Принцип работы тэц кратко. Производство электроэнергии на тэс

24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

К.т.н. А.А.Хараим, ООО «Газпром энергохолдинг»,
к.э.н. В.Н. Ильич, Центр энерго-экономического анализа
и финансовой оценки (Центр ЭНЭКАН), г. Москва

Введение

В крупных и средних городах России обеспечение потребителей электрической и тепловой энергией осуществляется в основном от теплоэлектроцентралей. ТЭЦ обладают самой передовой технологией для энергоснабжения - осуществляется комбинированное производство в одной установке электрической и тепловой энергии. Когенерационные технологии позволяют использовать 85-90% энергии топлива, сжигаемого для выработки электрической и тепловой энергии, снижают на 20-30% общий расход топлива на ТЭЦ по сравнению с их раздельным производством на ГРЭС и в котельных.

В настоящее время ТЭЦ производят около 30% электрической и тепловой энергии в России, обеспечивают ежегодно экономию топлива примерно 20 млн т у. т., улучшая экологическую обстановку в городах и промышленных центрах. Предусматривается значительный рост ТЭЦ за счет модернизации и, прежде всего, широкого внедрения систем теплофикации на базе высокоэффективных ПГУ-ТЭЦ, ГТУ-ТЭЦ. Это должно внести существенный вклад в экономию топливно-энергетических ресурсов в электроэнергетике, которая по государственной программе на период до 2020 г. должна составить 26-27% от общей экономии по Российской Федерации. Ожидается сдерживание роста цен на электрическую и тепловую энергию для предприятий и населения, уменьшение вредных выбросов и сбросов в окружающую среду от ТЭЦ.

Однако за последние два десятилетия положение действующих ТЭЦ систематически ухудшалось. Причинами этого ухудшения являются:

■ резкое снижение потребления тепловой энергии из-за кризиса промышленности в 90-е гг;

■ увеличение потерь и аварийности в тепловых сетях в силу их износа и недостаточности финансовых ресурсов для поддержания в нормальном состоянии. Возможности капиталовложений в тепловое хозяйство жестко ограничены предельным ростом тарифов на тепловую энергию, которые зачастую ниже себестоимости содержания тепловых сетей.

Существенное систематическое снижение эффективности ТЭЦ обусловлено отдельными законодательными и другими правовыми нормами (или их отсутствием), а также действиями государства и его органов (далее - Регулятор) по регламентации функционирования ТЭЦ на территориальном регулируемом рынке тепловой энергии и экстерриториальном свободном оптовом рынке электрической энергии (ОРЭ).

Для правильного понимания особенностей производства энергии, выявления и анализа причин снижения или потери эффективности работы ТЭЦ из-за недостатков государственного регулирования, для подготовки предложений по их устранению с целью улучшения экономического положения ТЭЦ и, в конечном счете, повышения эффективности электро- и теплоснабжения потребителей целесообразно использовать модель нормальной работы ТЭЦ. В основу модели следует принять нижеизложенные особенности и систему оценки деятельности ТЭЦ.

Особенности ТЭЦ

ТЭЦ при наличии комбинированного производства электрической и тепловой энергии, обладают принципиальными особенностями, которые нельзя не учитывать при разработке и применении правил регулирования их деятельности. К ним относятся следующие.

1. Оба продукта одновременно должны производиться и доставляться в соотношениях и объемах близких к предусмотренным проектами ТЭЦ промышленным и социально-бытовым потребителям непосредственно от ТЭЦ или через сети (тепловые - в радиусе до 10-12 км; электрические - на территории поселения и за его пределами). Это должно позволять, во-первых, максимально использовать преимущества теплофикации и, во-вторых, заключать и гарантированно исполнять прямые договора по физическим поставкам, уменьшать потери и вероятность отключений энергии обоих видов из-за повреждений в сетях.

2. Несколько начальных этапов производства (подача топлива в котел, нагрев пара в пароперегревателе) переходят в единый технологический процесс частичного или полного срабатывания пара в турбине (в зависимости от ее типа) для совместной (комбинированной) выработки как электрической, так и тепловой энергии. В этом процессе сработанный пар называется отборным и является основным продуктом ТЭЦ. Именно комбинированное производство электрической и тепловой энергии на ТЭЦ позволяет снижать расходы топлива по сравнению с раздельным их производством на ГРЭС и котельных. Этот процесс предопределяет довольно жесткую зависимость объема выработки электроэнергии от объема отпуска пара. Кроме того, эта связь обуславливается распределением нагрузки между основным оборудованием ТЭЦ. Так, потребность в паре для отопления определяется температурой наружного воздуха, а для технологических нужд зависит от особенностей применяемых технологий промышленными потребителями, что требует соответствующего состава и режима работы оборудования ТЭЦ. Спрос на местном рынке на тепловую энергию и на оптовом рынке на электрическую энергию от ТЭЦ в каждый момент времени слабо коррелируют друг с другом, что создает весьма серьезные риски для ТЭЦ. О рисках и практической невозможности разделения затрат топлива и ведения бизнеса по видам энергии на разных рынках будет рассмотрено далее.

3. Наряду с совместным производством осуществляется индивидуальное производство, когда:

■ остающаяся часть пара после его частичного срабатывания в турбине (для совместной выработки энергии) используется для производства и отпуска конденсационной электрической энергии. Понятие «конденсационная» связано с тем, что отработанный пар из турбины поступает в конденсатор пара;

■ после указанных в п. 2 данного раздела начальных этапов пар через редукционную охладительную установку (РОУ) отпускается в виде готового продукта промышленным потребителям. Раздельное (индивидуальное) производство обоих продуктов требует больших расходов топлива, чем совместное. Из-за неэффективности конденсационных режимов выгода ТЭЦ во время неотопительного сезона при участии в торговле на оптовом рынке довольно ограничена. Однако содержание мощности в этот период требует соответствующих расходов.

4. Оптимизация работы ТЭЦ заключается в таких ее загрузках со стороны потребителей на рынках тепловой и электрической энергии, которые обеспечивали бы максимальное использование мощностей ТЭЦ для увеличения комбинированной (совместной) и снижения индивидуальной (раздельной) выработки электрической и тепловой энергии. Данный режим работы выгоден для ТЭЦ, т.к. при этом обеспечиваются низкие расходы топлива, выгоден он потребителям и городу в целом в связи с возможностью установления для них пониженных тарифов на тепловую и электрическую энергию. В результате экономии топлива уменьшаются выбросы в окружающую среду вредных продуктов его сгорания, а также тепловые сбросы от ТЭЦ. Такой режим также выгоден всему обществу в связи с экономией для будущих поколений топливных ресурсов.

