Утилизация тепловой энергии. Бесплатная электроэнергия из бросового тепла - генераторы ORC

Cтраница 1


Утилизация низкотемпературной тепловой энергии в конденсаторах паровых установок и теплообменных аппаратах газовых установок принципиально может рассматриваться как одна из возможных областей применения термоэлектричества.  

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов - вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов; во-вторых - повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки; в-третьих, - возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло - и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло - и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.  

Установка предназначена для утилизации тепловой энергии сбросного (отработавшего) пара из автоклавов в действующем производстве силикатного кирпича. Автоклавная обработка кирпича-сырца насыщенным водяным паром является завершающей стадией при изготовлении силикатного кирпича, потребляющей значительное количество энергоресурсов. В связи с этим вопрос обеспечения более полного использования тепловой энергии отработавшего пара после автоклавов и рекуперации образующегося конденсата является актуальной задачей.  

Наиболее часто встречающиеся схемы утилизации тепловой энергии отходящих газов поршневых двигателей включают оборудование для производства пара с давлением до 15 кг / см, или горячей воды с температурой до 100 С, или прямое использование тепла отходящих газов в процессах сушки.  

Это позволило примерно удвоить утилизацию тепловой энергии и довести ее до 22 млн. Гкал в 1985 г. Реконструкция блоков теплообмена на 12 действующих установках первичной переработки нефти и модернизация технологических печей позволили сэкономить в одиннадцатой пятилетке почти 1 млн. т условного топлива. За счет использования в качестве топлива дополнительного количества нефтезаводского газа, который пока сжигается в факелах, а также внедрения 450 совершенных воздухоподогревательных устройств сэкономлено 0 5 млн. т условного топлива. За годы одиннадцатой пятилетки в отрасли сэкономлено около 900 млн. кВт - ч электроэнергии, 1 8 млн. т условного топлива.  

Эти блоки (рис. 3.49) предназначены для утилизации низкопотенциальной тепловой энергии вентиляционных выбросов за счет конвекции в блоках теплоутилизаторов, использующих в качестве теплоносителя водные растворы гликоля и этиленгликоля различных концентраций.  

Наряду с преимуществами метод сжигания нефтешламов имеет ряд недостатков, основными из которых являются сложность утилизации тепловой энергии, громоздкость оборудования, загрязнение атмосферы, что не всегда позволяет сделать вывод о нецелесообразности использования данного метода.  

Описываемая схема установки использования тепла сбросного пара и рекуперации конденсата позволяет в полном объеме высокоэффективно осуществлять утилизацию тепловой энергии сбросного пара и возвратить образующийся конденсат для повторного его использования как в технологическом процессе, так и в замкнутой системе водоснабжения для получения насыщенного пара на котельной установке.  

Ведение технологического процесса на особо сложных установках различных систем для раздельного и одновременного сжигания жидких, твердых и газообразных отходов химических производств, связанных технологически с утилизацией тепловой энергии и работающих на твердом, жидком или газообразном топливе.  

Ведение технологического процесса сжигания отходящих газов, природного газа, промышленных стоков, кубовых остатков и твердых отходов в печах сжигания разных конструкций с одновременным руководством аппаратчиками более низкой квалификации, а также обслуживание сложных установок различных систем для сжигания жидких, газообразных или твердых отходов химических производств, не связанных технологически с утилизацией тепловой энергии или химического сырья.  

Существует ошибочная точка зрения, что использование низкопотенциального тепла этого источника мало целесообразно. В то же время утилизация тепловой энергии пародистил-лятных фракций позволила бы значительно сократить расход оборотной (или прямоточной) воды, а также уменьшить тепловую мощность печей. Если лишь 50 % тепла, снимаемого в конденсаторах и холодильниках, использовать для предварительного подогрева сырья, то нефть с начальной температурой 10 С можно будет подогревать до 82 С.  

Нагрев холодной тюменской нефти, отобранной на головных сооружениях в одном из районов Татарии, и последующее ее-транспортирование в течение 10 - 180 мин. Отсюда следует, что обессоливание тюменской нефти при мягких режимных параметрах может быть осуществлено на пути ее движения к НПЗ и в тех случаях, когда эффект саморазогрева нефти при транспортировании будет устранен, но имеются резервы подлежащей утилизации тепловой энергии.  

При этом не только загрязняется воздушная среда, но и не используется образующаяся тепловая энергия. Ряд специалистов считает, что оно может быть оправдано только в том случае, если сочетаются утилизация тепловой энергии и очистка отходящих газов. Такой процесс происходит на мусоросжигательных станциях (заводах), которые имеют паровые или водогрейные котлы со специальными топками. Температура в топке должна быть не менее 1000 С, чтобы сгорели все дурнопахнущие примеси. Однако перед выбросом в атмосферу газы следует очищать, например, с помощью электрических фильтров.  

