Является ли стекло веществом. Если стекло это жидкость,то почему оно бьется? История производства стекла

Виды стекла

Кварцевое стекло

Кварцевое стекло получают плавлением кремнезёмистого сырья высокой чистоты. Кварцевое стекло состоит из диоксида кремния SiO 2 и является самым термостойким стеклом: коэффициент его линейного расширения в пределах 0 - 1000 °С составляет всего 6х10 -7 . Поэтому раскаленное кварцевое стекло, опущенное в холодную воду, не растрескивается.

Температура размягчения кварцевого стекла, при которой достигается динамическая вязкость 10 7 Пуаз (10 Пахс) равна 1250 °С . При отсутствии значительных перепадов давления кварцевые изделия можно применять до этой температуры. Полное же плавление кварцевого стекла, когда из него можно изготавливать изделия, наступает при 1500-1600 °С.

Известно два сорта кварцевого стекла: прозрачный кварц и молочно-матовый . Мутность последнего вызвана обилием мельчайших пузырьков воздуха, которые при плавке стекла не могут быть удалены из-за высокой вязкости расплава. Изделия из мутного кварцевого стекла обладают почти такими же свойствами, как и изделия из прозрачного кварца, за исключением оптических свойств и большей газовой проницаемости.

Поверхность кварцевого стекла обладает незначительной адсорбционной способностью к различным газам и влаге, но имеет наибольшую газопроницаемость среди всех стекол при повышенной температуре. Например, через кварцевую трубку со стенками толщиной в 1 мм и поверхностью 100 см 2 при 750 °С за один час проникает 0,1 см 3 Н 2 , если перепад давлений составляет 1 атм (0,1 МПа).

Кварцевое стекло следует тщательно предохранять от всяких загрязнений, даже таких как жирные следы от рук. Перед нагреванием кварцевого стекла имеющиеся на нем непрозрачные пятна снимают при помощи разбавленной фтороводородной кислоты, а жировые - этанолом или ацетоном.

Кварцевое стекло устойчиво в среде всех кислот , кроме HF и Н 3 РO 4 . На него не действуют до 1200 °С С1 2 и НСl, до 250 °С сухой F 2 . Нейтральные водные растворы NaF и SiF 4 разрушают кварцевое стекло при нагревании. Оно совершенно непригодно для работ с водными растворами и расплавами гидроксидов щелочных металлов.

Кварцевое стекло при высокой температуре сохраняет свои электроизоляционные свойства. Его удельное электрическое сопротивление при 1000 °С равно 10 6 Омхсм.

Обычное стекло

К обычным стеклам относятся известково-натриевое, известково-калиевое, известково-натриево-калиевое.

Известково-натриевое (содовое ), или натрий-кальций-магний-силикатное, стекло применяют для выработки оконных стекол, стеклотары, столовой посуды.

Известково-калиевое (поташное ), или калий-кальций-магний-силикатное, стекло обладает более высокой термостойкостью, повышенным блеском и прозрачностью; используется для выработки высококачественной посуды.

Известково-натриево-калиевое (содово-поташное ), или натрий-калий-кальций-магний-силикатное, стекло имеет повышенную химическую стойкость, благодаря смешению окислов натрия и калия; наиболее распространено в производстве посуды.

Боросиликатное стекло

Стекла с высоким содержанием SiO 2 , низким - щелочного металла и значительным - оксида бора B 2 O 3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 фирма Корнинг гласс уоркс начала производить первые боросиликатные стекла под торговым названием Пирекс . Стекло марки Пирекс является боросиликатным стеклом с содержанием не менее 80% SiO 2 , 12-13% В 2 O 3 , 3-4% Na 2 О и 1-2% Аl 2 О 3 . Оно известно под разными названиями: Корнинг (США), Дюран 50, Йенское стекло G 2 0 (Германия), Гизиль , Монекс (Англия), ТС (Россия), Совирель (Франция), Симакс (Чехия).

В зависимости от конкретного состава стойкость к термоудару таких стекол в 2-5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике.

Температура размягчения стекла «пирекс» до динамической вязкости в 10 11 пуаз (10 10 Пас) составляет 580-590 °С. Тем не менее стекло пригодно для работ при температурах до 800 °С, но без избыточного давления. При использовании вакуума температуру изделий из стекла «пирекс» не следует поднимать выше 650 °С. В отличие от кварцевого стекло «пирекс» до 600 °С практически непроницаемо для Н 2 , Не, O 2 и N 2 . Фтороводородная и нагретая фосфорная кислоты, так же как и водные растворы (даже 5%-ные) КОН и NaOH, а тем более их расплавы, разрушают стекло «пирекс».