5. Производство тепловой энергии на ТЭЦ первично по отношению к производству электроэнергии (как это следует из вышеизложенных особенностей), что предопределяет необходимость расположения ТЭЦ в городах и производственных узлах.

6. ТЭЦ в части производства и отпуска тепловой энергии в сети занимают монопольное или частично монопольное положение.

Оценка эффективности ТЭЦ

Рассмотрим систему оценки эффективности производства и функционирования ТЭЦ адекватную их вышеизложенным особенностям.

Энергетическая эффективность производства на ТЭЦ оценивается по двум показателям.

Первый показатель - это коэффициент использования теплоты топлива (КИТ). КИТ является отражением баланса энергии при ее преобразовании на ТЭЦ и рассчитывается по отданным в сети объемам энергии:

КИТ = (Э + Q) B*Q н (1)

где Э и Q - объем соответственно отпущенной от ТЭЦ электрической и тепловой энергии; В*Q н - израсходованная теплота сгорания топлива.

Вторым объективным показателем энергетической эффективности ТЭЦ является удельная выработка электрической энергии на тепловом потреблении, т.е. отборном паре:

Wэ=Э тп /Q тп, (2)

где Э тп - выработанная отборным паром электроэнергия; Q тп - отданная в сеть теплота этого пара.

Энергетическая эффективность комбинированного производства на ТЭЦ тем выше, чем более высоких значений достигают показатели КИТ и Wэ.

Определение значений показателей использования топлива на ТЭЦ требуют профессиональных знаний, применения энергетических характеристик, алгоритмов расчетов по выбору состава и оптимизации загрузки оборудования.

Экономическая эффективность ТЭЦ оценивается безубыточностью (убыточностью) как любая функционирующая коммерческая единица. ТЭЦ имеет определенную область существования, в пределах которой сохраняет целостность, если обеспечивается прибыльность ее деятельности в течение довольно продолжительного периода времени. В пространстве существования можно выделить зону комфортного существования.

Под воздействием внешней среды (включая Регулятора) ТЭЦ может быть перемещена из зоны комфорта. Здесь возможны два исхода:

первый - за пределы области существования. Например, при длительной убыточной работе ТЭЦ будет признана банкротом, и может прекратить свое существование или будет преобразована в котельную;

второй - при сравнительно более благоприятных внешних обстоятельствах ТЭЦ покидает зону комфорта, но остается в пределах своей области существования. В данной ситуации возникает необходимость нахождения (в т.ч. Регулятором) способа возвращения ТЭЦ в зону комфорта.

ТЭЦ может находиться в зоне комфорта, а ее деятельность признана экономически эффективной, если ее рентабельность составляет 10-20%.

Основным показателем экономической деятельности ТЭЦ и определяющим ее рентабельность является прибыль:

П р = (Q*T q +Э*Ц э)-(З п +З пер), (3)

где Q и Э - объемы и Т q Ц э - тариф и цена продаваемой соответственно тепловой и электрической энергии; З п, З пер - затраты соответственно постоянные и переменные.

Переменные затраты ТЭЦ в подавляющей массе состоят из расходов на топливо. Поэтому в целях упрощения, но без потери сущности нашего анализа, примем, что:

где Q отп, Э к, Q и - объемы отпущенной тепловой энергии из отборов турбин, электроэнергии в конденсационном режиме и тепловой энергии через РОУ или от пиковой водогрейной котельной (ПВК); b к, b q и - удельные расходы топлива отпущенной от ТЭЦ соответственно конденсационной электрической и тепловой (отпущенной через РОУ или от ПВК) энергии; Ц т - цена топлива.

Значение показателей прибыли, рентабельности существенно зависит не только от значений тарифов на электрическую и тепловую энергию, но и от того, по какой методике они формируются.

Решения Регулятора и их влияние на эффективность ТЭЦ

Рассмотрим решения Регулятора по отношению к ТЭЦ в свете их вышеизложенных особенностей и показателей эффективности, а также ответственности Регулятора за устойчивое (комфортное) состояние ТЭЦ. При этом для выявления результатов действий только Регулятора примем, что деятельность менеджмента, персонала ТЭЦ и Территориальной генерирующей компании (ТГК) осуществляется безошибочно.

1. Об удельных расходах, о делении топлива и о формировании тарифов на электрическую и тепловую энергию от ТЭЦ.

Для отражения энергетической эффективности, деления топлива и затрат, установления тарифов ТЭЦ в соответствии с действующим законодательством РФ, нормативно-правовыми актами Правительства РФ и федеральных органов исполнительной власти обязательными к использованию являются удельные расходы топлива на отпуск электроэнергии (Ь э) и тепловой энергии (Ь т).

В советское время для выигрышного сравнения энергетической эффективности электроэнергетической отрасли СССР с развитыми капиталистическими странами официально применялся «физический» метод деления общего расхода топлива на виды энергии, который и обеспечивал минимальные значения удельного расхода топлива на электроэнергию от ТЭЦ. Согласно этому методу принято всю экономию топлива за счет комбинированного производства относить на электрическую энергию. Этот метод прост и понятен всем специалистам.

«Физический» метод деления общего расхода топлива использовался для определения и анализа эффективности использования теплоты сжигаемого топлива, расчетов и установления тарифов на виды энергии от ТЭЦ в течение 50 лет (с 1946 по 1996 гг.).

Следует подчеркнуть, что «физический» метод обладает определенной долей условности, т.к. вопрос выделения доли топлива, использованного для получения того иного вида энергии в комбинированном производстве, сам по себе представляет сложную задачу. Использование данного метода проблематично при решении экономических задач ТЭЦ и энергосистем. Поэтому, начиная с IV Всесоюзного энергетического съезда в 1928 г, в результате более чем восьмидесятилетних дискуссий, учеными и практиками теплоэнергетики предложено более десятка методов распределения топлива на ТЭЦ. Понятно, что каждый метод имеет свои преимущества и недостатки, но, при этом, отсутствует научно-обоснованный критерий для выбора такого метода. Между величинами показателей, рассчитанными разными методами, имеются значительные расхождения. Так, для условной ТЭЦ с составом оборудования: три энергоблока Т-180-210-130 с пылеугольными котлами Е-670-140 и девять водогрейных пылеугольных котлов типа КВТК-100 выполнено шесть расчетов различными методами. Максимальные отклонения значений удельных расходов топлива на отпуск электрической и тепловой энергии получены между расчетами «эксергетическим» методом (учитывает работоспособность тепла отборного пара) и «физическим» методом, которые соответственно составляют +153% и -28% .