С практической точки зрения следует отметить, что если известна конечная ступень технологии переработки и утилизации ПО, то их следует классифицировать, основываясь в первую очередь на этой технологии. Конечным этапом обезвреживания большинства неутилизируемых городских ПО (исключая особо токсичные, а также инертный строительный мусор и т.п.) в настоящее время является сжигание. Это подтверждается опытом централизованного обезвреживания ПО в таких странах, как Дания, Финляндия, ФРГ, Швеция и др. При такой технологии важно сгруппировать все отходы так, чтобы они органически вливались в ту или иную технологическую цепочку, ведущую к конечной цели - - термическому обезвреживанию отходов с утилизацией тепловой энергии и других полезных продуктов. Исходя из этого нужно выделить горючие и негорючие отходы, внутри которых, в свою очередь, также есть различия в свойствах, фазовом состоянии, способах обработки и т.п. Отдельно следует выделить такие отходы, которые могут взаимно нейтрализовать друг друга или служить, например, реагентами для обработки возникающих сточных вод. Отходы, содержащие в себе особо полезные компоненты, например цветные металлы, должны выделяться и обрабатываться отдельно, чтобы конечный продукт не смешивался с менее ценными шламами. Необходимо определить тепловой баланс между горючими и негорючими отходами, внутреннюю потребность в тепле станции централизованного обезвреживания, необходимость в дополнительном топливе или объем и пути утилизации избыточного тепла. Это должно определять характер анкет или бланков единовременного учета отходов.  

Экология потребления.Технологии: Тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.

Благодаря быстрой индустриализации, мир увидел развитие целого ряда технологий, которые генерируют бросовое тепло. До сих пор это тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии. Теперь, когда физики в Университете штата Аризона находят новые способы генерации энергии за счет тепла, эта мечта на самом деле становится реальностью.

Исследовательская группа университета штата Аризоны:

Профессор физики Чарльз Стэффорд является руководителем исследовательской группы, и он вместе со своей командой работал над переработкой отходов в энергию. Результат их работы был опубликован в научном журнале ACS Nano.

Ученый и соискатель степени доктора наук в Колледже Оптических Наук Аризоны Джастин Бергфильд разделяет мнение, что "Термоэлектричество может преобразовать тепло непосредственно в электрическую энергию устройством без движущихся частей. Наши коллеги в этой области говорят, что они уверены в том, что устройство, компьютерную модель которого мы разработали, может быть построено с характеристиками, которые мы видим в нашем моделировании ".

Преимущества:

Ликвидация озоноразрушающих материалов: Использование сбросного тепла как форма электроэнергии имеет несколько преимуществ. Нужно принять во внимание, что с одной стороны теоретическая модель молекулярного термоэлектрического устройства поможет в повышении эффективности автомобилей, электростанций, заводов и панелей солнечных батарей, а с другой, что термоэлектрические материалы, такие как хлорфторуглероды (CFC), которые разрушают озоновый слой, устарели.

Более эффективная конструкция:

Руководитель исследовательской группы Чарльз Стэффорд надеется на положительный результат. Он ожидает, что разработанный ими проект термоэлектрического устройства будет лучше в 100 раз предидущих достижений. Если конструкция, которую они с командой сделали, действительно заработает, то сбудется мечта всех тех инженеров, которые хотели генерировать энергию из отходов, но не имели требуемого эффективного и экономичного устройства для этого.

Нет необходимости в механизмах:

Изобретенное Бергфильдом и Стэффордом устройство теплового преобразования не требуют каких-либо машин или озоноразрушающих химических веществ, как это было в случае с холодильниками и паровыми турбинами, которые ранее были использованы для преобразования отходов в электрическую энергию. Теперь же эта работа выполняется прослойкой резиноподобного полимера, что зажат между двумя металлами и действует как электрод. Термоэлектрические устройства являются автономными, не нуждаются в двигательных процессах, просты в изготовлении и обслуживании.

Утилизация отходов энергии:

В основном энергию вырабатывают автомобили и промышленность. Автомобильные и промышленные отходы могут быть использованы для выработки электроэнергии путем покрытия выхлопных труб тонким слоем разработанного материала. Также физики решили воспользоваться законом квантовой физики, который, впрочем, не очень часто используется, но дает отличные результаты, когда речь идет о генерации энергии из отходов.

Преимущества в сравнении с солнечной энергией:

Молекулярные термоэлектрические устройства могут помочь в генерации энергии солнца и уменьшить зависимость от фотоэлементов снизким КПД

Как это работает:

Работая с молекулами и размышляя как их использовать для термоэлектрического устройства Бергфильд и Стэффорд не нашли ничего особенного, пока один студент не обнаружил, что эти молекулы имеют свою специальную функцию. Большое количество молекул было зажато между электродами и подвергались воздействию стимулирующего источника тепла. Поток электронов вдоль молекул был разделен на две части: первая часть потока сталкивалась с бензольным кольцом, а вторая с потоком электронов вдоль каждой следующей ветви кольца.