Хрустальное стекло

Хрустальные стекла (хрусталь) — высокосортные стекла, обладающие особым блеском и способностью сильно преломлять свет. Различают свинцовосодержащие и бессвинцовые хрустальные стекла.

Свинцовосодержащие хрустальные стекла — свинцово-калиевые стекла, вырабатывают с добавлением окислов свинца, бора и цинка. Характеризуются повышенным весом, красивой игрой света, мелодичным звуком при ударе; применяют для производства высококачественной посуды и декоративных изделий. Наибольшее применение имеет хрусталь с содержанием от 18 до 24% окислов свинца и 14—16,5% окиси калия (легкий).

К бессвинцовым хрустальным стеклам относятся баритовое, лантановое и др.

Баритовое стекло содержит повышенное количество окиси бария. Обладает лучшим блеском, более высокой светопреломляемостью и удельным весом по сравнению с обычными стеклами, применяют как оптическое и специальное стекло.

Лантановое стекло содержит окись лантана La 2 О 3 и лантаниды (соединения лантана с алюминием, медью и др.). La 2 О 3 повышает светопреломление. Отличается высоким качеством; применяется как оптическое .

Свойства стекла

Плотность стекла зависит от его химического состава. Плотность — отношение массы стекла при данной температуре к его объему, зависит от состава стекла (чем больше содержание тяжелых металлов, тем стекло плотнее), от характера термической обработки и колеблется в пределах от 2 до 6 (г/см 3). Плотность — постоянная величина, зная ее, можно судить о составе стекла. Наименьшей плотностью обладает кварцевое стекло — от 2 до 2,1 (г/см 3), боросиликатное стекло имеет плотность 2,23 г/см 3 , наибольшей — оптические стекла с высоким содержанием окислов свинца — до 6 (г/см 3). Плотность известково-натриевого стекла составляет около 2,5 г/см 3 , хрустального — 3 (г/см 3) и выше. Табличным значением плотности стекла является диапазон от 2,4 до 2,8 г/см 3 .

Прочность . Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. Предел прочности на сжатие для различных видов стекла колеблется от 50 до 200 кгс/мм 2 . На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B 2 O 3 значительно повышают прочность, РbО и Al 2 O 3 в меньшей степени, MgO, ZnO и Fe 2 O 3 почти не изменяют ее. Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм 2 , т. е. в 15—20 раз меньше, чем на сжатие. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6-7 ед, что находится между твёрдостью апатита и кварца. Твердость различных видов стекла зависит от его химического состава. Наибольшую твердость имеет стекло с повышенным содержанием кремнезема — кварцевое и боросиликатное . Увеличение содержания щелочных окислов и окислов свинца снижает твердость; наименьшей твердостью обладает свинцовый хрусталь.

Хрупкость — свойство стекла разрушаться под действием ударной нагрузки без пластической деформации. Сопротивление стекла удару зависит не только от его толщины, но и от формы изделия, наименее устойчивы к удару изделия плоской формы. Для повышения прочности к удару в состав стекла вводят окислы магния, алюминия и борный ангидрид. Неоднородность стекломассы, наличие дефектов (камней, кристаллизации и других) резко повышают хрупкость. Сопротивление стекла удару увеличивается при его отжиге. В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью. Как и в предыдущих случаях, изменение химического состава позволяет регулировать и это свойство: например, введение брома повышает прочность на удар почти вдвое. Для силикатных стекол ударная вязкость составляет от 1,5 до 2 кН/м, что в 100 раз уступает железу. На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B 2 O 3 , SiO 2 , Al 2 O 3 , ZrO 2 , MgO хрупкость незначительно понижается.

Прозрачность - одно из важнейших оптических свойств стекла. Определяется отношением количества прошедших через стекло лучей ко всему световому потоку. Зависит от состава стекла, обработки его поверхности, толщины и других показателей. При наличии примесей окиси железа прозрачность уменьшается.