В условиях новейшего реформирования российского народного хозяйства проявилось несовершенство нормативной базы в области расчета и регулирования тарифов на электрическую и тепловую энергию, отпускаемую от ТЭЦ. Резкое снижение в начале 90-х гг. прошлого столетия объемов потребления тепловой энергии промышленностью на 30% повлияло на рост тарифов на тепловую энергию от ТЭЦ, которые оказались в ряде регионов выше тарифов котельных. Это привело к вводу промышленными предприятиями и отдельными муниципальными предприятиями новых котельных, в результате чего снижение отпуска тепла от ТЭЦ продолжилось. ТЭЦ стали терять конкурентоспособность на рынках тепла. Вследствие этого стала снижаться доля экономически эффективной выработки электрической энергии на базе теплового потребления.

В целях поддержания конкурентоспособности ТЭЦ Регулятор в лице Минтопэнерго РФ ввел в 1996 г. новую методику (РД 34.08.552-95), которая действует по настоящее время. Эту методику можно назвать «компромиссной». Она позволила понизить удельные расходы топлива ТЭЦ на тепловую энергию и увеличить на электрическую, приведя их к уровням, которые получаются при выработке того же количества энергии в раздельной схеме производства тепла и электроэнергии. В результате смены методики удельный расход топлива по всем ТЭЦ на тепловую энергию уменьшился на 18,5%, а на электрическую энергию вырос на 10,9%. Замедлились темпы падения отпуска тепла от ТЭЦ. Если за период с 1992 по 1996 гг. ежегодное уменьшение отпуска тепла от ТЭЦ равнялось 5%, то за период с 1996 по 2007 гг. оно составило 1,74%.

Однако новая методика не изменила главный порок ценообразования, которое целиком привязано к порядку деления топлива между производством обоих видов энергии в комбинированном едином цикле производства, не учитывает различную экономическую конъюнктуру спроса на рынках энергии и не создает возможности для гибкого поведения ТЭЦ в рамках такой конъюнктуры.

Таким образом, проигнорировано то, что комбинированное производство является единым технологическим, термодинамическим циклом, физически неразделимо, и только в нем экономически эффективное совместное производство обоих видов энергии жестко связано для каждого режима работы оборудования ТЭЦ. О необходимости отказа от дальнейших дискуссий и применения любых методов деления расходов топлива на ТЭЦ, отказа от использования их при тарифообразовании, от создания новых основ ценообразования на энергию, производимой на ТЭЦ, было указано в решении отраслевой научно-практической конференции «Вопросы формирования тарифов на электрическую и тепловую энергию, производимую на ТЭЦ» (март 2000 г.).

Для реализации решений указанной конференции авторы настоящей статьи подготовили комплект проектов по новому порядку формирования тарифов на энергию от ТЭЦ, который учитывал все произошедшие экономические изменения в окружающей среде и положение в ней самой ТЭЦ. Основы предложенного порядка были изложены в . Комплект проектов включал: «Методические указания по расчету тарифов на электрическую и тепловую энергию, производимую электрическими электростанциями в режиме комбинированной выработки»; «Методические указания по расчету расхода топлива на тепловых электростанциях с комбинированной выработкой электрической и тепловой энергии»; «Примеры расчетов тарифов и расходов топлива на ТЭЦ в соответствии с методическими указаниями». Был предложен ряд дополнений и изменений в нормативно-правовые акты Правительства, министерств и ведомств РФ, обеспечивающих возможность применения упомянутых методических указаний. К сожалению, эти проекты не нашли у Регулятора должного отклика в связи с подготовкой к переходу к свободному рынку электроэнергии, а также подготовкой проекта закона «О теплоснабжении».

2. О включении ТЭЦ в состав отрасли электроэнергетики.

Определено, что «электроэнергетика - отрасль экономики РФ, включающая комплекс экономических отношений, возникающий в процессе производства (в т.ч. производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии...». В упомянутом комплексе нашли отражение лишь особенности участия на оптовом рынке электроэнергии и особенности оперативно-диспетчерского управления работой ТЭЦ, но не осуществлена увязка с экономическими отношениями при производстве и обороте тепловой энергии ТЭЦ на местном рынке тепловой энергии.

Федеральным законом от 26 марта 2003 г. № 36-ФЗ «Об особенностях функционирования электроэнергетики в переходный период» было предусмотрено следующее положение. Тепловые электростанции, являющиеся основными производителями тепловой энергии в регионе обслуживания и производящие электрическую энергию, не востребованную на рынке электрической энергии, в течение трех лет с момента окончания переходного периода реформирования электроэнергетики могут быть выведены из эксплуатации. А в случае отказа в выводе указанных мощностей одновременно принимается решение о необходимых мероприятиях по перепрофилированию таких электростанций в котельные. Отметим, что переходный период реформирования электроэнергетики завершился с запуском в 2011 г. долгосрочного рынка электрической мощности.

3. Об оптовом рынке электрической энергии и ТЭЦ.

Если при постоянных тарифах на электрическую и тепловую энергию для ТЭЦ главной задачей являлось исключение любых режимов работы, кроме комбинированной выработки энергии, то в условиях свободного ценообразования основным ориентиром становится прибыль.

Правила функционирования оптового рынка электроэнергии (ОРЭ), установленные постановлением Правительства РФ от 30 августа 2006 г. № 529, изменили принципы ценообразования у поставщиков электроэнергии на ОРЭ, обеспечив переход от регулирования тарифов (основу которых составляли принятые Регулятором затраты) к формированию рыночных цен на энергию. Претерпели изменения приоритеты, и у электростанций на первое место явно вышли экономические параметры (в частности - прибыль), сменив технические параметры (удельные топливные показатели, КПД).

Уровни тарифов на электрическую энергию, поставляемую электростанциями, в том числе ТЭЦ, на оптовый рынок, стали формироваться по утверждаемым государством правилам ОРЭ, которые оказались не увязаны с регулированием для ТЭЦ тарифов на тепловую энергию.