Схема бензольного кольца была разработана таким образом, что электрон перемещается на большее расстояние по кругу, что является причиной выпадения из кольца двух электронов, достигающих друг друга в фазе на другой стороне бензольного кольца. Волны гасят друг-друга на стыке, а разрыв в потоке электрического заряда вызваный разницей температур создает напряжение между электродами.

Термоэлектрические устройства, разработанные Бергфильдом и Стэффордом могут генерировать мощность, которая зажжет 100 ваттную лампочку или повысить эффективность автомобиля на 25%.опубликовано

ООО «ТМ МАШ» производит системы утилизации (когенерации) тепла дизель-генераторных установок (ДГУ, ДЭС), газопоршневых установок (ГПУ, ГПА, ГПГУ) и газотурбинных установок (ГТД). Система утилизации тепла для газовых или дизельных генераторных станций – комплекс тепломеханического оборудования и устройств, которые позволяют утилизировать тепловую энергию ряда ГПУ или ДГУ, объединять потоки теплоносителя в сборном тепловом пункте и выдавать тепло потребителю.

Фактическая оценка эффективности утилизации тепла: Расчет окупаемости СУТ

Основным элементом системы утилизации тепла (СУТ) является тепловой модуль (ТМ), также называемый блоком или модулем утилизации тепла (БУТ). Именно тепловой модуль утилизирует тепло от каждой электростанции, которое объединяется с теплом от других тепловых модулей и через сборный тепловой пункт выдается потребителю. Данная система и является системой утилизации тепла. Объединение СУТ с системой охлаждения ДГУ и ГПУ (радиаторы охлаждения, они же сухие градирни, насосы и прочая обвязка) дает законченную тепломеханическую систему объекта.

Примеры упрощенных тепловых схем:

ТМ позволяет в значительной степени повысить суммарный КПД — коэффициент полезного действия (коэффициент использования топлива) теплоэлектроагрегата, доведя его значение до 85-90%. Таким образом, основной задачей системы утилизации тепла является экономия затрат на выработку тепла, соответственно, внедрение СУТ в полной мере является энергосберегающей технологией. С примером расчета окупаемости системы утилизации тепла можно ознакомиться на этой странице .

Во время работы двигателя внутреннего сгорания (ДВС) тепловая энергия утилизируется в ТМ следующим образом:

  • Утилизатор тепла антифриза (УТА) снимает тепло антифриза двигателя – вместо охлаждения антифриза на радиаторе охлаждения (сухая градирня) антифриз отдает свою тепловую энергию на нагрев воды потребителя. УТА представляет собой теплообменник кожухотрубчатого или пластинчатого типа, работающий по схеме «вода/антифриз» либо «антифриз/антифриз» (смотря какой сетевой теплоноситель используется у заказчика).
  • Утилизатор тепла дымовых (отходящих) газов (УТГ) снимает тепло с уходящих выхлопных газов двигателя: температура уходящих дымовых газов на выходе из двигателя составляет порядка 450-550 °С, температура газов на выходе из УТГ составляет 120–180 °С. Данное понижение температуры позволяет обеспечить существенный нагрев воды потребителя. УТГ – кожухотрубчатый теплообменник, работающий по схеме «вода/дымовые газы» либо «антифриз/дымовые газы».

Общая величина утилизируемой тепловой энергии сопоставима с вырабатываемой электроэнергией – в среднем на 100% кВт полученной электроэнергии вырабатывается 110%-130% кВт тепла.

В случае, если генератором электрической энергии является турбинная установка, в состав теплового модуля входит только утилизатор тепла дымовых газов. Тепловая мощность УТГ определяется параметрами турбины, но обычно составляет от 120% до 145% от вырабатываемой электрической энергии.

Расчет требуемого расхода сетевого теплоносителя:

Исходные данные
Теповая мощность модуля, кВт
Температура жидкости на входе в ТМ, C
Температура жидкости на выходе в ТМ, C
Температурная дельта, С
Требуемый расход: кг/ч м3/ч л/с
Сетевой теплоноситель — вода
Сетевой теплоноситель — антифриз

Варианты исполнения

Утилизировать тепло можно как отдельно с контуров антифриза либо выхлопных газов, так и с обоих контуров одновременно. Таким образом, получаются следующие варианты исполнения тепловых модулей:

  • Тепловой модуль в полной заводской готовности (ТМ) . Состоит из двух утилизационных теплообменников, переключателя потока газов, байпасного трубопровода, трубопроводной обвязки, рамного основания, комплекта КИПиА, шкафа автоматического управления (ШАУ ТМ).
  • Тепловой модуль утилизации тепла выхлопных газов (ТМВГ) . Состоит из утилизатора тепла выхлопных газов (УТГ), переключателя потоков газа с электроприводом, рамного основания, байпасной линии газовыхлопа и комплекта КИПиА.
  • Тепловой модуль утилизации тепла антифриза (ТМВВ) . Включает в себя утилизатор тепла антифриза (УТА), трубопроводную обвязку, трехходовые клапаны и ШАУ ТМ (при необходимости). В тепловых модулях, утилизирующие тепло по обоим контурам, ТМВГ и ТМВВ могут располагаться как на едино раме, так и раздельно, например ТМВВ внутри контейнера, а ТМВГ на крыше, либо на разных этажах здания энергоцентра. При заказе ТМВГ либо ТМВВ в комплект поставки могут быть включены соответствующие усеченные шкафы управления.

