Для чего нужен отбор пара с турбины. Типы паровых турбин

Нагрузка турбины с противодавлением целиком определяется тепловым потребителем, поэтому, как отмечалось раньше, турбина с противодавлением обычно не может устанавливаться изолированно и должна работать параллельно с конденсационными турбинами. Кроме того, мощность самой турбины с противодавлением и связанного с ней электрического оборудования зачастую используется далеко не полностью, поскольку тепловое потребление или связано с зимним периодом, или зависит от числа смен, работающих в тенлонотребляющем производстве.

Значительно лучшее использование оборудования достигается в турбинах с промежуточным отбором пара, в которых мощность может изменяться в широких пределах независимо от нагрузки теплового потребителя.

В конденсаторе. Остальной поток пара Сп идет к тепловому потребителю. Таким образом, ЧВД турбины с отбором

представляет собой турбину с противодавлением, а ЧНД -конденсационную турбину.

При отсутствии отборов пара из ЧВД на регенерацию можно написать

Турбины с промежуточным от-

бором пара является суммой мощностей ЧВД и ЧНД:

Диаграмме. Если

принять обозначения рис. 9.4, то мощность ЧВД напишется так:

а мощность Ч НД:

Таким образом, внутренняя мощность всей турбины будет равна

Представляет собой использованный теплоперепад для потока пара, прошедшего в конденсатор через обе части турбины.

Из уравнения (9.4) можно найти расход свежего пара, если заданы мощность турбины и количество пара, отбираемого для теплового потребителя, и, кроме того, известны тепловые Перепады и КПД отдельных частей турбины:

Для того чтобы давление отводимого к тепловому потребителю пара поддерживалось на постоянном уровне, помимо клапанов, управляющих впуском пара в ЧВД, перед ЧНД турбины устанавливают также регулирующие клапаны. Изменения давления отбираемого пара воспринимаются регулятором давления.

Для того чтобы проследить зависимость между расходом свежего пара, развиваемой турбиной мощностью и количеством отбираемого пара, построим диаграмму, которая связывает эти величины и называется диаграммой режимов.

Диаграммы на рис. 9.5.

Здесь по оси абсцисс отложен относительный пропуск пара

Зависит от расхода пара;

Пара, выходящего из ЧВД.

будет наименьшим из все возможных располагаемых теилоперепадов ЧНД.

неизменным и производя расчет

Через ЧНД.

Выраженная в долях

На который необходимо умножить полученную из диаграммы рис. 9.6 мощность ЧНД, зависит только от пропуска пара через ЧВД.

Для рассматриваемого нами примера эта кривая нанесена на диаграмме рис. 9.5.

От количества пара, идущего в конденсатор.

Имея все предварительные данные, можно построить окончательную диаграмму режимов. Для этого перенесем

Определяется на основании

Которая показывает изменение мощности турбины при постоянном пропуске пара через ЧНД.

Случай, когда

На диаграмме рис. 9.7.

Представит собой диаграмму возможных режимов турбины с одним регулируемым отбором пара.

На которую рассчитан электрический генератор.

Увеличение пропуска пара через ЧНД за счет повышения давления пара перед ней сопровождается некоторым снижением экономичности ЧНД, но позволяет в брлее широких пределах использовать мощность турбогенератора. Следует отметить, что повышение давления пара в камере регулируемого отбора уменьшает располагаемый теплоперепад ЧВД и его КПД, а следовательно, и мощность ЧВД. Допуская режимы с повышенным давлением пара перед ЧНД, в диаграмме режимов получаем дополнительную область, которая на рис. 9.7 заштрихована.

Клапаны ЧНД откроются полностью и дальнейшее увеличение пропуска пара через ЧНД достигается за счет роста давления в камере отбора пара. Очевидно, что корпус ЧВД и примыкающие к нему трубопроводы отбираемого пара должны быть рассчитаны на максимальное давление, которое может возникнуть в камере отбора; на это же давление должны быть настроены предохранительные клапаны камеры отбора пара. В части низкого давления прочность рабочих лопаток и промежуточных диафрагм должна быть также рассчитана в соответствии с нагрузками, которые возникают при максимальном пропуске пара.

и принимая за начало отсчета мощности линию 1 - 1, получаем

В том случае, если требуется построить диаграмму режимов для электрической мощности турбогенератора, надо при

суммировании мощностей ЧВД и ЧНД вычесть из суммарной внутренней мощности механические потери и потери в электрическом генераторе. Последние зависят от нагрузки генератора и, следовательно, могут быть построены в зависимости от внутренней мощности турбины.