Термостойкость стекла характеризуется его способностью выдерживать, не разрушаясь, резкие изменения температуры и является важным показателем качества стекла. Зависит от теплопроводности, коэффициента термического расширения и толщины стекла, формы и размеров изделия, обработки поверхности, состава стекла, дефектов. Термостойкость тем выше, чем выше теплопроводность и ниже коэффициент термического расширения и теплоемкость стекла. Толстостенное стекло менее термостойко, чем тонкое. Наиболее термостойко стекло с повышенным содержанием кремнезема, титана и бора. Низкую термостойкость имеет стекло с высоким содержанием окислов натрия, кальция и свинца. Хрусталь менее термостоек, чем обычное стекло. Термостойкость обыкновенного стекла колеблется в пределах 90—250 °С, а кварцевого : 800—1000°С. Отжиг в специальных печах повышает термостойкость в 2,5—3 раза.

Теплопроводность — это способность материала, в данном случае стекла, проводить тепло без перемещения вещества этого материала. У стекла коэффициент теплопроводности равен 1-1,15 Вт/мК.

Тепловое расширение — это увеличение линейных размеров тела при его нагревании. Коэффициент линейного теплового расширения стекол колеблется от 5·10 -7 до 200·10 -7 . Самый низкий коэффициент линейного расширения имеет кварцевое стекло — 5,8·10 -7 . Величина коэффициента термического расширения стекла в значительной степени зависит от его химического состава. Наиболее сильно на термическое расширение стекол влияют щелочные окислы: чем больше содержание их в стекле, тем больше коэффициент термического расширения. Тугоплавкие окислы типа SiO 2 , Al 2 O 3 , MgO, а также B 2 O 3 , как правило, понижают коэффициент термического расширения.

Упругость — способность тела возвращаться к своей первоначальной форме после устранения усилий, вызвавших деформацию тела.

Упругость характеризуется модулем упругости. Модуль упругости — величина, равная отношению напряжения к вызванной им упругой относительной деформации. Различают модуль упругости при осевом растяжении — сжатии (модуль Юнга, или модуль нормальной упругости) и модуль сдвига, характеризующий сопротивление тела сдвигу или сколу и равный отношению касательного напряжения к углу сдвига.

В зависимости от химического состава модуль нормальной упругости стекол колеблется в пределах 4,8х10 4 ...8,3х10 4 , модуль сдвига —2х10 4 —4,5х10 4 МПа. У кварцевого стекла модуль упругости составляет 71,4х10 3 Мпа. Модули упругости и сдвига несколько повышаются при замене SiO 2 на СаО, B 2 O 3 , Al 2 O 3 , MgO, ВаО, ZnO, PbO.

Свойства стекла производства Corning

Код стекла 0080 7740 7800 7913 0211
Тип Силикатное Боро-силикатное Боро-силикатное 96% Силиката Цинково-титановое
Цвет Прозрачное Прозрачное Прозрачное Прозрачное Прозрачное
Термическое расширение (умножать на 10-7 см/см/°С) 0-300 °С 93,5 32,5 55 7,5 73,8
25 °С, до темп. застывания 105 35 53 5,52 -
Верхний предел рабочей темп. для отожженого стекла (для механических свойств) Норм. эксплуатация, °С 110 230 200 900 -
Экстрем. эксплуатация, °С 460 490 460 1200 -
Верхний предел рабочей темп. для закаленного стекла (для механических свойств) Норм. Эксплуатация, °С 220 260 - - -
Экстрем. эксплуатация, °С 250 290 - - -
6,4 мм толщиной, °С 50 130 - - -
12,7 мм толщиной, °С 35 90 - - -
Термостойкость, °С 16 54 33 220 -
Плотность, г/см3 2,47 2,23 2,34 2,18 2,57
Коэффициент оптической чувствительности по напряжениям, (нм/см)/(кг/мм2) 277 394 319 - 361

Сталкиваясь со стеклянными изделиями ежедневно, мало кто из нас задумывается - из чего делают стекло? Как протекает процесс его производства? Появившись в Древнем Египте 5 тысяч лет назад, стекло было очень мутным, и имело непривлекательный вид. Материал, с которым мы сталкиваемся сейчас, был получен гораздо позже.

Состав стекла.

Для стекловарения используют чистый кварцевый песок (около 75%), известь и соду . Для получения продукта со специфическими свойствами, в состав могут входить оксиды и металлы.