Комплектация

Традиционно тепловой модуль в полной заводской готовности включает в себя:

  • Утилизатор тепла выхлопных газов (УТГ)
  • Утилизатор тепла антифриза (УТА)
  • Трубопроводную обвязку по линии антифриза и сетевой воды
  • Байпасный трубопровод с затворами поворотными

Дополнительно в комплект поставки блока утилизации тепла может входить:

  • Насосы прокачки антифриза и сетевой воды
  • Защитный кожух для установки ТМ на улице / крыше контейнера
  • Система утилизации низкопотенциального тепла
  • Сетевой теплообменник

Конструктивные особенности и преимущества наших ТМ

  • Теплообменные трубки из нержавеющей стали 12х18н10т увеличивают долговечность изделия
  • Жаротрубное исполнение котлов-утилизаторов позволяет легко очищать трубки от загрязнения, конструкция жаротрубного теплообменника более компактна.
  • Компенсатор на кожухе УТГ защищает теплообменник от повреждений в случае аварийного нарушения условий эксплуатации
  • Возможность изготовления утилизаторов выхлопных газов с пониженным уровнем аэродинамического сопротивления (до 2 кПа)
  • Кожухотрубное исполнение УТА облегчает его ремонт и очистку в условиях низкой транспортной доступности (нет необходимости заменять прокладки между пластинами)
  • На этапе согласования с заказчиком компоновки наших тепловых модулей мы согласовываем монтажные, присоединительные и габаритные параметры тепловых модулей, что обеспечивает удобных подвод сетевой воды, антифриза и дымовых газов
  • Тепловые модули изготавливаются на рабочее давление жидких сред – 0,6МПа.
  • Все тепловые модули в сборе, а также и по отдельным узлам проходят обязательные гидравлические испытания на нашем производстве. Испытательное давление – 0,8 МПа
  • Мы можем изготавливать модули на давление до 4 МПа
  • Помощь в проектировании и подборе смежных систем и оборудования
  • Гибкий подход к требованиям и пожеланиям заказчика

Система утилизация тепла «ТМ МАШ». Примеры:

ООО «ТМ МАШ» изготовило СУТ практически для всех ДГУ и ГПУ, которые представлены в России. Ниже приведены примеры различных вариантов построения когенерационных модулей:

  • Система утилизации тепла для ГПУ Caterpillar G3618B
    • Открытого исполнения (располагается внутри отапливаемого помещения);
    • Утилизируется вся тепловая мощность (и выхлоп, и охлаждающая жидкость);
    • Объект: тепличное хозяйство в Ленобласти;
  • Когенератор тепла для ГПУ Caterpillar G3412
    • Кожухного (капотного) исполнения (располагается на крыше контейнера);
    • Полный тепловой модуль;
    • Объект: промышленное производство недалеко от Магнитогорска;
  • Утилизатор тепла дымовых газов ДЭС Caterpillar D3516
    • Открытого исполнения для расположения в здании электростанции;
    • Теплосъем с выхлопа;
    • Объект: муниципальная дизельная теплоэлектростанция в пос. Тура (Красноярский край);
  • Тепловой модуль утилизации тепла антифриза для ДГУ на базе ДВС Caterpillar C18
    • Открытого исполнения для расположения в здании энергоцентра сбоку от ДГУ;
    • Утилизация тепла охлаждающей жидкости;
    • Объект: муниципальная дизельная теплоэлектростанция на о. Сахалин;
    • Особенность: утилизатор тепла антифриза построен на базе пластинчатого теплообменника;
  • Когенерационный модуль для газопоршневой установки Cummins 315GFBA
    • Открытого исполнения (в каркасе – для расположения внутри помещения на втором этаже);
    • Теплосъем только с отходящих дымовых газов;
    • Объект: физкультурно-оздоровительный комплекс СПб;
  • Утилизатор тепла ГПА Cummins 315GFBA
    • Открытого исполнения для расположения внутри помещения рядом с ГПУ;
    • Утилизируется тепло с обоих контуров (полный ТМ);
    • Объект: промышленное производство в г. Миасс;
  • Котел-утилизатор тепла ГПУ Cummins 1750N5C
    • Изготавливали только непосредственно котел-утилизатор (УТГ);
    • Утилизируется тепло дымовых газов;
    • Объект: котельная в г. Сочи;
  • Полные тепловые модули для дизель-генераторных установок Cummins KTA 50G3 и KTA 38G5
    • Открытого исполнения для расположения внутри помещения рядом с ДГУ;
    • Теплосъем с двух контуров (контур выхлопных газов и контур охлаждающей жидкости);
    • Объект: муниципальная ТЭС в Якутии (пос. Оленек);
    • Особенность: Утилизатор тепла дымовых газов водотрубного типа (стандартный котел-утилизатор производства ТМ МАШ имеет конфигурацию жаротрубного теплообменника), утилизатор тепла антифриза на базе пластинчатого теплообменника;
  • Утилизатор тепла дымовых газов ГПУ GE Jenbacher JMS 416
    • Открытого исполнения для расположения на опорах над существующим контейнером с ГПУ;
    • Теплосъем с выхлопа;
    • Объект: логистический терминал в Челябинской области;
    • Особенность: Тепловой модуль устанавливался на объекте с существующей блок-контейнерной газопоршневой установкой;
    • Открытого исполнения для расположения на крыше помещения над ГПУ;
    • Полная утилизация тепла;
    • Объект: гостиница и ТРК в Москве;
    • Особенность: ГПУ работает на сжиженном газе (СУГ – сжиженный пропан-бутан);
  • Когенерация тепла дымовых газов микротурбинной установки Capstone C1000
    • Открытого исполнения для расположения внутри помещения рядом с микротурбинным агрегатом;
    • Теплосъем с выхлопа (кроме выхлопных газов на турбинах и микротурбинах больше нигде теплосъем не осуществить);
    • Объект: торговый комплекс в Магнитогорске;
    • Особенность: Утилизатор тепла водотрубного типа (стандартный котел-утилизатор производства ТМ МАШ имеет конфигурацию жаротрубного теплообменника);
  • Блоки утилизации тепла для ГПУ Камаз
    • Тепловой модуль открытого исполнения на раме для установке в здании;
    • Полные тепловые модули;
    • Объект: котельная в г. Саратов;
  • Утилизатор тепла выхлопных газов и антифриза газопоршневых агрегатов на базе ДВС Daewoo Doosan
    • Открытого исполнения для расположения контейнерах с газопоршневыми агрегатами;
    • Полная утилизация тепла;
    • Объект: автомойка грузовых автомобилей в пос. Синявино (Ленобласть);
  • Блок утилизации тепла дымовых газов ДГУ УДМЗ 6ДМ-21ЭЛ-М (Уральский дизель-моторный завод)
    • Открытого исполнения для расположения на контейнере;
    • Теплосъем с выхлопа;
    • Объект: муниципальная ДЭС для крайнего севера;
  • Теплоутилизатор дымовых газов ГПУ Arrow (Китай)
    • Открытого исполнения для расположения рядом с ГПУ капотного исполнения;
    • Теплосъем с выхлопа;
    • Объект: таксопарк в г. Курган;

В программе комплексного использования (утилизации) углеотходов достаточно перспективной является проблема утилизации тепловых выбросов.

Разработка способов и средств борьбы с тепловыми загрязнениями окружающей среды и утилизация тепловой энергии актуальны. В отрасли затраты на топливо и энергию в среднем составляют 30% общих затрат на добычу угля. В то же время единовременные затраты (капитальные вложения) на строительство утилизационных установок, отнесенные к 1 т сэкономленного топлива, в 2--2,5 раза меньше, чем расходы на добычу первичного топлива. По оценкам специалистов эффективность капитальных вложений в производство энергии при использовании вторичных энергетических ресурсов в 2--3 раза выше чем в топливно-энергетической отрасли промышленности. Себестоимость тепла от утилизационных установок в 4--6 раз ниже, чем от энергосистем, и в 8--12 раз ниже, чем от собственных котельных отрасли.

Однако повышение уровня использования вторичных энергетических ресурсов сдерживается из-за отсутствия специального утилизационного оборудования и энергосберегающих технологий.

Использование тепловых выбросов получает все большее распространение и рассматривается как часть проблемы использования побочных или вторичных энергетических ресурсов. Отходами некоторых производств являются пары, газы, горячая вода, шлаки и другие выбросы, температура которых превышает температуру окружающей среды от нескольких градусов до 800°С, а в отдельных случаях и до 1000°С. В разнообразии температурных уровней, режимов выхода и характеристик выбросов разных производств заключена причина различного подхода к использованию тепловых выбросов. Наиболее распространена регенерация тепловых выбросов (возвращение теплоты в технологические процессы) или их утилизация для других целей.

Наиболее широко тепловые выбросы используются в черной металлургии, химической и нефтехимической промышленности, цветной металлургии и машиностроении. Широко изучаются возможности дальнейшего расширения их использования. Аппараты и технологии утилизации тепловых выбросов получили применение на предприятиях теплоэнергетики, на цементных заводах и других предприятиях.