Часто при построении диаграммы режимов по оси абсцисс откладывают мощность, а по оси ординат - расходы свежего пара. В таком случае она примет вид, представленный на рис. 9.8, где показана диаграмма турбины Т-110/120-12,8-3 ТМЗ при работе с одним регулируемым отбором пара. Иногда строится упрощенная диаграмма режимов с прямыми линиями (рис. 9.9). При этом связь между отбором пара, мощностью и расходом свежего пара может быть выражена аналитически достаточно просто:

Расход пара, необходимый для холостого хода;

Отношение использованных теплоперепадов части низкого давления и всей турбины.

На рис. 9.7)

турбина практически работает как турбина с противодавлением и при заданном расходе отбираемого пара мощность не может быть меньше той, которая соответствует мощности ЧВД.

в диаграмме режимов (рис. 9.7).

Во всех тех случаях, когда по условиям электрической нагрузки турбины от нее не может быть отобран достаточно большой расход пара, в линию теплового потребителя добавляется свежий редуцированный пар и, таким образом, практически достигается любой режим, требуемый тепловым и электрическим потребителями.

В турбинах с отбором пара обычно применяется система регенеративного подогрева питательной воды. Построение диаграммы режимов в этом случае становится более сложным, так как необходимо рассматривать переменный режим всей установки.

Турбины с регулируемым отбором пара наиболее распространены па современных ТЭЦ, так как эти турбины в широком диапазоне режимов удовлетворяют запросам потребителей электроэнергии и теплоты и при этом полно используется оборудование независимо от времени года.

Однако нельзя забывать, что универсальность использования турбины с промежуточным отбором пара достигается ценой некоторого снижения экономичности при отдельных режимах. В самом деле, например, при конденсационном режиме такой турбины при полной нагрузке часть высокого давления оказывается незагруженной по пропуску пара, в то время как часть низкого давления перегружена. Такой режим турбины с отбором, очевидно, менее экономичен, чем режим конденсационной турбины. Понижение экономичности скажется особенно сильно, если при неполных нагрузках и конденсационном режиме или режиме с малыми отборами пара включено в работу регулирование давления промежуточного отбора. В этом случае возникают дополнительные потери дросселирования пара, перетекающего в часть низкого давления.

Точно так же при работе с большими отборами пара турбина с промежуточным отбором оказывается в менее благоприятных условиях, чем турбина с противодавлением, потому что при малом пропуске пара через часть низкоге давления последняя работает с низким КПД или даже потребляет мощность.

Очевидно, что наибольшая экономичность турбины с промежуточным отбором пара достигается при тех режимах, когда через каждук часть протекает оптимальный, обычно расчетный, расход пара.

Если режимы, при которых в основном будет эксплуатироваться турбина, известны наперед, то при проектировании можно так выбрать расчетные пропуски пара, чтобы обеспечить наибольшую экономичность при длительной эксплуатации. Так, например, если известно, что при чисто конденсационном режиме турбина должна развивать лишь небольшую мощность и что электрическая нагрузка турбины возрастает с ростом отбора пара, то расчетный пропуск через ступени низкого давления может быть выбран так, чтобы при чисто конденсационном режиме турбина принимала лишь частичную нагрузку или значительные нагрузки осуществлялись при существенном снижении экономичности. Это позволит сократить размеры лопаток ступеней низкого давления, удешевит трубину и сократит дополнительные потери при ограниченном пропуске пара в ЧНД. Наоборот, если от турбины требуется лишь небольшой отбор пара, то ступени низкого давления рассчитываются на пропуск пара, отвечающий конденсационной работе с полной мощностью, а ступени части высокого давления - на пропуск пара, лишь незначительно превышающий эту величину.

Для турбин с отопительным отбором пара, у которых в летнее время отбор пара существенно сокращается, обычно приходится рассчитывать ступени низкого давления на полный конденсационный пропуск пара. Следует учесть, что при этом несколько повышается давление в конденсаторе, что объясняется, с одной стороны, высокой температурой охлаждающей воды, с другой - большей нагрузкой конденсатора.

Выбор расчетных режимов теплофикационных турбин подробно описан в .

Обычно в основу этого выбора закладываются следующие положения.

1. Максимальная конденсационная мощность турбин с ото пительным отбором пара обеспечивается при полном расходе пара через турбину. Это позволяет полностью использовать оборудование ТЭЦ при конденсационном режиме, а в ото пительный период получить дополнительную электрическую мощность, если ограничить тепловую нагрузку. В то же время для турбин с производственным отбором пара, который, как правило, мало меняется в течение всего года, целесообразно, чтобы конденсационная мощность была равна или даже меньше номинальной, а не больше ее, что характерно для турбин с отопительными отборами пара.