На ОРЭ для ТЭЦ стали характерными следующие ситуации. Первая - обусловленная большим спросом на энергию, загрузкой генераторов с высокой себестоимостью и, как следствие, приводящая к повышению стоимости энергии на рынке. При ценах выше себестоимости конденсационной выработки становится целесообразным производство электроэнергии на ТЭЦ в конденсационном цикле. Во второй ситуации, характерной для второй ценовой зоны, на оптовом рынке формируются низкие цены из-за использования в покрытии спроса преимущественно ГЭС с очень низкой себестоимостью. В этой ценовой зоне во многих точках поставки энергии низкие цены держатся месяцами. При этом себестоимость производства электроэнергии на ТЭЦ даже в комбинированном режиме выше цены на рынке и поэтому отпуск электроэнергии может приводить лишь к убыткам. В этих случаях наиболее выгодным с точки зрения прибыльности на ТЭЦ является режим отпуска тепловой энергии с частичным или полным переносом тепловой нагрузки на РОУ. Из-за необходимости выполнять принятые обязательства по поставкам электроэнергии на оптовый рынок, при серьезных отклонениях фактических температур наружного воздуха от прогнозных ТЭЦ вынуждены изменять объемы отпуска тепловой энергии, применяя неэффективные режимы работы оборудования.

Таким образом, ТЭЦ при работе на ОРЭ и на местный рынок тепла не обеспечивает свое первоначальное назначение - оптимальное совместное производство электрической и тепловой энергии при наименьших затратах топлива по сравнению с их раздельным производством. В борьбе за прибыльность ТЭЦ ведет режимы работы экономически не выгодные как для себя, компании, в состав которой она входит, так для потребителей и общества в целом.

Подчеркнем, что, несмотря на рост объема реализуемой по рыночным ценам электроэнергии на ОРЭ, удельные расходы топлива на отпуск электроэнергии и тепловой энергии ТЭЦ вместо требуемого (ожидаемого) уменьшения даже выросли и составили соответственно в 2006 г. - 334 г/кВт. ч и 143 кг/Гкал, а в 2008 г. - 336 г/кВт.ч и 144 кг/Гкал. В целях повышения конкурентоспособности на ОРЭ ТЭЦ в 2010 г начали стихийный возврат к физическому методу деления затрат при расчетах тарифов на тепловую энергию и при подаче ценовых заявок на рыночную цену. Это привело к удельным расходам топлива на отпуск электроэнергии и теплоэнергии - 329 г/кВт.ч и 152 кг/Гкал.

В результате действия всех вышеизложенных негативных регулятивных факторов КИТ на ТЭЦ России в период с 1992 по 2008 гг. уменьшился на 8,8% (с 0,57 до 0,52), а с 2006 г. - года запуска рынка электроэнергии - темпы снижения КИТ увеличились . Доля электроэнергии, вырабатываемой на ТЭЦ в режиме комбинированной выработки, снизилась за период с 1980 по 2008 гг. на 30%.

В соответствии с постановлением Правительства Российской Федерации от 27 декабря 2010 г. № 1172 и последующими нормативно-правовыми актами Правительства, министерств и ведомств РФ действуют новые правила работы оптового рынка электроэнергии и мощности. Наибольшие изменения в правилах работы ОРЭ связаны с прекращением правил работы оптового рынка переходного периода и введением нового порядка торговли мощностью. Отметим, что такие рынки существуют далеко не во всех странах. Примерами рынков без торговли мощностью являются рынки Великобритании и Nord Pool (в этом рынке участвуют Норвегия, Швеция, Финляндия, Дания, Германия, Эстония).

Мощность для торговли выбирается по результатам конкурентного отбора мощности (КОМ) на соответствующий год. По итогам КОМ в каждой из выделенных зон свободного перетока (ЗСП) - территорий, в которых отсутствуют ограничения по передаче энергии, и в которых определены с учетом специфики товара пониженные пороги доминирования в 20% (на других рынках - 35-50%), стоимость мощности определяется по самой высокой цене из отобранных заявок генерирующих компаний. При этом в КОМ не участвуют мощности с весьма высокой стоимостью, предусмотренной договорами на поставку мощности (ДПМ), которые подписали власти с собственниками компаний в обмен на их обязательства строить электростанции. Такая, с позволения сказать, «конкуренция» в ЗСП позволяет производителям электроэнергии (в случае с ТЭЦ из-за низкой рентабельности по изложенным выше причинам) идти на завышение стоимости мощности в заявках на КОМ. Поэтому Регулятор был вынужден ввести предельный уровень цен в большинстве ЗСП. По итогам КОМ с применением предельного уровня цен определяется единая (маржинальная) цена мощности для всех отобранных поставщиков. Эта цена соответствует максимальной из цен, указанных в отобранных на КОМ в этой ЗСП ценовых заявках поставщиков. Исходя из этой же цены рассчитывается стоимость мощности, приобретаемой покупателями в этой ЗСП по итогам КОМ. Так, при проведении отбора на 2011 г., ФАС России установила необходимость применения предельного уровня цен в 24 ЗСП из 27. Величины предельного уровня цены на мощность для КОМ на 2012 г. были установлены Правительством РФ отдельно для первой и второй ценовой зоны оптового рынка. В 24 ЗСП, в которых отбор проводился с применением предельного размера, цена КОМ сложилась равной предельному размеру цены на мощность.

Электростанции, не прошедшие отбор на КОМ согласно новым правилам ОРЭ, могут участвовать в торговле только электрической энергией и быть выведены из эксплуатации или же перейти в категорию «вынужденных генераторов». В эту категорию попадают объекты, которые нельзя остановить - например, от которых зависит теплоснабжение потребителей или стабильность работы всей энергосистемы. По итогам КОМ десятки ТЭЦ (в 2011 г. - 87 ТЭЦ) отнесены к «вынужденным генераторам», а для полусотни ТЭЦ установлены специальные высокие цены на мощность. Электрическая мощность указанных ТЭЦ составляет примерно треть от мощности всех тепловых электростанций в стране. Как было упомянуто выше в соответствии с положением Федерального закона от 26 марта 2003 г. № 36-ФЗ «Об особенностях функционирования электроэнергетики в переходный период. » эти электрические мощности после 2013 г. должны быть ликвидированы.

В итоге можно утверждать, что цели реформы электроэнергетики не достигнуты. На оптовом рынке в связи с отсутствием рыночных механизмов стимулирования инвестиции не осуществляются (за исключением договоров ДПМ), сохраняется монополизм, цена формируется не по законам спроса и предложения, а через КОМ с предельными ценами, т.е. не рыночным методом. ТЭЦ при работе на ОРЭ и местном рынке тепла не могут использовать технологически заложенные в них экономические преимущества, становятся убыточными и находятся на грани вывода из эксплуатации. При этом для восполнения вывода в значительных объемах мощностей ТЭЦ необходимые ресурсы отсутствуют. Демонтаж оборудования ТЭЦ и переоборудование их в котельные не выгодны как собственникам ТЭЦ, так и потребителям тепловой энергии и обществу в целом. Представители тепловой электроэнергетики в лице председателя наблюдательного совета «Совета производителей электроэнергии», председателя совета директоров «Энел ОГК-5», генерального директора E.On Russia Power (ОГК-4) после введения новых правил ОРЭ признали вложения инвесторов в российскую электроэнергетику ошибкой .

