мультипликативный шум).

Шаг 3: Использование медианного фильтра для устранения импульсного шума.

Одним из эффективных путей устранения импульсных шумов на изображении является применение медианного фильтра. Наиболее эффективным вариантом является реализация в виде скользящей апертуры.

For i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=Lr(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=Lr(i+a,j+m1); end; D=D(1:n,2:m+1); end; Lvyh(i,j)=median(D(:)); end; end; Lvyh=Lvyh(n1+1:N+n1, m1+1:M+m1); figure, imshow(Lvyh);

Для наглядного сравнения приведем три изображения вместе: исходное, зашумленное и восстановленное.

Рис. 5. Восстановление изображения, искаженного импульсным шумом, с применением метода медианной фильтрации.

Восстановленное изображение лишь незначительно отличается от исходного изображения и значительно лучше, с точки зрения визуального восприятия, зашумленного изображения.

Шаг 4: Подавление шумовой составляющей с использованием операции сглаживания.

Существует класс изображений, для которых подавление шумовой составляющей возможно реализовать с помощью операции сглаживания (метод низкочастотной пространственной фильтрации). Этот подход может применяться к обработке изображений, содержащих области большой площади с одинаковым уровнем яркости. Отметим, что уровень шумовой составляющей должен быть относительно небольшим.

F=ones(n,m); % n и m размерность скользящей апертуры

Lser=filter2(F,Lroshyrena,"same")/(n*m);

Рис. 6. Восстановление изображения, искаженного импульсным шумом с применением операции сглаживания.

Недостаток этого метода, в отличие от метода медианной фильтрации, состоит в том, что он приводит к размыванию границ объектов изображения.

Шаг 5: Пороговый метод подавления шумов.

Элементы изображения, которые были искажены шумом, заметно отличаются от соседних элементов. Это свойство легло в основу многих методов подавления шума, наиболее простой из которых, так называемый пороговый метод. При использовании этого метода последовательно проверяют яркости всех элементов изображения. Если яркость данного элемента превышает среднюю яркость локальной окрестности, тогда яркость данного элемента заменяется на среднюю яркость окрестности.

For i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=Lr(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=Lr(i+a,j+m1); end; D=D(1:n,2:m+1); end; LS=mean(mean(D)); if abs(Lr(i,j)-LS)>10/255; % Установка порога Lvyh(i,j)=LS; else Lvyh(i,j)=Lr(i,j); end; end; end; Lvyh=Lvyh(n1+1:N+n1,m1+1:M+m1,:); figure, imshow(Lvyh);

Рис. 7. Восстановление изображения, искаженного импульсным шумом, с применением порогового метода подавления шумов.

Шаг 6: Низкочастотная фильтрация с использованием шумоподавляющих масок.

В Шаге 4 было рассмотрено применение операции сглаживания для устранения шума. Рассмотрим примеры низкочастотной фильтрации с использованием других шумоподавляющих масок. Это могут быть следующие маски:

Маска 1: Маска 2: .

Маски для подавления шума представлены в виде нормированного массива для получения единичного коэффициента передачи, чтобы при подавлении шума не было искажений средней яркости. На рисунках представлено результат обработки зашумленного изображения маской 1 и маской 2 .

F=(1/10)*;

figure, imshow(Lvyh);

Рис. 8. Результат восстановления зашумленного импульсным шумом изображения с применением маски 1 .

F=(1/16)*;

Lvyh=filter2(F,L,"same")/(3*3);

figure, imshow(Lvyh);

Рис. 9. Результат восстановления зашумленного импульсным шумом изображения с применением маски 2 .

Это были примеры подавления импульсных шумов. Рассмотрим аналогичные примеры подавления гауссовского и мультипликативного шумов.

Рис. 10. Результат восстановления зашумленного гауссовским шумом изображения с применением маски 1 и маски 2 .

Рис. 11. Результат восстановления зашумленного мультипликативным шумом изображения с применением маски 1 и маски 2 .