Расходы пара в конденсатор невелики, то и технико-экономически целесообразно снизить стоимость конденсаторов и системы водоснабжения. Увеличение выходных потерь при конденсационном режиме, характерном для летнего времени, будет незначительным. Из-за больших отборов и соответственно малых массовых расходов пара в конденсаторе в зимний период сокращение общей кольцевой площади будет благоприятно и но экономичности и по надежности, что рассмотрено в § 7.4. Следует учитывать, что при том же расходе пара, что и в конденсационных турбинах, но и меньшем числе потоков в ЦНД через каждый поток проходит больший массовый расход и последние лопатки испытывают большие изгибающие напряжения.

3. В некоторых энергосистемах, в которых относительная мощность ТЭС невелика, приходится использовать ТЭЦ для регулирования электрической нагрузки. Для этого в отопитель ный период применяются различные способы, требующие сохранения тепловой нагрузки: отключение ПВД со снижением расхода свежего пара; повышение давления отопительного отбора с перепуском части сетевой воды помимо сетевых подогрева гелей в целях сохранения заданной температуры подогрева сетевой воды. Все эти методы, так же как ис пользование свежего пара для подогрева сетевой воды в обвод ЦВД, ведут к снижению экономичности турбоустановки, а в ря де случаев и собственно турбины и, главное, уменьшают удельную выработку электроэнергии на тепловом потреблении (см. § 1.4) и тем самым не используются экономически; весьма большие преимущества комбинированной выработки теплоты и электрической энергии.

На диаграмме строятся линии постоянной тепловой нагрузки, в общем случае равной

Расход сетевой воды.

Для частного случая одного сетевого подогревателя

Энтальпия насыщения при давлении отбора.

Турбины с регулируемым отбором пара могут выполняться как с промежуточным перегревом, так и без него. Промежуточный перегрев, как было проанализировано в § 1.3, повышает КПД цикла, КПД собственно турбины и надежность ступеней низкого (уменьшается эрозия лопаток ЦНД) и среднего давления (зона насыщения, чреватая неприятностями, вызываемыми коррозией под напряжением, благоприятно сдвигается в область пониженного давления).

МПа отсутствие промперегрева

может привести к недопустимо большой конечной влажности.

Сравнительный анализ трех схем отбора, которые используются в домашних бражных и ректификационных колонах. Рассмотрены характеристики, преимущества и недостатки, а также применимость в различных вариантах дистилляции. Каждому методу соответствует свой тип оборудования.

Чтобы успешно работать с колонной, нужно регулировать флегмовое число. Для этого существует три метода:

  • CM (cool managment) – управление расходом воды, подаваемой на охлаждение дефлегматора;
  • LM (liquid managment) – управление количеством отбираемой флегмы (отбор по жидкости);
  • VM (vapor managment) – управление количеством отбираемого пара (отбор по пару).

Способы управления ректификационной колонной

Прежде чем начать разговор о видах отбора, определимся с терминами.

Дистилляция – процесс испарения жидкости с последующей конденсацией.

Если изначально сырье испарили из перегонного куба, затем сконденсировали его в холодильнике (конденсоре), то чтобы ни происходило посредине этого процесса (проход пара через сухопарник, барботёр или дефлегматор), в конечном итоге всё равно получится дистиллят.

Ректификация – это один из методов дистилляции, который отличают два технологических приема:

Принудительный, строго регулируемый по величине возврат флегмы с помощью специальных устройств – дефлегматоров или конденсоров.

Организован тепломассобмен между флегмой и поднимающимся навстречу паром. Для повышения эффективности тепломассобмена используют насадку или тарельчатые колонны, где происходит переиспарение флегмы. В первом случае процесс носит пленочный характер, во втором – барботажный.

Целью ректификации является получение спирта заданной крепости и его очистка от примесей. Для этого флегмовое число должно всегда быть выше минимального (подробнее на графике).

Качество продукта зависит от величины флегмового числа, но чем оно выше, тем ниже производительность колонны.

Ректификация не позволяет выделить какую-либо смесь из группы, а лишь более-менее полностью удаляет все сгруппированные по близкой летучести примеси. Поэтому если использовать ректификационное оборудование для получения, например, фруктовых дистиллятов, существует риск сгруппировать головную фракцию в трудно разделяемые азеотропы – удалить вместе с ненужными примесями полезные эфиры, отвечающие за аромат.

Если попытать выгнать благородный дистиллят на ректификационном оборудовании, нужно чтобы во время всего отбора флегмовое число не превышало 1,5-2. Иначе баланс примесей будет нарушен.