В числе практических мероприятий по использованию сбросного тепла энергетических объектов можно назвать действующую в Москве опытно-промышленную теплицу с плоской водонаполненной кровлей, по которой стекает вода из градирни при температуре 32--42 °С. При расходе воды 100 дм3/м2*ч температура в теплице поддерживается на уровне 22--24°С.

Изучаются возможности использования сбросов тепловых и атомных электростанций для орошения подогретой водой сельскохозяйственных угодий, продления навигации на замерзающих реках, для опреснительных установок и т. п.

Ряд организаций разрабатывает теплоиспользующие холодильные машины, теплообменники с использованием низкокипящих рабочих тел и другие установки, направленные на утилизацию низкотемпературных (менее 150°С) газообразных и жидких выбросов предприятий химической, пищевой и перерабатывающей промышленности.

Низкопотенциальное тепло, сбрасываемое технологическими установками, может быть использовано в опреснительных установках, установках кондиционирования для теплоснабжения, а в сельском хозяйстве -- для орошения водой с более высокой температурой, что оказывает положительное влияние на урожай, для продления навигации и т.д.

Все более интенсивно изучаются возможности использования тепловых выбросов коммунально-бытового хозяйства. Важным практическим решением этих задач является сооружение заводов по сжиганию коммунально-бытовых отходов, где предусматривается комплексное использование теплоты и всех негорючих отходов.

В настоящее время значительная часть предприятий и коммунально-бытовых потребителей используют тепловую энергию в виде горячей воды, воздуха, газов и пара.

Непроизводительный расход тепловой энергии большинством потребителей связан с недостаточным учетом этого фактора при конструировании, с потреблением тепловой энергии более высоких, чем нужно, параметров и отсутствием четкого регулирования потребления, не предусмотрено полное использование теплоты, получаемой с нагретой водой, воздухом или паром. Одними из факторов экономии тепловой энергии являются использование надежной тепловой изоляции и поддержание ее в исправности. Широкие возможности снижения тепловых выбросов в промышленности возникают, если их использовать в качестве вторичных энергетических ресурсов.

Значительная экономия тепловой энергии возможна за счет улучшения эксплуатации теплопотребляющих установок и их усовершенствования, а в жилищно-коммунальном секторе -- за счет оптимизации тепловых режимов сетей теплоснабжения, улучшения теплового конструирования зданий, сокращения теплопотерь, а также за счет других мероприятий, в том числе использования термотрансформаторов -- тепловых насосов.

Велики резервы экономии энергоресурсов за счет утилизации тепла вентиляционных выбросов. Использование этого источника экономии в первую очередь зависит от обеспеченности предприятий соответствующим оборудованием. Для решения этого вопроса, в частности, предусматривается организовать производство новых видов теплоутилизационного оборудования для системы вентиляции промышленных и общественных зданий и сооружений, включая вращающиеся и пластинчатые утилизаторы с тепловыми трубами, утилизаторы с промежуточными теплоносителями и др. Вносятся необходимые изменения в строительные и технологические нормы и правила по проектированию и строительству промышленных и общественных зданий и сооружений, что позволит обеспечить широкое применение теплоутилизационного оборудования в системах вентиляции и отопления.

При утилизации теплоты отходящих газов могут происходить нагревание воздуха или воды и последующая их подача в системы вентиляции и водяного отопления.

Одним из видов вторичных энергоресурсов на промышленных предприятиях является вода, ассимилирующая теплоту от технологического оборудования (в том числе от воздушных компрессоров) и охлаждаемая затем в системах оборотного водоснабжения, Потребителями низкотемпературной теплоты могут быть системы вентиляции, воздушного отопления, кондиционирования воздуха и горячего водоснабжения.

В последнее десятилетие во многих странах мира большое внимание уделяется созданию и внедрению тепловых насосов. Особая важность этой проблемы определяется весьма крупными масштабами возможной экономии энергоресурсов. Тепловые насосы позволяют утилизировать низкопотенциальную энергию практически любых промышленных и бытовых тепловых выбросов. При этом сам тепловой насос является полностью или в значительной степени экологически чистым источником энергии. Наиболее перспективно внедрение тепловых насосов в пищевой промышленности. Здесь крупными потребителями тепловой энергии являются, например, чайные фабрики, где проводится термическая обработка зеленого листа чая -- завяливание и сушка.

Эффективная система введена в строй на одном из сыромаслозаводов недалеко от Тбилиси. Теплонасосная установка здесь заменяет как холодильную установку с градирней, так и котельную. Отбираемое от охлаждения тепло идет на пастеризацию молока.

Еще одно направление -- санитарно-курортное хозяйство. В качестве первого опыта тепловые насосы установлены в популярной здравнице Гагра. Там, как и на других курортах Черноморского побережья Грузии, котельные на угле и мазуте из экологических соображений уже давно были заменены электрокотлами. Но теперь им предстоит уступить место теплонасосным установкам, потребляющим в три-четыре раза меньше электроэнергии.