Отметим, что универсальных методов нет и к обработке каждого изображения следует подходить индивидуально. Если речь идет о медианной и низкочастотной фильтрации, то качество обработки во многом зависит от удачного выбора размеров локальной апертуры.

Рассмотренные методы после некоторой модификации можно применять для обработки цветных изображений. Приведем пример подавления импульсного шума на цветном изображении.

Возьмем некоторое исходное изображение (рис. 12):

L=imread("lily.bmp");

figure, imshow(L);

Рис. 12. Исходное цветное изображение.

Наложим на него импульсный шум с некоторыми характеристиками:

L=imnoise(L,"salt&pepper",0.05);

figure, imshow(L);

Рис. 13. Зашумленное изображение.

For k=1:s; % обработка отдельно по каждой составляющей L=Lin(:,:,k); for i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=L(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=L(i+a,j+m1); end; D=D(1:n,2:m+1); end; Lres(i,j)=median(D(:)); end; end; end;

Рис. 14. Восстановленное изображение с применением метода медианной фильтрации.

Представленные выше методы являются довольно эффективными алгоритмами восстановления изображений, которые были искажены импульсным, гауссовским или мультипликативным шумом. Эти методы служат основой для построения других более сложных методов решения задач по устранению шумовой составляющей на изображениях.

Изображение может повреждаться шумами и помехами различного происхождения, например шумом видеодатчика, шумом зернистости фото материалов и ошибками в канале передатчика. Их влияние можно минимизировать пользуясь классическими методами статистической фильтрации. Другой возможный подход основан на использовании других эвристических методов пространственной обработки.

Шумы видеодатчиков или ошибки в канале передачи обычно проявляются на изображении как разрозненные изменения изолированных элементов, не обладающие пространственной корреляцией. Искаженные элементы часто весьма заметно отличаются от соседних элементов. Это наблюдение послужило основой для многих алгоритмов, обеспечивающих подавление шума.

Применение цифровой фильтрации изображений позволяет существенно улучшить качество изображения, получаемого в процессе СШП зондирования. Далее будет рассмотрено применение линейной фильтрации для сглаживания шумов на изображении (низкочастотная фильтрация), подчеркивание границ объектов с использованием высокочастотной фильтрации, а также метод медианной фильтрации устранения помех импульсного типа.

Рис. 7 поясняет простой пороговый метод подавления шума, при использовании которого последовательно измеряют яркость всех элементов изображения.

Рис. 3.7. Пороговый метод подавления шума.

Если яркость данного элемента превышает среднюю яркость группы ближайших элементов на некоторую пороговую величину, яркость элемента заменяется на среднюю яркость:

Если
]

Поскольку шум пространственно декоррелирован, в его спектре, как правило, содержатся более высокие пространственные частоты, чем в спектре обычного изображения. Следовательно, простая низкочастотная пространственная фильтрация может служить эффективным средством сглаживания шумов. Массив Q размера MM выходного изображения формируется путем дискретной свертки массива F размера NN исходного изображения со сглаживающим массивом H размера LL согласно формуле

Сглаживание шума обеспечивается низкочастотной фильтрацией с помощью массива H с положительными элементами. Ниже приведены сглаживающие массивы трех разновидностей, часто называемые шумоподавляющими масками:

Эти массивы нормированы для получения единичного коэффициента передачи, чтобы процедура подавления шума не вызывала смещение средней яркости обработанного изображения. Если требуемое подавление шума сопряжено с использованием массивов большого размера целесообразно выполнять свертку косвенным образом, применяя преобразование Фурье, так как обычно это дает выигрыш в объеме вычислений.

Подчеркивание границ .