Виды узлов отбора в колонне

Жидкостный отбор (liquid managment)

LM – регулировка количества отбора по жидкости. Наиболее удобная и легкая в эксплуатации схема, при которой все пары конденсируются, затем одна часть конденсата возвращается в колонну, другая – идет в отбор.

Характеристики. Регулировка флегмового числа осуществляется одним игольчатым краном отбора спирта. Если кран полностью открыт, флегмовое число равно нулю, а на выходе получается обычный дистиллят. При закрытом кране флегмовое число бесконечно большое – колонна работает на себя. Регулировка краном жидкостного отбора позволяет в любой момент изменить флегмовое число от 0 до 100%. Мощность нагрева и охлаждения устанавливают на оптимальном уровне, обеспечивающем максимальную разделительную способность колонны и минимальное охлаждение флегмы.

Колонна с жидкостным отбором

Как правило, флегмовое число задают несколько выше минимального, что при отборе «тела» позволяет сравнительно долго обходится без регулировок, но ближе к концу отбора всё же приходится активно регулировать процесс. При этом чем меньше остается спирта в кубе, тем чаще приходится увеличивать флегмовое число.

Преимущества:

  • подходит для получения как ароматных, так и чистых спиртов;
  • легко и относительно дешево автоматизируется вплоть до АСУ (автоматизированной системы управления) процессом производства с блоками безопасности;

Недостатки:

  • если зафиксировать скорость отбора на одном уровне, то по мере ректификации флегмовое число будет падать. Это противоречит технологической необходимости в постепенном поднятии скорости к концу отбора, что является главным недостатком;
  • необходим разрыв струи (связь с атмосферой) после регулировочного крана или клапана, иначе возможны сбои в регулировке скорости отбора за счет разряжения в линии отбора, которое создают стекающие потоки спирта.

Паровой отбор (vapor managment)

VM – регулировка разделением потоков пара до дефлегматора. Управление колонной осуществляется путем изменения количества отбираемого пара с помощью шиберного или обычного шарового крана.

Характеристики. Соотношение площадей поперечного сечения колонны и пароотводящей трубы определяет минимальное флегмовое число, которое можно увеличить, регулируя положение крана.

Колонна с паровым отбором

При перегонке количество возвращаемой флегмы регулируется от 80 до 100%. Минимально возможное флегмовое число равно 4.

Преимущества:

  • чувствительность к положению крана весьма мала, что позволяет делать точные регулировки;
  • флегмовое число не зависит от изменения температуры или расхода охлаждающей воды в дефлегматоре;
  • нет повышенной чувствительности к стабильности давления охлаждающей воды.

Недостатки:

  • система управления инерционна, от смены положения крана до изменения скорости отбора может пройти до 10-15 секунд;
  • не подходит для получения ароматных спиртов из натурального сырья. Требуются конструктивные изменения, позволяющие регулировать количество возвращаемой флегмы от 50 до 100%;
  • колонна с паровым отбором чувствительна к пробкам на линии отбора продукта. Если в силиконовом шланге сформируется столбик продукта, стекая, он создаст разряжение, и как насосом потянет пар на себя, нарушая установленное флегмовое число. Вследствие этого резко и неконтролируемо увеличится скорость отбора, без вмешательства оператора система не вернется на прежний уровень. Остановить неконтролируемый отбор можно установкой связи с атмосферой (создать разрыв струи). Например, воткнуть иглу от шприца в верхнюю часть трубки отбора;
  • автоматизация сложна и дорога. Часто выполняется в виде сигнализатора достижения определенных температур, но без исполнительных механизмов. Также желательна автоматика безопасности.

Управление охлаждением (cool managment)

CM – регулировка количества воды, подаваемой в дефлегматор. Позволяет контролировать количество пара, проходящего сквозь дефлегматор на холодильник отбора продукта.

Характеристики. Флегмовое число регулируется от 0 до 100 %, но система очень чувствительна к количеству подаваемой воды и требует прецизионного игольчатого крана. Для регулирования скорости отбора приходится поворачивать кран буквально на доли миллиметра. Мощность нагрева во время всего процесса должна быть постоянной и обеспечивать максимальную разделительную способность колонны. С увеличением количества подаваемой воды увеличивается и количество возвращаемой флегмы, соответственно, возрастает флегмовое число.

Колонна с регулировкой подачи воды в дефлегматор

При ректификации на постоянной мощности охлаждения и нагрева происходит постепенное уменьшение отбора, но флегмовое число остается неизменным.

Преимущество:

  • может с успехом использоваться для получения ароматных спиртов из натурального сырья.