  • Оксид борной кислоты . Понижает коэффициент теплового расширения полученных изделий, и повышает блеск и прозрачность готовых изделий.
  • Свинец . Этот компонент добавляют при производстве хрусталя. Изделия из хрусталя более холодные на ощупь и имеют характерный для этого материала блеск и звон.
  • Марганец . Добавление этого тяжелого металла способствует получению продукции с зеленым оттенком. Помимо марганца, при помощи никеля, хрома или кольта, можно получить изделия других цветов.

Физические свойства.

Самые главные характеристики стекла:

  • Плотность . Данная характеристика зависит от химического состава и колеблется от 2200 до 6500 кг/м³. При повышении температуры, плотность стекла уменьшается и оно становится особенно хрупким.
  • Прочность . В зависимости от вида стекла, его прочность варьируется от 50 до 210 кгс/мм². Небольшое повреждение поверхности материала, снижает этот показатель в 3-4 раза.
  • Хрупкост ь. Хрупкость стекла и неспособность противостоять удару, ограничивает его применение в некоторых сферах жизни. При добавлении в состав материала определенных химических элементов, данная характеристика увеличивается.
  • Термостойкость . Термостойкость - способность материала выдержать огромные температурные перепады. Обычное оконное стекло может выдержать температуру до 90°С. В промышленности эти показатели увеличиваются в разы.

Виды стекла.

Многие изделия, сделанные из стекла, мы видим на улице и используем в повседневной жизни. Это стеклянная посуда, лампочки, очки, окна. В зависимости от физических и химических свойств, стекло используют также в производстве витрин, зеркал, светильников. Какие же виды этого однородного аморфного тела существуют и что из него делают?

  • Хрустальное стекло. Содержит в своем составе оксид свинца. Высокая прозрачность и блеск придают такому стеклу привлекательный и эстетичный вид. Используют, в основном, для изготовления посуды и сувенирных изделий.
  • Кварцевое стекло . В составе присутствует чистейший кварцевый песок. Благодаря тому, что изделия из кварцевого стекла могут выдержать большие температурные скачки, из него делают лабораторную посуду, изоляторы, оптические приборы, окна.
  • Пеностекло . Представляет собой стеклянную массу, имеющую в своем составе многочисленные пустоты. Отличные тепловые и звукоизоляционные свойства обусловили его широкое применение в строительстве.
  • Стекловата . Имеет вид тонких стеклянных нитей, имеющих высокое сопротивление разрыву. Используют как в строительстве, так и в химической промышленности. Стекловата огнестойка. Поэтому ее используют в составе материала для пошива одежды сварщиков и пожарных.

К этому списку можно добавить стекла, имеющие специфические свойства :

  • Огнестойкое . Противостоит действию открытого пламени и выдерживает высокую температуру.
  • Термостойкое . Имеет низкий коэффициент термического расширения и выдерживает резкие скачки температуры
  • Пуленепробиваемое . Ударопрочное стекло способное противостоять мощным ударам.

Как делают стекло?

Производство стекла включает в свой процесс следующие этапы:

  1. Подготовка необходимых материалов . Приготовленное сырье нуждается в специальной обработке. Кварцевый песок обогащают, и из его состава удаляют примеси железа. Известняк и доломит тщательно дробят.
  2. Смешивание материала в определенных соотношениях . Количество того или иного материала и его процентное соотношение в подготовленной примеси зависит от требуемых физических и химических свойств стеклоизделий.
  3. Варка в стекловаренных печах . Стадия варки происходит при высокой температуре, диапазон которой колеблется от 800°С до 1400°С. Идет активный процесс плавки кварцевого песка, и стекломасса становится вязкой и прозрачной.

После получения однородной стекольной смеси, происходит формирование будущих изделий, резкое охлаждение продукции с последующей термической и физической обработкой.

Применение в промышленности

Применение прозрачного, износостойкого и прочного материала, имеющего гладкую поверхность, поражает воображение. Несмотря на то, что стекло очень хрупкий материал, его широко используют в различных областях промышленности и быта.

  • Машиностроение - входит в состав противопригарных красок, которыми обрабатывают транспорт.
  • Бумажная промышленность - пропитка готовой бумажной массы.
  • Строительство - добавляют в кислотостойкие материалы и в жароупорные конструкции из бетона.
  • Химическая промышленность - производство моющих средств.

Этот функциональный материал можно гнуть, кроить, плавить и получать из него неповторимые и прекрасные изделия. Именно поэтому цветное стекло активно используют для декоративных работ при строительстве общественных зданий и изготавливают всевозможные сувениры.