В системах электронного сканирования изображений получаемый видео сигнал можно пропустить через электрический фильтр верхних частот. Другой способ обработки сканированных изображений заключается в использовании нерезкого маскирования. При этом изображение как бы сканируется двумя перекрывающимися апертурами, одна из которых соответствует нормальному разрешению, а другая - пониженному. В результате получают соответственно массив нормального изображения F (j, k) массив нечеткого изображения F L (j, k). Затем формируется массив маскированного изображения

F M (j, k) = c F (j, k) - (1-c) F L (j, k),

где C - коэффициент пропорциональности. Обычно значение C находится в пределах от 3/5 до 5/6, т.е. отношение составляющих нормальны и понижены четкости изменяется от 1.5 до 5.

Подчеркивание границ можно также осуществить, выполняя дискретную фильтрацию согласно соотношению (1) с использованием высокочастотного импульсного отклика H. Ниже представлены три типичные маски для выполнения высокочастотной фильтрации:




Эти маски отличаются тем, что сумма их элементов равна единице.

Еще одним способом подчеркивания границ является так называемая статистическое дифференцирование. Значение яркости каждого элемента делится на статистическую оценку среднеквадратического отклонения (j,k)

G (j,k) = F (j,k) /  (j,k).

Среднеквадратическое отклонение

вычисляется в некоторой окрестности N(j,k) элемента с координатами (j,k). Функция
- среднее значение яркости исходного изображения в точке с координатами (j,k), приближенно определяемая путем сглаживания изображения с помощью оператора низко частотной фильтрации согласно формуле (3.1). Улучшенное изображение, представленное массивом G (j,k), отличается от исходного изображения тем, что его яркость выше на границах, элементы которых непохожи на соседние элементы, и ниже на всех остальных участках. Следует отметить, что подчеркивание полезных границ сопровождается возрастанием шумовых составляющих.

Медианный фильтр.

Медианная фильтрация - метод нелинейной обработки сигналов, разработанный Тьюки . Этот метод оказывается полезным при подавлении шума на изображении. Одномерный медианный фильтр представляет собой скользящее окно, охватывающее нечетное число элементов изображения. Центральный элемент заменяется медианой всех элементов изображения в окне. Медианой дискретной последовательности

a 1 , a 2 , ..., a N для нечетного N является тот элемент, для которого существуют (N-1)/2 элементов, меньших или равных ему по величине, (N- 1)/2 больших или равных ему по величине. Пусть в окно попали элементы изображения с уровнями 80, 90, 200, 110, 120; в этом случае центральный элемент следует заменить значением 110, которое является медианой упорядоченной последовательности 80, 90, 110, 120, 200. Если в этом примере значение 200 является шумовым выбросом в монотонно возрастающей последовательности, то медианная фильтрация обеспечит существенное улучшение. Напротив, если значение 200 соответствует полезному импульсу сигнала (при использовании широкополосных датчиков), то обработка приведет к потере четкости воспроизводимого изображения. Таким образом, медианный фильтр в одних случаях обеспечивает подавление шума, в других - вызывает нежелательное подавление сигнала.

Медианный фильтр не влияет на ступенчатые или пилообразные функции, что обычно является желательным свойством. Однако этот фильтр подавляет импульсные сигналы, длительность которых составляет менее половины ширины окна. Фильтр так же вызывает уплощение вершины треугольной функции.

Возможности анализа действия медианного фильтра ограничены. Можно показать, что медиана произведения постоянной K и последовательности f (j) равна

med{ K f(j) }=K med{f (j)}.

Кроме того,

med{ K+ f(j) }=K + med{f (j)}.

Однако медиана суммы двух произвольных последовательностей f (j) и g(j) не равна сумме их медиан:

med{ g(j)+ f(j) }=med{g(j)}+ med{f (j)}.

Возможны различные стратегии применения медианного фильтра для подавления шумов. Одна из них рекомендует начинать с медианного фильтра, окно которого охватывает три элемента изображения. Если ослабление сигнала незначительно, окно фильтра расширяют до пяти элементов. Так поступают до тех пор пока медианная фильтрация начинает приносить больше вреда, чем пользы. Другая возможность состоит в осуществлении каскадной медианной фильтрации сигнала с использованием фиксированной или изменяемой ширины окна. В общем случае те области, которые остаются без изменения после однократной обработки фильтром, не меняются и после повторной обработки. Области, в которых длительность импульсных сигналов составляет менее половины ширины окна, будут подвергаться изменениям после каждого цикла обработки.