Недостатки:

  • малейшие колебания напора приводят к изменению скорости отбора и флегмового числа. Если не предпринять мер по стабилизации давления охлаждающей воды в квартире, на процесс отбора будет влиять даже спущенный соседями унитаз;
  • повышение температуры воды в дефлегматоре при неизменном ее количестве уменьшает флегмовое число, поэтому для поддержания стабильного флегмового числа нужен контроль за расходом и температурой воды, подаваемой в дефлегматор;
  • требуется связь с атмосферой в линии отбора продукта, иначе при случайном отключении нагрева и трубке, погруженной в отбор, весь продукт снова окажется в кубе;
  • система дорога и сложна в автоматизации. Обычно на такие ректификационные колонны ставят простейшие термосигнализаторы и автоматику безопасности.

Практика установки разных узлов отбора на колонны

Колонны с жидкостным отбором (LM)

В домашних колоннах отбор по жидкости получил самое широкое распространение. Причина проста – процесс ректификации 40 литров самогона затягивается на 18-20 часов. Можно уменьшить навалку вдвое, но тогда резко вырастает доля оборотного (технического) спирта, который придется перерабатывать при каждой ректификации.

Если говорить о производительности системы как о количестве товарного спирта, полученного за общее время ректификации (включая нагрев), то при уменьшении объема навалки в 2 раза, эффективность снижается примерно в 1,5 раза.

Другой путь минимизации объема получаемого технического спирта при максимальной производительности – автоматизация процесса, позволяющая делать перегонку по заранее заданному алгоритму без участия оператора. Система автоматики обязательно должна иметь не только исполнительный контур, но и блок безопасности, который моментально отключит оборудование при угрозе аварии.

Ректификационная колонна с жидкостным отбором автоматизируется проще и дешевле других систем, а по качеству получаемого спирта ничем не уступает другим типам оборудования.

Колонны с паровым отбором

Системы отбора по пару распространены за рубежом, где спирт и его производные уступают в популярности дистиллятам (коньяку, виски и т. д.), но ценится высокая крепость напитка. Иностранные умельцы конструируют ректификационные колонны с паровым отбором, имеющие минимальное флегмовое число – всего лишь 1, а не 4 как в России. При такой схеме обратно в колонну уходит не менее 50% флегмы.

В режиме дистилляции паровой отбор практически не нуждается в автоматике. Заданное на старте отбора «тела» флегмовое число сохраняется неизменным до конца, изменить его может только оператор, но даже при получении спирта регулировка нужна буквально пару раз.

Скорость же отбора к концу перегонки резко уменьшается вплоть до остановки. Если есть желание поохотиться за энантовыми эфирами (во многом создают органолептические свойства фруктовых дистиллятов) – меняют банки и увеличивают мощность нагрева, дальше следует дробный отбор и сортировка.

Если энантовые эфиры не требуются, делают то же самое, но дополнительно используют паузы для работы колонны на себя, чтобы остатки спирта были более концентрированными и с меньшим количеством примесей.

Автоматика в колоннах с паровым отбором нужна только на уровне блока безопасности. Кроме того, получение дистиллята предусматривает не группирование примесей по фракциям и полное их удаление, а сбалансированное снижение концентраций веществ до приемлемого уровня с обязательным сохранением вкусо-ароматических составляющих. Это дело для мастера-винокура, контролирующего процесс, регулировка по приборам здесь неуместна. Навалка ограничена объемом, который можно перегнать под руководством человека за имеющееся время.

Колонны с регулировкой подачи воды в дефлегматор

Несмотря на все недостатки, этот тип оборудования часто используется в России при строительстве бражных колонн. Причина – возможность получения дистиллятов из любого сырья, а при необходимости без изменения конструкции (дополнительная царга не в счет) можно собирать дистиллят высокой степени очистки – почти как спирт.

Колонны с регулировкой подачи воды в дефлегматор дороги в автоматизации, чувствительны к напору и температуре охлаждающей воды, что делает их слабо пригодными для получения чистого спирта-ректификата, но при малых навалках до 20 литров и неусыпном внимании оператора такие колонны способны на многое.

Кроме того, схема cool managment является лучшей для отбора «голов». При прочих равных условиях получить более концентрированные «головы» на системах отбора по пару и по жидкости невозможно. Правда, это только если справиться со стабилизацией температуры и напора воды в дефлегматоре.

В последние годы делаются попытки создания гибридных ректификационных колонн, в которых «головы» отбирают по пару методом СМ, а «тело» по жидкости (LM). Это повышает и без того высокие показатели качества спирта на колоннах LM. Совершенству нет предела.

При строительстве бражных колонн, сориентированных на ароматные дистилляты, оборудование VM имеет преимущество перед СМ за счет простоты управления, а также нечувствительности к температуре и расходу воды в дефлегматоре – больше предсказуемость в «причесывании» примесей. Для сахарного сырья бражные колонны по схеме СМ перспективней за счет более качественного удаления головной фракции. Но управление ими создает немало проблем.