4. О регулятивных решениях по ТЭЦ.

Через 7 лет после введения в действие Федерального закона «Об электроэнергетике» был принят Этот закон наряду с основополагающими положениями о развитии и функционировании систем теплоснабжения определил приоритет комбинированной выработки электрической и тепловой энергии. Он также указал, что вывод из эксплуатации источников тепловой энергии, функционирующих в режиме комбинированной выработки, осуществляется с учетом положений законодательства Российской Федерации об электроэнергетике. ФЗ установил сущность, порядок, способы государственного регулирования тарифов на тепловую энергию, в том числе вырабатываемую в комбинированном режиме на ТЭЦ.

Во исполнение ФЗ которыми предусмотрено, что расходы на топливо, общие затраты и тарифы на тепловую энергию ТЭЦ определяются с использованием нормативов удельных расходов условного топлива на производство 1 Гкал тепловой энергии.

Данным Постановлением введены в действие «Правила распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии». Правила установили, что расчет планируемых и фактических нормативов удельного расхода условного топлива осуществляется регулируемой организацией (ТЭЦ) с использованием метода распределения расхода топлива, установленного методическими указаниями по распределению удельного расхода условного топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии. Методические указания должны утверждаться Минэнерго России в целях тарифного регулирования в сфере теплоснабжения. Указанные нормативы удельного расхода условного топлива для каждого расчетного периода регулирования тарифов по используемому регулируемой организацией методу распределения расхода топлива должны утверждаться Регулятором. Однако методические указания Минэнерго России до настоящего времени не опубликованы.

Невозможно в логике раздельного регулирования тарифов на электрическую и тепловую энергию решить проблему долгосрочного регулирования с применением метода доходности инвестированного капитала. В разрабатываемых ФСТ методических указаниях предложены такие нормы, которые делают практическое применение метода невозможным и неинтересным для инвесторов.

Из изложенного видно, что законодательство о теплоснабжении не только не устранило, а сохранило действие факторов неэффективного использования ТЭЦ в системе тепло- и электроснабжения, указанных в настоящей статье.

Выводы и предложения

1. Действующие в отношении ТЭЦ законодательные и нормативно-правовые положения препятствуют приоритетному использованию наиболее эффективной технологии комбинированной выработки электрической и тепловой энергии и требуют изменений.

2. Практически все ТЭЦ ТГК, мелкие и средние электростанции и даже часть ТЭС оптовых генерирующих компаний (ОГК) физически выдают свою мощность непосредственно в распределительные электрические сети на территории субъектов Российской Федерации, но будучи выведенными на ОРЭ участвуют в виртуальной конкуренции. Ценообразование на ОРЭ и проекция цены с него на розничный рынок электроэнергии обеспечивают постоянный рост цен (тарифов) для конечных потребителей. Розничный рынок без электростанций на нем представляет собой не рынок, а всего лишь зону сбора денег гарантирующим поставщиком и другими энергосбытовыми компаниями в пользу всех участников «рыночного процесса».

■ не позволяет потребителям розничных рынков заключать прямые и выгодные для себя договора на поставку электрической и тепловой энергии от ТЭЦ;

■ не мотивирует (с выгодой для местного бизнеса) развитие местных, экономически более эффективных электростанций с выдачей энергии по более надежным схемам внешнего электроснабжения. Строительство малых и средних по мощности ТЭЦ, блок-ТЭЦ для потребителей экономически выгоднее, чем покупка электроэнергии на ОРЭ (экономия согласно расчетам составляет более 1 руб. на каждый кВт.ч) .

Да, рынок - всегда лучше, но только там, где это эффективно и где действительно присутствует конкуренция, а не искусственно поддерживаемая иллюзия. Конкуренция - это не цель, а лишь средство обеспечения стабильных низких цен. Причем потребителю не важно, каким образом эти цены образованы: в конкурентной борьбе или как результат грамотного государственного регулирования. Лучше усовершенствовать государственное регулирование и значительно увеличить в нем роль экспертизы со стороны потребителей, чем пытаться поддерживать иллюзию рынка и бороться с его несовершенством.

Предлагается вывести все ТЭЦ на розничный рынок электроэнергии и регулировать долгосрочные тарифы на тепловую и электрическую энергию, производимую в режиме комбинированной выработки.

В то же время, создание особых условий для реализации преимуществ комбинированного режима не означает искусственных преференций для тех ТЭЦ, оборудование которых морально устарело и физически изношено, тепловая экономичность низкая, а расходы на содержание непомерно высоки. Такие ТЭЦ окажутся вне зоны комфортных условий и будут выводиться из эксплуатации в любом случае.

3. Государственное регулирование, поведение ТГК при формировании и функционировании ТЭЦ должны учитывать изложенные выше особенности и принципы оценки эффективности их работы, а также обеспечивать систему работы ТЭЦ по схеме, представленной ниже, при любых моделях оптового и розничного рынков электроэнергии.

4. Первым регулируемым параметром доходности ТЭЦ должен являться тариф на тепловую энергию. Его значение должно обеспечивать полное покрытие всех затрат ТЭЦ, с максимально возможной по схеме теплоснабжения загрузкой по теплу на долгосрочную перспективу, т.е. при максимальном использовании ТЭЦ в режиме комбинированной выработки. Естественно для этого не нужно применение методов деления расходов топлива.

Для стимулирования ведения на ТЭЦ эффективного комбинированного производства энергии тариф на тепловую энергию должен быть выше минимального значения, обеспечивающего полное покрытие всех затрат ТЭЦ, но не превышать предельного значения, равного тарифу новой альтернативной котельной. В случае превышения предельного уровня тарифа на тепло может рассматриваться вопрос о выводе ТЭЦ из эксплуатации. Значение тарифа на тепловую энергию ТЭЦ (подлежащее утверждению) должно находиться между его минимальным и предельным значениями. При этом с одной стороны нужно сдержать рост тарифа для потребителя, а с другой - предоставить возможность для ТЭЦ предлагать потребителям более низкий тариф для удержания и увеличения потребления ими тепла. Увеличение тепловой нагрузки ТЭЦ повысит ее экономичность, что, в свою очередь, позволит предлагать потребителям более низкие тарифы (цены) на электрическую энергию.