Концепцию медианного фильтра легко обобщить на два измерения, применяя двумерное окно желаемой формы, например прямоугольное или близкое к круговому. Очевидно, что двумерный медианный фильтр с окном размера LL обеспечивает более эффективное подавление шума, чем последовательно примененные горизонтальный и вертикальный одномерные медианные фильтры с окном размера L1; двумерная обработка, однако, приводит к более существенному ослаблению сигналов.

Медианный фильтр более эффективно подавляет разрозненные импульсные помехи, чем гладкие шумы. Медианную фильтрацию изображений в целях подавления шумов следует считать эвристическим методом. Ее нельзя применять в слепую. Напротив, следует проверять получаемые результаты, чтобы убедиться в целесообразности медианной фильтрации.

Шум изображения может ухудшить уровень детализации в цифровых или аналоговых фотографиях, и, соответственно, уменьшение шума может значительно улучшить ваше изображение при выводе на экран или печать. Проблема состоит в том, что большинство методов уменьшения или устранения шума всегда в конечном итоге приводят к смягчению изображения.

Некоторое смягчение может быть приемлемо для снимков, на которых по большей части изображена гладкая поверхность воды или небо, но, к примеру, листва деревьев на пейзажах может существенно пострадать даже от минимальных попыток понизить уровень шума.

В этой статье мы сравним несколько общих методов снижения уровня шума, а также опишем альтернативную технику: усреднение нескольких снимков с разной выдержкой, чтобы снизить уровень шума. Усреднение изображения часто применяется для снимков звездного неба, но, возможно, не так хорошо подходит для других типов съемки при малой освещенности и ночью.

При усреднении мы можем уменьшить уровень шума без ущерба для детализации, потому что при этом фактически увеличивается соотношение сигнал-шум (SNR ) вашего изображения. Дополнительным бонусом является то, что усреднение может также увеличить битовую глубину.

Усреднение может также быть полезно для тех, кто хочет имитировать гладкость ISO 100 , но чья камера поддерживает только ISO 200 (как большинство моделей цифровых зеркальных камер Nikon ).

Общая концепция

Усреднение изображений работает, отталкиваясь от того предположения, что шум в вашем изображении является на самом деле случайным. Таким образом, случайные флуктуации выше и ниже фактических данных изображения постепенно убираются, создавая одно среднее изображение из нескольких.

Если бы вы сделали два снимка гладкого серого пятна, используя те же настройки камеры и при одинаковых условиях (температура, освещение и т.д .), то вы бы получили изображения, аналогичные тем, что показаны на графике ниже:

Приведенный выше участок графика представляет в виде синих и красных полос колебания яркости пикселей верхнего и нижнего изображений соответственно. Пунктирная горизонтальная линия представляет собой среднее значение, или то, как бы выглядел этот участок, если бы уровень шума был равен нулю.

Обратите внимание, что и красная, и синяя линии пересекают нулевую отметку вверх и вниз. Если мы возьмем значение пикселя в каждой точке вдоль этой линии, и выведем среднее значение для верхнего и нижнего изображения в этой точке, то изменение яркости будет выглядеть следующим образом:


Даже с учетом того, что график усредненных значений все равно пересекает нулевую отметку, амплитуда максимального отклонения от нее значительно уменьшилась. Визуально, это проявляется в виде сглаживания изображения. Два усредненных изображения, как правило, имеют шум сопоставимый с половиной чувствительности для установок ISO . Поэтому два усредненных изображения, снятых в ISO 400 сопоставимы с одним изображением, снятым с ISO 200 , и так далее.

В общем, величина шума флуктуации уменьшается на величину, равную корню квадратному из количества усредненных изображений. Таким образом, чтобы получить снижение шума в два раза, вам нужно иметь 4 усредненных изображения.