Временное отключение регенеративных отборов пара—один из простых и эффективных способов быстрого получения дополнительной мощности . При этом пар, ранее поступавший в подогреватели, проходит в проточную часть последующих ступеней турбины, вырабатывая дополнительную мощность, что особо актуально для энергоблоков, работающих при скользящем начальном давлении, а также при необходимости использования регуляторов «до себя». Отключение пара регенеративных отборов помимо рассмотренного прямого увеличения мощности ведет к отсечению паровых объемов подогревателей и трубопроводов, инерция которых снижает скорость набора нагрузки при открытии регулирующих клапанов турбины.
Конечно, следует иметь в виду, что существуют определенные ограничения режимов, при которых допустимо отключение регенерации, обусловленные, в частности, надежностью работы лопаточного аппарата последней ступени и упорного подшипника. Для изыскания возможностей расширения диапазона режимов, допускающих отключение регенерации, ведутся многочисленные исследования. В частности, результаты работ ЦКТИ и Средазтехэнерго показывают возможность отключения ПВД при нагрузках, близких к номинальной.
Можно выделить два основных способа отключения регенеративных отборов. За рубежом нашли применение схемы, в которых питательную воду направляют в обвод подогревателей. Уменьшение теплообмена в подогревателе прекращает конденсацию пара и повышает давление, вследствие чего прекращается поступление пара в подогреватель и увеличивается мощность турбины. Такой способ отключения регенерации обладает значительной инерцией, обусловленной паровыми объемами, а также аккумуляцией теплоты в металле подогревателей и находящейся в них воде. При практической его проверке в опытах ЦКТИ на турбине ПТ-60-90/13 процесс изменения мощности начинался через 3 с после подачи команды и продолжался 30 с. Аналогичные результаты получены фирмой «Сименс» на конденсационном блоке 80 МВт.
Указанный способ отключения регенерации не устраняет вредного влияния паровых емкостей системы регенерации при открытии регулирующих клапанов турбины. Изменение температуры питательной воды происходит с большой скоростью (22 К/мин в опытах ЦКТИ), что ухудшает условия работы котельного экономайзера. Возможны также значительные скорости изменения температуры труб подогревателей, недопустимые по условиям прочности. t..
Отмеченные обстоятельства заставляют отдать предпочтение непосредственному прекращению подачи пара в подогреватели. Для его реализации могут быть использованы обратные клапаны регенеративных отборов . Практическая проверка этого способа была проведена ЦКТИ, Л ПИ и Средазтехэнерго на турбинах К-300-240, К-200-130, К-100-90 и ПТ-60-90/13. Проведению испытаний предшествовала работа по наладке автоматики обратных клапанов, что позволило повысить их быстродействие до 0,4— с. В программу испытаний входило исследование работы оборудования как на частичных нагрузках, так и в режимах, близких к номинальному. Регулирующие клапаны турбин поддерживались в неизменном положении ограничителями мощности. Опыты были повторены многократно.
При закрытии обратных клапанов для исследованных турбин мощность возрастала на 10— % (рис. 5.13). Продолжительность процесса набора мощности составляла соответственно 1 и 5 с для турбин К-100-90 и ПТ-60-90/13. Мощность турбины К-200-130 повышалась на 10—11 % за 8—10 с, в том числе на 3—4 % за первые 1—2 с. Аналогичные результаты дает отключение регенерации для турбины К-300-240 . Временное отключение регенерации, безусловно, не должно противопоставляться быстрому открытию регулирующих клапанов турбины. Напротив, наибольший эффект дает сочетание обоих способов.
При закрытии обратных клапанов снижение давления в подогревателях оказалось сравнительно небольшим. Это объясняется тем, что в существующей конструкции обратных клапанов усилия гидроприводов при больших положительных перепадах давлений на клапанах недостаточны для обеспечения плотного прилегания клапана к седлу. Поэтому клапаны по мере падения давления в подогревателе приоткрываются на некоторую величину. Это явление усиливается, особенно при больших нагрузках, вследствие повышения давления в камере отбора после закрытия обратных клапанов. На осциллограммах перемещения клапанов можно видеть, что после закрытия в первый момент времени
ДДПП — датчик давления промперегрева; ДМ — датчик вырабатываемой мощности; ПВД — подогреватель высокого давления; ПЗ — промежуточный золотник; ПП — промперегреватель; Р М — регулятор мощности; PC — регулятор скорости; С — сервомотор ЦВД; СО — сервомотор клапана регенеративного отбора; ЭГП — электрогидравлический преобразователь; £ — корректирующий импульс по положению клапанов регенеративных отборов клапаны приоткрываются на несколько миллиметров. Этим можно объяснить заниженное значение увеличения мощности при отключении регенерации по сравнению с ее возможным приростом согласно тепловому расчету. Изменение конструкции гидроприводов для обеспечения полного закрытия обратных клапанов или применение специальных отсечных клапанов может повысить величину и скорость набора мощности.
Наличие некоторого расхода пара в подогреватели, а также аккумуляция теплоты в металле трубок и корпусов подогревателей обусловили лишь незначительное изменение температуры питательной воды за ПВД и давления в деаэраторе при работе с отключенной регенерацией, вследствие чего не нарушается нормальный режим работы экономайзера и питательного насоса. гриль для шаурмы
Движение обратных клапанов в сторону открытия (см. рис. 2.7, 6) происходит с меньшей скоростью, чем в сторону закрытия, что обусловлено конструктивными особенностями системы управления и гидропривода обратных клапанов. Клапаны полностью открываются за 4—8 с. Давление в подогревателях при этом возрастает.
Проведенные испытания подтверждают возможность использования обратных клапанов регенеративных отборов для повышения приемистости блоков. Для практической реализации этого способа отключения регенеративных отборов необходима разработка специальной системы автоматического управления обратными клапанами, которая, обеспечивая повышение приемистости блока, сохранила бы защитные функции обратных клапанов. На рис. 5.14 представлена как возможный вариант предложенная ЦКТИ схема регулирования мощности, в которой импульс "ф противоаварийной автоматики энергосистемы действует на ЭГП системы управления клапанами ЧВД и на регулятор мощности, управляющий отборами пара на регенерацию.
Как правило, отключение регенеративных подогревателей с целью быстрого набора мощности необходимо на весьма короткое время, определяемое переходом парогенератора к новому режиму, после чего они снова будут включены. Обычно за столь короткий промежуток времени не возникает значительных температурных изменений в оборудовании блока.
Положительно оценивая возможность быстрого отключения подогревателей высокого давления как скрытый вращающийся резерв энергосистемы, следует вместе с тем иметь в виду, что все же оно сильно изменяет режимы как турбины, так и подогревателей. Поэтому не следует злоупотреблять этой возможностью повышения приемистости, используя ее только при возникновении действительно аварийных ситуаций в энергосистемах.