5. Регулятор должен поддерживать ТЭЦ (ТГК) в формировании ими для долгосрочных договорных (прямых или через подразделение энергосбыта) отношений потребителей электроэнергии трех групп:

первая группа - комбинированные потребители тепловой и электрической энергии. Это потребители, подключенные к системе теплоснабжения от ТЭЦ и потребляющие электроэнергию. Отношение их электропотребления к теплопотреблению характеризует степень желательности для ТЭЦ, чем выше это отношение, тем выше привлекательность. В случае недостатка электроэнергии от ТЭЦ (ТГК) подразделение энергосбыта, которому необходимо предоставить право торговли на оптовом рынке, для потребителей этой группы может покупать недостающую энергию у других поставщиков (производителей);

вторая группа - крупные потребители электроэнергии (независимо от рынка их участия), желательность которых определяется стабильностью их электропотребления;

третья группа - потребители розничного рынка электроэнергии, не зависящие от ТЭЦ по теплоснабжению, которые потребляют электроэнергию в объемах, необходимых для приобретения совместно с потребителями двух первых групп полного объема производимой электроэнергии в режиме комбинированного производства на ТЭЦ.

В пределах тарифов на электрическую и тепловую энергию, рассчитанных на условия работы ТЭЦ в соответствии с принципами п. 4 данного раздела и утверждаемых Регулятором, ТГК (ТЭЦ) подготавливает для включения в долгосрочные договоры с потребителями подлежащие утверждению ценовые условия для потребителей:

■ первой группы - в виде тарифного меню, которое позволит удовлетворительно компенсировать расходы ТЭЦ, а потребителю минимизировать его совокупные расходы на тепло- и электропотребление;

■ второй группы - в качестве фиксированной или понятной формулы цены на гарантированные объемы потребления электроэнергии, что застрахует потребителя от возможных колебаний цены в долгосрочной перспективе;

■ третьей группы - тариф со скидкой по сравнению с тарифом, учитывающим утвержденные тарифы для ТЭЦ и тепловой сети. Это обеспечит потребителю страхование рисков от участия в оперативных сделках по покупке энергии. Источником для скидок может быть разница оплаты услуг компаниям «Энергосбыт» и сбытовому подразделению ТЭЦ (ТГК).

6. ТЭЦ (ТГК) должно иметь возможность получать дополнительную экономическую выгоду путем участия на оптовом и розничном рынках для покупки (а также для продажи) электроэнергии, выработанной в конденсационном режиме.

7. При предоставлении ТЭЦ условий, изложенных в п. 2-6 данного раздела, и не обеспечении рентабельной работы, по отношению к ним Регулятор должен предусмотреть условия, процедуры и сроки проведения мер, определяющие вопросы дальнейшего существования ТЭЦ.

Литература

1. Славина Н.А., Косматов Э.М., Барыкин Е.Е. О методах распределения затрат на ТЭЦ // Электрические станции. 2001. № 11.

2. Новости теплоснабжения. 2003. № 11.

3. Кожуховский И., Басов В. Эффективность когенерации и рынок электроэнергии // Энергорынок. 2011. № 1.

4. Перетолчина А., Дербилова Е. Приговор реформе//Ведомости. 2011. № 47.

5. Нигматулин Б. И. Атомная энергетика России. Реальность, вызовы и иллюзии // Энергорынок. 2012. № 3.

ВВЕДЕНИЕ. 4

1 ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ.. 5

1.1 Общая характеристика. 5

1.2 Принципиальная схема ТЭЦ.. 10

1.3 Принцип работы ТЭЦ. 11

1.4 Расход теплоты и КПД ТЭЦ…………………………………………………..15

2 СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ.. 17

2.1 Китай. 17

2.2 Япония. 18

2.3 Индия. 19

2.4 Великобритания. 20

ЗАКЛЮЧЕНИЕ. 22

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 23


ВВЕДЕНИЕ

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Теплоэлектроцентрали (ТЭЦ)- электрические станции с комбинированной выработкой электрической энергии и тепла. Они характеризуются тем, что тепло каждого килограмма пара, отбираемого из турбины, используется частично для выработки электрической энергии, а затем у потребителей пара и горячей воды.

ТЭЦ предназначена для централизованного снабжения промышленных предприятий и городов теплом и электроэнергией.

Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения.


ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ

Теплоэлектроцентраль - электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Общая характеристика

Теплоэлектроцентраль - тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название Теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

Исходный источник энергии на ТЭЦ - органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ). Преимущественное распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе (рис. 1 ), являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа - для снабжения теплом промышленных предприятий, и отопительного типа - для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

Основное оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и Котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят Паровая турбина и Синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7-1,5 Мн/ м 2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7- 1,5 Мн/ м 2 (для промышленных потребителей) и 0,05-0,25 Мн /м 2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05-0,25 Мн/ м 2 .

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по «тепловому» графику, то есть с минимальным «вентиляционным» пропуском пара в конденсатор. В СССР разработаны и построены ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по «электрическому» графику, с необходимой, полной или почти полной электрической мощностью.

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ ч ), но различную электрическую мощность (соответственно 100, 135 и 175 МВт ). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ ч ). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ ч используют для снабжения паром как конденсационных турбин на 300 МВт, так и самых крупных в мире ТТ на 250 МВт.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40-50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5-0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10-20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2 ). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо - мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители, для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200-250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями - Градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

Рис. 1. Общий вид теплоэлектроцентрали.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме; б - конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам; ПК - паровой котёл; ПП - пароперегреватель; ПТ - паровая турбина; Г - электрический генератор; К - конденсатор; П - регулируемый производственный отбор пара на технологические нужды промышленности; Т - регулируемый теплофикационный отбор на отопление; ТП - тепловой потребитель; ОТ - отопительная нагрузка; КН и ПН - конденсатный и питательный насосы; ПВД и ПНД - подогреватели высокого и низкого давления; Д - деаэратор; ПБ - бак питательной воды; СП - сетевой подогреватель; СН - сетевой насос.

Принципиальны схема ТЭЦ

Рис. 3. Принципиальная схема ТЭЦ.

В отличие от КЭЦ, ТЭЦ вырабатывает и отпускает потребителям не только электрическую, но и тепловую энергию в виде горячей воды и пара.