Шум и детализация: сравнение

Следующая ситуация на реальном примере иллюстрирует эффективность усреднения изображений. Данная фотография была сделана при ISO 1600 с помощью Canon EOS 300D Digital Rebel , и на ней наблюдается слишком высокий уровень шума:


Обратите внимание, как усреднение снижает уровень шума и в то же время повышает детализацию для каждой области. Лучше всего использовать для таких задач программы для снижения уровня шума, такие как Neat Image . В следующем сравнении мы привели также результаты, полученные с ее помощью:


Neat Image лучше других приложений подходит для снижения шума на фото неба, но в то же время приводит к потере некоторых мелких деталей в ветвях деревьев или на снимках открытой кирпичной кладки. Для восстановления детализации можно использовать увеличение резкости.

Это улучшит вид изображения, однако увеличение резкости не может восстановить потерянную информацию. Фильтр Медиана — это очень простой метод, доступный в большинстве версий Photoshop . Он рассчитывает значение каждого пикселя, принимая среднее значение всех соседних пикселей.

Этот метод эффективен при удалении незначительного шума, однако он не справляется с большим шумом и устраняет детализацию на уровне пикселей. В целом, Neat Image — это лучший вариант для тех случаев, когда вы не можете использовать усреднение изображения (при ручной съемке ).

В идеале можно использовать комбинацию двух методов: усреднить изображения, чтобы увеличить отношение сигнал-шум, насколько это возможно, а затем применить Neat Image для удаления оставшегося шума:


Снижение шума с помощью Neat Image Pro Plus 4.5 при настройках по умолчанию и «автоматической тонкой настройкой»

Обратите внимание, как после применения обоих методов, нам удалось сохранить четкость вертикальных швов между кирпичами и в то же время добиться низкого уровня шума. К недостаткам метода усреднения относят требования к объему хранимой информации (несколько файлов изображений для одной фотографии ) и, возможно, более длительное время обработки.

Усреднение не срабатывает для изображений, которые имеют шумовую полосатость или шум с фиксированным узором. Обратите внимание, что на приведенном изображении ярко-белые «горячие пиксели » в левом нижнем и верхнем углах так и не исчезли после применения усреднения.

Для усреднения, в отличие от других методов, требуется нулевое смещение. Поэтому следует быть особенно осторожным при применении этой техники, и использовать ее только для снимков, сделанных с жестко закрепленного штатива.

Усреднение изображений в Photoshop с помощью слоев

Выполнение усреднения изображений с помощью слоев выполняется в Adobe Photoshop относительно быстро. Идея состоит в том, чтобы поместить каждое изображение на отдельном слое и смешать их так, чтобы каждый слой включался в финальное изображение равномерно. Если в силу определенных причин один из слоев влияет на финальное изображение больше, чем другие, смешивание изображений не будет столь эффективным.

Для выполнения этой техники сначала нужно загрузить все изображения, которые должны быть усреднены, в Photoshop , а затем скопировать и вставить каждое поверх друг друга так, чтобы они находились в том же самом окне проекта. После того, как это будет сделано, можно начинать усреднение.

Ключевой момент здесь — помнить, что в Photoshop непрозрачность каждого слоя определяет, насколько он «пропускает » нижележащий слой, и то же самое относится к каждому следующему изображению внизу. Это означает, что, например, для правильного усреднения четырех изображений не следует устанавливать непрозрачность каждого слоя на 25%.

Вместо этого непрозрачность нижнего (фонового ) слоя нужно установить на 100%, для слоя поверх него — 50%, следующего — 33%, и, наконец, верхнего слоя — 25%.