1 вопрос Объясните на каких станциях (теплофикационный отбор пара) из турбины

Регулируемый отбор пара из турбины, используемый для снабжения потребителей тепловой энергией.

ТЭЦ отборы пара

Производственный Теплофикационный отбор пара из турбины, используемый для производственных целей

Конденсационные турбины.

Вероятно, этот тип турбин самый распространённый (маркировка — К). В комплекте с самой такой турбинной обязательно есть ещё устройство для сбора отработавшего пара — конденсатор. Весь отработавший пар в такой турбине поступает в конденсатор.

Конденсационные паровые турбины предназначены для выработки электричества. Т.е. такие турбины ставят наГРЭС. На ТЭЦ ставят, в основном, другого типа турбины. Весь пар с котла поступивший в такую турбину совершает работу для получения электроэнергии. Тепловую энергию с таких турбин не получают, за редкими исключениями.

Теплофикационные турбины.

Турбины типа — Т. Этот вид турбин устанавливают на ТЭЦ, т.е. там, где помимо выработки электричества, ещё нужно получать тепловую энергию — отопление и горячее водоснабжение.

У теплофикационных турбин существуют регулируемые теплофикационные отборы пара. Регулировка осуществляется поворотной диафрагмой. Пар с такого отбора поступает в сетевые подогреватели — теплообменники, где пар передаёт своё тепло сетевой воде.

Теплофикационные турбины, как правило, могут работать и в конденсационном режиме, например, в летнее время. В таком случае пар на сетевые подогреватели не поступает, а весь используется для выработки электричества.

Теплофикационные турбины с промышленным отбором пара.

Маркировка таких турбин — ПТ.

Промышленный отбор пара означает то, что часть пара с таких турбин уходит на какое-либо стороннее производство (завод, фабрику и т.д.). Пар может возвращаться обратно на электростанцию в виде конденсата, а может и полностью теряться.

Такие турбины в настоящее время практические не устанавливают. В советское время их устанавливали на ТЭЦ вблизи крупных промышленных предприятий — химических комбинатов, деревообрабатывающих заводах и т.д..

Противодавленческие турбины.

Противодавленческие турбины имеют маркировку — Р. В составе таких турбин отсутствует конденсатор, а весь отработавший пар идёт с каким-либо небольшим давлением стороннему потребителю.