Для отпуска горячей воды служат сетевые подогреватели (бойлеры), в которых вода подогревается паром из теплофикационных отборов турбины до необходимой температуры. Вода в сетевых подогревателях называется сетевой. После охлаждения у потребителей сетевая вода насосами вновь подается в сетевые подогреватели. Конденсат бойлеров насосами направляется в деаэратор.

Пар, отдаваемый на производство, используется заводскими потребителями на различные цели. От характера этого использования зависит возможность возврата производственного конденсата в КА ТЭЦ. Возвращаемый с производства конденсат, если качество его отвечает производственным нормам, направляется в деаэратор насосом, установленным после сборной ёмкости. В противном случае он подается на ВПУ для соответствующей обработки (обессоливание, умягчение, обезжелезивание и т.д.).

ТЭЦ обычно оборудуется барабанными КА. Из этих КА небольшая часть котловой воды выводиться с продувкой в расширитель непрерывной продувки и далее через теплообменник сбрасывается в дренаж. Сбрасываемая вода называется продувочной. Полученный в расширителе пар обычно направляется в деаэратор.

Принцип работы ТЭЦ

Рассмотрим принципиальную технологическую схему ТЭЦ (рис.4), характеризующую состав ее частей, общую последовательность технологических процессов.

Рис. 4. Принципиальная технологическая схема ТЭЦ.

В состав ТЭЦ входят топливное хозяйство (ТХ) и устройства для подготовки его перед сжиганием (ПТ). Топливное хозяйство включает приемно-разгрузочные устройства, транспортные механизмы, топливные склады, устройства для предварительной подготовки топлива (дробильные установки).

Продукты сгорания топлива - дымовые газы отсасываются дымососами (ДС) и отводятся через дымовые трубы (ДТр) в атмосферу. Негорючая часть твердых топлив выпадает в топке в виде шлака (Ш), а значительная часть в виде мелких частиц уносится с дымовыми газами. Для защиты атмосферы от выброса летучей золы перед дымососами устанавливают золоуловители (ЗУ). Шлаки и зола удаляются обычно на золоотвалы. Воздух, необходимый для горения, подается в топочную камеру дутьевыми вентиляторами. Дымососы, дымовая труба, дутьевые вентиляторы составляют тягодутьевую установку станции (ТДУ).

Перечисленные выше участки образуют один из основных технологических трактов - топливно-газовоздушный тракт.

Второй важнейший технологический тракт паротурбинной электростанции- пароводяной, включающий пароводяную часть парогенератора, тепловой двигатель (ТД), преимущественно паровую турбину, конденсационную установку, включая конденсатор (К) и конденсатный насос (КН), систему технического водоснабжения (ТВ) с насосами охлаждающей воды (НОВ), водоподготовительную и питательную установку, включающую водоочистку (ВО), подогреватели высокого и низкого давления (ПВД и ПНД), питательные насосы (ПН), а также трубопроводы пара и воды.

В системе топливно-газовоздушного тракта химически связанная энергия топлива при сжигании в топочной камере выделяется в виде тепловой энергии, передаваемой радиацией и конвекцией через стенки металла трубной системы парогенератора воде и образуемому из воды пару. Тепловая энергия пара преобразуется в турбине в кинетическую энергию потока, передаваемую ротору турбины. Механическая энергия вращения ротора турбины, соединенного с ротором электрического генератора (ЭГ), преобразуется в энергию электрического тока, отводимого за вычетом собственного расхода электрическому потребителю.

Тепло проработавшего в турбинах рабочего тела можно использовать для нужд внешних тепловых потребителей (ТП).

Потребление тепла происходит по следующим направлениям:

1. Потребление для технологических целей;

2. Потребление для целей отопления и вентиляции жилых, общественных и производственных зданий;

3. Потребление для других бытовых нужд.

График технологического потребления тепла зависит от особенностей производства, режима работы и т.п. Сезонность потребления в этом случае имеет место только в сравнительно редких случаях. На большинстве же промышленных предприятиях разница между зимним и летним потреблением тепла для технологических целей незначительна. Небольшая разница получается только в случае применения части технологического пара для отопления, а также вследствие увеличения в зимнее время потерь тепла.

Для потребителей тепла на основании многочисленных эксплуатационных данных устанавливают энергетические показатели, т.е. нормы количества расходуемого различными видами производства тепла на единицу вырабатываемой продукции.

Вторая группа потребителей, снабжаемая теплом для целей отопления и вентиляции, характеризуется значительной равномерностью расхода тепла на протяжении суток и резкой неравномерностью расхода тепла в течении года: от нуля летом до максимума зимой.

Тепловая мощность отопления находится в прямой зависимости от температуры наружного воздуха, т.е. от климатических и метеорологических факторов.

При отпуске тепла со станции теплоносителями могут служить пар и горячая вода, подогреваемая в сетевых подогревателях паром из отборов турбин. Вопрос о выборе того или иного теплоносителя и его параметров решают, исходя из требований технологии производства. В некоторых случаях отработавший на производстве пар низкого давления (например, после паровых молотов) применяют для отопительно-вентиляционных целей. Иногда же пар применяют для отопления производственных зданий, чтобы избежать устройства отдельной системы отопления горячей водой.

Отпуск пара на сторону для целей отопления явно нецелесообразен, так как отопительные нужды легко удовлетворить горячей водой с оставлением всего конденсата греющего пара на станции.

Отпуск горячей воды для технологических целей производится сравнительно редко. Потребителями горячей воды являются только производства, расходующие ее для горячих промывок и других подобных им процессов, причем загрязненная вода уже не возвращается на станцию.

Горячая вода, отпускаемая для отопительно-вентиляционных целей, подогревается на станции в сетевых подогревателях паром из регулируемого отбора давлением 1,17-2,45 бар. При этом давлении вода нагревается до температуры 100-120 .

Однако при низких температурах наружного воздуха отпуск больших количеств тепла при такой температуре воды становится нецелесообразным, так как количество циркулирующей в сети воды, а следовательно, и расход электроэнергии на ее перекачивание заметно увеличиваются. Поэтому, кроме основных подогревателей, питающихся паром из регулируемого отбора, устанавливают пиковые подогреватели, к которым греющий пар давлением 5,85-7,85 бар подводится из отбора более высокого давления или непосредственно из котлов через редукционно-охладительную установку.

Чем выше начальная температура воды, тем меньше расход электроэнергии на привод сетевых насосов, а также диаметр теплопроводов. В настоящее время в пиковых подогревателях воду чаще всего подогревают до температуры 150 цию от потребителя, при чисто отопительной нагрузке имеет обычно температуру около 70 .