Для усреднения любого количества изображений, процент непрозрачности каждого слоя рассчитывается следующим образом:


Когда нужно выполнять усреднение изображений, а не просто установить большую выдержку при низкой скорости ISO ? Ниже приведен перечень случаев, когда более эффективной может оказаться описанная выше процедура:

  • Чтобы убрать слишком сильный шум с фиксированным узором из-за длинной выдержки;
  • Для камер, которые не имеют режима лампы, вы можете ограничить выдержку до 15-30 секунд. Для таких случаев необходимо учитывать следующее: нужно делать два снимка при ISO 800 и выдержке 30 секунд, чтобы они были приблизительно эквивалентны (как по яркости, так и по уровню шума ), и еще один при выдержке 60 секунд и ISO 400 . Возможны и другие комбинации;
  • В ситуациях, когда вы не можете гарантировать прерывание за определенный момент времени без воздействия на аппаратуру захвата или сцену. В качестве примера, можно привести фото, снимаемые в общественном месте, когда вам нужно обеспечить низкий уровень шума, но вы не можете установить достаточно длительную выдержку, потому что напротив объекта съемки постоянно проходят пешеходы. В таком случае вы можете сделать несколько коротких снимков в интервалах между проходами пешеходов;
  • Чтобы выборочно заморозить движущийся объект с низкой детализацией и при этом сохранить низкий уровень шума и высокую детализацию для объектов на фоне, которые движутся медленнее или являются неподвижными. Примером этого является звездная ночь с листвой на переднем плане;
  • Чтобы уменьшить шум в тенях (даже для снимков с низким ISO ), для которых вы хотите позже увеличить детализацию через процесс пост-обработки.

Перевод статьи «NOISE REDUCTION BY IMAGE AVERAGING » был подготовлен дружной командой проекта

20 августа 2009 в 22:21

Очистка изображения от шума, некоторые методы

  • Блог компании Gil Algorithms

Если Вы видели картинку, которая получается в современных цифровых фотоаппаратах без обработки, то Вы знаете, что выглядит она просто ужасно. Она заполнена шумом. Даже когда Вы скачиваете картинку на компьютер и она уже прошла внутреннюю обработку в фотоаппарате, если ее увеличить и посмотреть на отдельные пиксели, можно увидеть, как мужественно цифровые алгоритмы борются с шумом и проигрывают в этой неравной войне.
Некоторые алгоритмы стирают мелкие детали напрочь, этим знамениты сотовые телефоны Nokia. В некоторых случаях детали остались, но они окружены цветными островками сложной формы, это можно увидеть в фотоаппаратах Sony. Ну и так далее - у каждого метода свои проблемы.

Какие же есть средства, чтобы убрать этот шум, и которые не нарушают чужих патентов? Надеюсь, этот небольшой обзор будет полезным.

1. Переход в координаты яркость-цвет.
Это преобразование можно осуществлять многими способами: HSV, L*a*b и т.п. По некоторым причинам, в которые мы не будем углубляться:
- человеческий глаз намного менее чувствителен к деталям цветовой информации, чем яркостной
- шум в цветовой компоненте, напротив, гораздо выше, чем в яркостной
Поэтому простая фильтрация цветовой компоненты + обратное восстановление, обычно, делают картинку сильно лучше.

2. Медианный фильтр.
Хорошим простым способом очистить картинку от шума является медианный фильтр Im_new(x,y)=median{dx=-1..1,dy=-1..1}Im(x+dx,y+dy).
У этого метода есть множество вариаций, приведу лишь некоторые:
2.1 Шаг 1: вычислить M1=median(C, Cnorth, Csouth); M2=median(C, Ceast, Cwest); M3=median(C, Cne, Csw); M4=median(C, Cnw, Csw); здесь Cnort, Cne,...Cnw - восемь соседних пикселей из окрестности 3x3, C - центральный пиксель
Шаг 2 - вычислить Ma=median(C, M1, M2); Mb=median(C, M3, M4);
Шаг 3 - вычислить Csmooth=median(C, Ma, Mb);
Шаг 4 - заменить C на Csmooth.
2.2 Шаг 1: отсортировать пиксели из окрестности 3x3 по возрастанию, P...P.
Шаг 2: Если центральный пиксель равен P - заменить его на P, если центральный пиксель равен P - заменить его на P, в других случаях оставить без изменения.
Это направление использует компания Kodak, а также большинство сканеров и факс-аппаратов.