Этот тип турбин в настоящее время, как и турбины ПТ, не находит применение за редким исключением. После распада Советского Союза многие такие турбины «пылились» без дела, так как отсутствовал внешний потребитель отработавшего пара. Без потребителя пара невозможна и их эксплуатация, а значит и выработка электричества.

2 вопрос Схема Узо

Каждое защитно-отключающее устройство в зависимости от параметра, на который оно реагирует, может быть отнесено к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др. Ниже в качестве примера рассмотрено два типа таких устройств.

Защити отключающие устройства, реагирующие на напряжение корпуса относительно земли, имеют назначение устранить опасность поражения током при возникновении на заземленном или запуленном корпусе повышенного напряжения. Эти устройства являются дополнительной мерой защиты к заземлению или занулению.

Принцип действия — быстрое отключение от сети установки, если напряжение ее корпуса относительно земли окажется выше некоторого предельно допустимого значения Uк.доп, вследствие чего прикосновение к корпусу становится опасным.

Принципиальная схема защитно-отключающего устройства, реагирующего на напряжение корпуса относительно земли: 1 — корпус; 2 — автоматический выключатель; НО — катушка отключающая; H — реле напряжения максимальное; R3 — сопротивление защитного заземления; RB — сопротивление вспомогательного заземления

3 вопрос Допустимые режимы работы трансформаторов в нормальных условиях и в аварийных ситуациях в энергосистеме

Нормальными режимами работы считаются такие, на которые рассчитан трансформатор и при которых он может длительно работать при допустимых стандартами или техническими условиями отклонениях основных параметров (напряжение, ток, частота, температура отдельных элементов) и нормальных условиях работы (климат, высота установки над уровнем моря). Номинальные значения основных параметров трансформатора указаны на его щитке и в паспорте

Эксплуатация трансформатора допускается только при условии защиты его обмоток вентильными разрядниками или ограничителями перенапряжения,

Нейтрали обмоток высшего напряжения трансформаторов напряжением 110 кВ, с неполной изоляцией со стороны нейтрали, должны быть заземлены наглухо, за исключением случаев, обусловленных в п.7.1.5. Трансформаторы напряжением до 35 кВ могут работать с изолированной нейтралью, заземленной через дугогасящую катушку (дугогасительный реактор). При суммарном токе дугогасящих катушек более 100 А присоединять их к одному трансформатору следует по согласованию с заводом – изготовителем.

Длительная работа трансформатора допускается при мощности не более номинальной при превышении напряжения, подводимого к любому ответвлению обмотки ВН, СН и НН, на 10 % сверх номинального напряжения данного ответвления обмотки. При этом напряжение на какой – либо обмотке трансформатора на должно превышать наибольшего рабочего напряжения для данного класса напряжения

Нагрузочные режимы

В зависимости от характера суточного или годового графика нагрузки и температуры охлаждающей среды допускаются систематические и аварийные перегрузки трансформатора. Допустимые систематические перегрузки превышают номинальную нагрузку трансформатора, однако они не вызывают сокращение срока его службы, так как при этом износ витковой изоляции не превышает нормального. Допустимые аварийные перегрузки трансформатора вызывают повышенный, в сравнении с нормальным, износ витковой изоляции, что может привести к сокращению установленного срока службы трансформатора, если повышенный износ со временем не будет компенсирован нагрузкой с износом витковой изоляции ниже нормального.

Такие перегрузки допустимы при всех системах охлаждения независимо от предшествующего режима, температуры охлаждающего воздуха и места установки трансформаторов при условии, что температура масла в верхних слоях не выше 115°С. Помимо этого, для маслонаполненных трансформаторов, работающих с коэффициентом начальной нагрузки К1 < 0,93, допускается перегрузка на 40 % сверх номинального тока не более 5 суток на время максимумов нагрузки общей продолжительностью не более 6 ч в сутки при принятии всех мер для усиления охлаждения трансформатора.

При переменной нагрузке на подстанцию с несколькими трансформаторами необходимо составить график включений и отключений параллельно работающих трансформаторов с тем, чтобы добиться экономичных режимов их работы.

В реальных условиях приходится несколько отклоняться от расчетного режима с тем, чтобы число оперативных переключений каждого трансформатора не превышало десяти в течение суток, т. е. не приходилось бы отключать трансформаторы менее чем на 2 - 3 ч.

При параллельной работе трансформаторов суммарная нагрузка на трансформаторную подстанцию должна обеспечить достаточную нагрузку каждому из них, о чем судят по показаниям соответствующих амперметров, установка которых для трансформаторов номинальной мощностью 1000 кВА и выше обязательна.