В настоящее время разработана программа перевода всей чайной промышленности Грузии, а также ряда санаториев на теплонасосную систему теплохладоснабжения. Ее эффективность с точки зрения сбережения энергоресурсов несомненна. Кроме того, она обладает и другим, чрезвычайно важным достоинством -- полностью исключается тепловое и химическое загрязнение окружающей среды.

Использование тепла сточных вод систем канализации для теплоснабжения зданий с помощью тепловых насосов дает возможность экономить природное топливо и не загрязнять окружающую среду вредными выбросами при сжигании его в традиционных котельных.

Для отопления и горячего водоснабжения жилых и общественных зданий применяются тепловые насосы парокомпрессионного типа с использованием низкопотенциального тепла сточных вод канализации.

Институтом ВНИИОСуголь определены возможные области эффективного использования тепловых насосов в угольной и горнорудной промышленности, а также источники получения тепла: компрессорные и вентиляторные установки, шахтные и сточные воды.

На основании проведенных исследований разработана природоохранная энергосберегающая технология охлаждения шахтных компрессоров с утилизацией теплоты оборотной воды с помощью тепловых насосов.

Технология предназначена для охлаждения и утилизации тепла оборотной воды стационарных шахтных компрессорных установок. Принцип действия основан на использовании холодильной машины, работающей в режиме теплового насоса, для охлаждения оборотной воды и передачи трансформируемого тепла этой воды потребителю. Горячая вода, полученная при утилизации бросового тепла, может быть использована для подпитки котлов, бытовых нужд, в тепличном хозяйстве, в системе отопления зданий.

Утилизация тепловых выбросов в угольной промышленности страны представляет собой яркий пример решения средозащитной проблемы, которое обеспечивает комплексный социально-экономический эффект, проявляющийся в повышении эффективности общественного производства и уровня жизни населения. В основе этого решения лежит создание таких энергосберегающих технологий, устройств и мероприятий, внедрение которых не требует больших капитальных вложений, а широкое их использование обеспечивает значительный экономический эффект, одновременно способствуя снижению экологической напряженности.

Руководительпроекта:

Смоленск -2007г.

1.Введение………………………………………………………..3

2.Структура АЭС и основные источники тепловой энергии…4

2.1.Реакторы типа РБМК-1000……………………………….....4

2.2. Реакторы типа ВВЭР-1000………………………………….5

2.3.Источники тепла для возможного дополнительного

преобразования энергии на АЭС………………………………..7

3.Теплоэнергетические преобразователи……………………….9

Известно, что в настоящее время разработаны достаточно эффективные полупроводниковые преобразователи теплоты в электроэнергию, использование которых на АЭС может улучшить показатели эффективности и безопасности станций. Особенный интерес, на наш взгляд, является выработка электрической энергии в аварийных режимах для поддержания работоспособности систем обеспечения безопасности АЭС. Дело в том, что тепловая энергия конструктивных элементов АЭС достаточно инерционна, т. е. даже при прекращении работы реактора температура его узлов и элементов меняется достаточно медленно во времени. Следовательно, преобразование накопленного тепла в электроэнергию может обеспечить электроснабжение как систем безопасности АЭС, так и других внутренних потребителей.

Целью проекта является определение технических возможностей утилизации потерь тепловой энергии на АЭС с помощью теплоэнергетических полупроводниковых преобразователей (теплоэлектрогенераторов).

2.Структура АЭС и основные источники тепловой энергии.

Основным структурным элементом АЭС является ядерный реактор – устройство, в котором осуществляется цепная ядерная реакция деления атомов урана и происходит передача энергии деления теплоносителю (как правило – воде). Основными типами ядерных реакторов в энергетике России являются водо-водяные энергетические реакторы (ВВЭР) и реакторы большой мощности канальные (РБМК). Удельная плотность теплового потока у реакторов ВВЭР доходит до 850 кВт/м2, у реакторов РБМК значительно меньше ввиду существенно больших размеров активной зоны.

2.1.Реакторы типа РБМК-1000

Реактор РБМК (реактор большой мощности канальный) получил своё название из-за своей большой мощности. Индекс 1000 означает, что эти реакторы имеют электрическую мощность 1000 МВт при тепловой мощности в 3200 МВт.