3. Фильтры, управляющие величиной коррекции
Этот метод сначала предлагает сгладить картинку как-нибудь грубо, например с помощью low-pass filter, bilateral filter или еще как-нибудь. А потом делается такая процедура
Im_new(x,y)=Im(x,y)+S(Im(x,y)-Im_smooth(x,y),threshold).
Функция-передатчик S может быть устроена по разному, например так:
S(x,threshold) = x, если -thresholdthreshold; S(x,threshold)=-threshold если x<-threshold. Если выбрать threshold примерно равным величине шума, то весь шум пропадет, а детали и мелкие объекты останутся четкими.

4. Bilateral filter
Очень интересный фильтр, изобретенный в 2003 году. За описаниями отсылаю к Интернету.
Вот здесь достаточно хорошая статья: scien.stanford.edu/class/psych221/projects/06/imagescaling/bilati.html
Интересной разновидностью bilateral filter является, также T-filter:
Шаг 1: Найти все пиксели в окрестности, значения которого отличаются от исходного пикселя не более, чем на заданный threshold.
Шаг 2: Усреднить эти найденные пиксели и сохранить значение.

5. Фильтры, использующие спектральное представление сигнала
Так работает, к примеру, Photoshop. Суть идеи в том, чтобы сделать в окрестности каждого пикселя преобразование Фурье, затем стереть высокие частоты и сделать обратное преобразование.
Вместо преобразования Фурье используются также и другие ортогональные базисы, иногда довольно замысловатые. По-сути, это целое семейство методов.

6. Фильтры, выделяющие доминантное направление
Эти фильтры в каждой точке сначала находят доминантное направление (направление градиента яркости), а затем усредняют сигнал только в перпендикулярном направлении. Таким образом, линии и мелкие детали остаются четкими. Хорошие разновидности этого алгоритма учитывают также значения матрицы вторых производных.
Это целое семейство алгоритмов, описания которых можно также найти в Интернете.

7. Локальная классификация фрагментов
Эти фильтры особенно хорошо работают со специальными изображениями, такими как текст, звездное небо и т.п.
Сначала составляется база данных типичных элементов такого изображения, к примеру, несколько сотен фрагментов NxN пикселей, которые уже очищены от шума.
Алгоритм работает так: окрестность каждого пикселя сравнивается с этими фрагментами и выбирается один, который наиболее похож. Затем значение исходного пикселя на грязной картинке заменяется на значение аналогичного пикселя, расположенного в этом же месте на чистом фрагменте.

8. Приведу в конце «простецкий» способ, который также можно использовать в ряде случаев.
Шаг 1: Уменьшить картинку (применяя какой-нибудь умный алгоритм Downscaling)
Шаг 2: Увеличить ее обратно (применяя какой-нибудь умный алгоритм Upscaling)
Дело в том, что алгоритмы Upscaling/ Downscaling бывают очень мощными (Lanczos filter, фрактальные методы и т.п.), так что результат получается вполне удовлетворительным. Этот же метод можно использовать в качестве простой, но довольно эффективной компрессии.

Всем доброго времени суток! Продолжаем потихоньку наполнять рубрику ! В этой статье я хочу рассказать и показать вам, один из самых быстрых и лёгких способов как убрать шум в Фотошоп . Чтобы более глубоко и детально раскрыть эту тему, я подобрал специально такое изображение, на котором покажу как убирать с изображения яркостный шум и цветовой шум.

Вообще шум целая, неприятная проблема цифровых фотографий, сделанных в темное время суток и сейчас мы с вами эту проблему за решаем. Для начала давайте откроем наше изображение с шумом и оценим ситуацию в целом.