1.4. Расход теплоты и КПД ТЭЦ

Теплоэлектроцентрали отпускают потребителям электрическую энергию и теплоту с паром, отработавшим в турбине. В Советском Союзе принято распределять расходы теплоты и топлива между этими двумя видами энергии:

2) по производству и отпуску теплоты:

, (3.3)
, (3.3а)

где - затрата теплоты на внешнего потребителя; - отпуск теплоты потребителю; h т - КПД отпуска теплоты турбинной установкой, учитывающий потери теплоты при отпуске ее (в сетевых подогревателях, паропроводах и т. д.); h т = 0,98¸0,99.

Общий расход теплоты на турбоустановку Q ту составляется из теплового эквивалента внутренней мощности турбины 3600N i , расхода теплоты на внешнего потребителя Q т и потери теплоты в конденсаторе турбины Q к. Общее уравнение теплового баланса теплофикационной турбоустановки имеет вид

Для ТЭЦ в целом с учетом КПД парового котла h п.к и КПД транспорта теплоты h тр получим:

; (3.6)
. (3.6а)

Значение в основном определяется значением значение - значением .

Выработка электроэнергии с использованием отработавшей теплоты существенно повышает КПД по производству электроэнергии на ТЭЦ по сравнению с КЭС и обусловливает значительную экономию топлива в стране.

Вывод по части один

Таким образом, теплоэлектроцентраль не является источником масштабных загрязнений района расположения. Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения

СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ

Крупнейшими в мире странами-производителями электроэнергии являются вырабатывающие по 20 % от мирового производства США, Китай и уступающие им в 4 раза Япония, Россия, Индия.

Китай

Энергопотребление Китая к 2030 г., по прогнозу корпорации ExxonMobil, вырастет более чем в 2 раза. В целом на долю КНР к этому времени придется около 1/3 мирового увеличения спроса на электроэнергию. Данная динамика, по мнению ExxonMobil, принципиально отличается от положения дел в США, где прогноз роста спроса очень умеренный.

В настоящее время структура генерирующих мощностей КНР такова. Около 80% вырабатываемой электроэнергии в Китае обеспечивают угольные ТЭС, что связано с наличием крупных угольных месторождений в стране. 15% обеспечивают ГЭС, 2% приходится на АЭС и по 1% на мазутные, газовые ТЭС и иные электростанции (ветровые и пр.). Что касается прогнозов, то в ближайшем будущем (2020 г.) роль угля в китайской энергетике останется доминирующей, однако существенно увеличится доля атомной энергии (до 13%) и доля природного газа (до 7%) 1 , применение которого позволит существенно улучшить экологическую обстановку в стремительно развивающихся городах КНР.

Япония

Суммарная установленная мощность электростанций Японии достигает 241,5 млн кВт. Из них 60% составляют ТЭС (в т.ч. ТЭС, работающие на газе – 25%, мазуте – 19%, угле – 16%). На АЭС приходится 20%, на ГЭС – 19% суммарных электрогенерирующих мощностей. В Японии функционирует 55 ТЭС установленной мощностью свыше 1 млн кВт. Крупнейшими из них являются газовые: Кавагое (Chubu Electric) – 4,8 млн кВт, Хигаши (Tohoku Electric) – 4,6 млн кВт, мазутная Касима (Tokyo Electric) – 4,4 млн кВт и угольная Хекинан (Chubu Electric) – 4,1 млн кВт.

Таблица 1-Производство электроэнергии на ТЭС по данным IEEJ-Institute of Energy Economics, Japan (Институт экономики энергетики, Япония)

Индия

Около 70% электроэнергии, потребляемой в Индии создается тепловыми электростанциями. Принятая властями страны программа электрификации превратила Индию в один из наиболее привлекательных рынков для инвестиций и продвижения инжиниринговых услуг. На протяжении последних лет республика предпринимает последовательные шаги для создания полноценной и надежной электроэнергетики. Опыт Индии примечателен тем, что в стране, страдающей от нехватки углеводородного сырья, активно ведется освоение альтернативных энергетических источников. Особенностью потребления электроэнергии в Индии, которую отмечают экономисты Всемирного банка, является то, что рост бытового потребления сильно ограничен отсутствием у почти 40% жителей доступа к электричеству (по другим источникам, доступ к электричеству ограничен у 43% горожан и 55% сельских жителей). Еще одной болезнью местной электроэнергетики является ненадежность поставок. Отключения электричества – обычная ситуация даже в крупных годах и промышленных центрах страны.

По данным Международного энергетического агентства, учитывая нынешние экономические реалии, Индия – одна из немногих стран, где в обозримой перспективе ожидается устойчивый рост потребления электроэнергии. Экономика этой второй в мире по количеству населения страны – одна из самых быстроразвивающихся. За последние два десятилетия средний рост годового ВВП составил 5,5%. В 2007/08 финансовом году, по данным Центральной статистической организации Индии, объем ВВП достиг $1059,9 млрд, что ставит страну на 12-ю строчку в мире по величине экономики. В структуре ВВП доминирующее положение занимают услуги (55,9%), далее идут промышленность (26,6%) и сельское хозяйство (17,5%). В то же время, по неофициальным данным, в июле текущего года в стране был установлен своеобразный пятилетний рекорд – спрос на электроэнергию превысил предложение на 13,8%.

Более 50% электроэнергии в Индии вырабатывают ТЭС, использующие уголь. Индия является одновременно третьим в мире производителем угля и третьим в мире потребителем этого ресурса, при этом оставаясь нетто-экспортером угля. Этот вид топлива остается важнейшим и самым экономичным для энергетики Индии, до четверти населения которой живет за чертой бедности.

Великобритания

Сегодня в Великобритании электростанции, работающие на угле, производят около трети необходимой стране электроэнергии. Такие электростанции выбрасывают в атмосферу миллионы тонн парниковых газов и твердых токсичных частиц, поэтому экологи постоянно убеждают правительство в необходимости немедленно закрыть эти электростанции. Но проблема состоит в том, что восполнить ту часть электроэнергии, которую вырабатывают тепловые электростанции, пока нечем.

Вывод по части два

Таким образом, Россия уступает крупнейшим в мире странами-производителями электроэнергии США и Китай, вырабатывающие по 20 % от мирового производства и стоит на ровне с Японией и Индией.

ЗАКЛЮЧЕНИЕ

В данном реферате описаны виды теплоэлектроцентралей. Рассмотрена принципиальная схема, назначение элементов структуры и описание их работы. Определены основные КПД станции.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.