В реакторах типа РБМК теплоносителем является кипящая вода под большим давлением (около 60 атмосфер). Замедлителем в этих реакторах является графит. Основу конструкции таких реакторов составляют прямоугольные блоки из особо чистого графита. Размером 250Х250Х500 мм. В своей форме блоки имеют цилиндрические отверстия, вследствие чего при укладке их один на другой образуется вертикальный технологический канал, в который вставляется металлическая труба из сплава циркония. Внутри металлической трубы располагаются тепловыделяющие элементы (ТВЭЛы) и проходит охлаждающая вода. Вся графитовая кладка представляет собой цилиндр диаметром около 14 метров и высотой свыше 8 метров. Для герметизации реакторного пространства графитовая кладка с боков окружена сварным металлическим кожухом, а сверху и снизу массивными стальными плитами, которые обеспечивают не только крепление графита, но и являются частью биологической защиты реактора. Около 5 % мощности реактора выделяется в графите, поэтому для предотвращения окисления графита реакторное пространство заполняют медленно циркулирующей смесью гелия (He 85-90 %) и азота (N 10-15 %). В каждом технологическом канале, а их в реакторе РБМК-1000 всего 1661, находится по две тепловыделяющих сборки, соединённых последовательно, а поскольку каждый ТВЭЛ имеет длину 3,5 метра, высота активной зоны реактора составляет 7 метров. При этом общая загрузка урана в реактор составляет 200 тонн, если обогащение урана-235 имеет количество до 2,4 %.

К основным достоинствам канальных реакторах относили отсутствие трудоёмкого и дорогостоящего корпуса, возможность наращивания мощности путем пристройки новых графитовых блоков без изменения конструкций других узлов, а также возможность замены без остановки реактора отработавших тепловыделяющих элементов на новые.

Наряду с достоинствами реакторы РБМК имеют некоторые недостатки. Поскольку в реакторах РБМК охлаждающая вода непосредственно из активной зоны попадает в парогенератор и в турбину, то их называют одноконтурными. А в одноконтурных реакторах не исключена вероятность попадания радиоактивных веществ в воду, турбогенератор, а также другие объекты станции при аварийной разгерметизации трубопроводов. Кроме того, для реакторов РБМК ввиду большей длины активной зоны, большого объема графитовой кладки и некоторых других факторов характерна неравномерность распределения нейтронов по высоте и объему, а, следовательно, неравномерность тепловыделения. Это в совокупности с особенностями изменения замедляющих свойств паровоздушной смеси в процессе работы приводит к некоторой неустойчивости работы реакторов.

На рисунке 1 приведена принципиальная схема АЭС с реактором РБМК-1000.

По рисунку видно что вода нагретая в технологических каналах до температуры 300°С по главным трубопроводам направляется от реактора к теплообменнику, где отдаёт часть своего тепла турбине, которая в свою очередь вращает парогенератор. Далее охлажденный до температуры примерно 30°С пар направляется в конденсатор и снова поступает в реактор в виде воды.

2.2.Реакторы типа ВВЭР-1000

Реакторы типа ВВЭР (водо-водяные энергетические реакторы) имеют некоторые конструктивные отличия от реакторов РБМК-1000.

Реакторы ВВЭР также как и РБМК имеют электрическую мощность 1000 МВт, но тепловая их мощность немного меньше и составляет 3000 МВт. Реакторы ВВЭР довольно тяжелые и имею массу в несколько сотен тонн.

Реакторы ВВЭР также называют корпусными реакторами. В корпусных реакторах применяется, как правило, двух контурная система использования воды. Нагретая до высокой температуры в активной зоне реактора вода поступает в теплообменник, где оставляет свое тепло, отдавая его воде второго контура. Первый и второй контуры отделены друг от друга изоляционным слоем, поэтому вода из первого контура не может попасть во второй. В этом существенное преимущество двухконтурных реакторных систем с точки зрения радиационной безопасности. В легководяных реакторах замедлителем и теплоносителем служит обыкновенная вода.

Существует две основных конструкции реакторов: BWR(boiling water reactor) – реактор с кипящей водой и PWR(pressurized water reactor) – реактор с водой под давлением. Промышленные типы этих реакторов были созданы в США в 50-х годах.

BWR – реактор прямого цикла. Охлаждающая вода циркулирует в нем, проходя через активную зону реактора, и превращается в пар внутри корпуса давления реактора. Этот пар непосредственно приводит во вращение турбину электрогенератора. Конденсат после прохождения им деаэратора поступает обратно в корпус реактора. Вследствие прямого цикла происходит загрязнение турбины радиоактивными веществами, содержащимися в паре и воде первичного контура. Поэтому турбина заключена в герметичный кожух, протечки из которого направляются обратно в первичный контур. Турбинный зал является контролируемой зоной, и во время технического обслуживания в нем необходимо применять специальные меры предосторожности.

PWR – реактор непрямого цикла. Давление в корпусе реактора является достаточно высоким для предотвращения кипения воды. Эта вода при температуре примерно 320 градусов Цельсия циркулирует по замкнутому контуру, включающему парогенератор, вырабатывая во вторичном контуре пар, который приводит в действие турбину.

Реакторы ВВЭР постоянно развивают и усовершенствуют. Первый реактор ВВЭР имел мощность 210 МВт. За 20 лет электрическая мощность блока возросла до 1000 МВт; давление первого контура возросло с 10 МПа до 16 МПа, а давление пара в парогенераторах возросло с 2,3 до 6,4 МПа; удельная напряженность активной зоны возросла с 47 до 111 кВт/литр. У реактора ВВЭР есть некоторые апробированные общие решения.