Заходим в меню Файл/Открыть или воспользуемся горячими клавишами CTRL+O . Кстати, ещё можно открыть изображение с помощью функции «Открыть как… » (ALT+SHIFT+CTRL+O ), находим и выбираем наше изображение с шумом, затем справа от поля «Имя файла», выбираем открыть как тип файла «Camera Raw» и наше изображение сразу же открывается в фильтре Camera Raw.

Я открываю свое изображение первым, обычным способом, чтобы далее показать как зайти в специальный фильтр «Camera Raw», выбрать нужную вкладку и провести операции по устранению шума. Теперь давайте оценим моё изображение, в котором присутствует цветовой и яркостный шум. Вот оно:

Изображение с цветовым и яркостным шумом

Шума в этом изображение больше чем достаточно. Вы наверное уже начали сомневаться, что у нас что-то получится.. Конечно же, полностью весь шум убрать не получится, но сделать изображение менее шумным легко. Переходим от теории к практике!

Шаг №1

Итак, я открыл своё изображение в Фотошоп, теперь мне нужно зайти в специальный фильтр — «фильтр Camera Raw». Для этого я захожу в верхнее меню Фильтр/Фильтр Camera Raw , либо воспользуюсь горячими клавишами (SHIFT+CTRL+A ).

Заходим в меню Фильтр/Фильтр Camera Raw…

Шаг №2

Перед нами открывается окошко фильтра Adobe Camera Raw. Ставим галочку наверху в пункте «Контрольный просмотр», чтобы сразу видеть изменения изображения во время работы в фильтре. Далее выбираем вкладку «Детализация», у меня эта третья иконка слева. В нижнем левом углу можно менять масштаб изображения, скоро это нам понадобится.

Окно фильтра Adobe Camera Raw

Шаг №3

Находим ползунок «Цветность» и потихоньку передвигаем его вправо, до тех пор, пока не исчезнут цветовые точки. Не старайтесь на этом этапе убрать яркостный шум, пока что мы убираем только цветовой шум (цветовые точки). Как только цветовые точки исчезнут, сразу перестаём двигать ползунок.

Увеличили масштаб изображение до 300%

Вот что у нас получилось на данном шаге после не сложных манипуляций ползунком «Цветность». Обратите внимание, что цветные точки (цветовой шум) полностью исчезли с изображения. Теперь осталось убрать яркостный шум.

Цветовой шум в виде цветовых точек полностью убран

Шаг №4

Теперь давайте приступим к устранению яркостного шума. Для того, чтобы это сделать находим ползунок «Светимость» и медленно двигаем его в правую сторону, параллельно наблюдая за нашим изображением. Когда будет достаточно, определяем в каждом случае индивидуально, но значение «Светимости» при любом раскладе всегда выше значения «Цветности». Вот что получилось:

Вот такую картинку мы получили, шум практически полностью исчез

Шаг №5

В результате всех наших манипуляций, резкость изображения уменьшилась. Для того, чтобы увеличить резкость, необходимо подвигать вправо ползунки «Эффект» или «Сведения о яркости». Можно подвигать два этих ползунка или любой один из них.

Но имейте ввиду, двигать ползунки нужно очень осторожно, потому что получается обратный эффект, чем больше вы добавляете резкости, тем больше появляется шум. В конце не забудьте нажать кнопку «Ок» для того чтобы сохранить все изменения.

Осторожно добавляем резкость

Теперь давайте посмотрим на результат всей нашей работы по устранению шума из изображения. В итоге мы получили изображение на котором практически отсутствует шум, результат вполне достойный. Думаю теперь у вас отпадет вопрос о том как убрать шум в Фотошоп .

Вот что получилось после обработки по удалению шума

Если вам понравился этот урок и вы считаете его полезным, то прямо сейчас поделитесь ссылкой на этот урок со своими друзьями в социальных сетях, сделайте доброе дело пусть другие люди тоже получают пользу от этого материала! Кнопки соц. сетей расположены ниже.

На этом сегодня всё, спасибо за внимание, увидимся в следующих уроках!