Категории стекла

По своему назначению стекло делится на следующие категории :

  • Бытовое стекло . Эта группа состоит из пяти подгрупп - кухонная посуда, бытовая посуда, ламповые изделия, художественные изделия и посуда хозяйственного назначения.
  • Строительное стекло - листовое стекло, витрины, стеклопакеты, теплоизоляционные стеклопакеты, армированное стекло.
  • Стекло технического назначения - лабораторные приборы, защитные изделия для промышленности, стекловата, оптика.

Помимо защиты наших домов от ветра, дождя и холода, стекло дает человеку обширную область для творчества. Процесс создания его так же красив и загадочен, как и сам материал. Стекло прозрачное, твердое, стойкое к кислотам, стало незаменимым материалом в архитектуре и в повседневном быту.

В этой статье мы подробно рассмотрели, из чего делают стекло. Этот материал занял особое, важное место в жизни человека, без него многие бытовые вещи бы оказались намного сложнее.

Видео: процесс изготовления вещества

Стекло – один из самых древних и универсальных по своим свойствам материалов, известных человеку.

Со стеклом человек познакомился очень давно. Найденные археологами фаянсовые украшения, относящиеся к периоду первой династии фараонов, говорят о том, что в Египте стекло было известно ещё 5 тысяч лет назад. Обнаруженная при раскопках в Месопотамии цилиндрическая печать из стекла относится к периоду династии Аккада, то есть имеет возраст более 4 тысяч лет. Изделия из стекла, найденные в Японии и Индии, произведены примерно 2 тысячи лет назад. Но единого мнения о времени и месте появления стекла у учёных нет.

Как же появилось стекло?

Одна из легенд гласит, что финикийские купцы готовили пищу на песчаном берегу во время стоянки. Очаг они сложили не из камней, а их кусков африканской соды. Топливом служила солома. Проснувшись утром, они обнаружили на пепелище слиток из стекла.

Русским мастерам секреты стеклянного производства были знакомы более тысячи лет назад. В те времена щёлочь, песок и известь были сырьём для получения стекла. В качестве щёлочи использовали золу растений или соду.

Химический состав стекла


Стёкла бывают естественными и искусственными. Естественное стекло может образоваться, например, при извержении вулкана или при попадании молнии в залежи кварцевого песка. Но в природе так мало возможностей для образования естественного стекла, что для своих нужд человечество давно научилось получать искусственное стекло.

Стекло – аморфное тело, получаемое переохлаждением расплава, который состоит из различных окислов.

В зависимости от того, какой окисел является основным компонентом, различают силикатные стёкла (SiO2), боратные (В203), фосфатные (Р205) и комбинированные (боросиликатные и др.).

Силикатное стекло

Наиболее распространено силикатное стекло. Основная его составная часть – двуокись кремния (SiO2). На 70-75% стекло состоит из неё. Получают двуокись кремния из кварцевого песка. Окись кальция (CaO) – второй компонент стекла, придающий ему химическую стойкость и блеск. В давние времена источником окиси кальция служили морские раковины или зола деревьев, так как люди не были знакомы с известняком. Кроме этих двух компонентов, в состав стекла входят оксид натрия (Na2O) и оксид калия (K2O), которые необходимы для плавки стекла. Источниками оксидов служат сода (Na2CO3) и поташ (K2CO3). Если стекло состоит только из кремнезёма высокой чистоты, оно называется кварцевым.

Физические свойства стекла


По физическим свойствам стёкла подразделяются на обычные, жаростойкие и цветные.

Обычные стёкла

Известны три группы обычных стёкол: иззвестково-натриевое, известково-калиевое и известково-натриево-калиевое.

Известково-натриевое , или содовое, стекло применяется для выпуска оконных стёкол, посуды.

Высокая термостойкость известково-калиевого, или поташного, стекла позволяет применять его в производстве аппаратуры и высококачественной посуды.

Известково-натриево-калиевое стекло обладает высокой химической стойкостью. Наиболее часто применяется в производстве посуды.

Хрупкость – основной недостаток обычных стёкол. Для расширения области применения обычного стекла его закаливают и получают закалённое стекло, которые называется сталинит. Из обычного стекла создают также триплекс – многослойное стекло.

Жаростойкие стёкла

Жаростойкие стёкла называют огнеупорными, термостойкими. Они применяются в изделиях, которые эксплуатируются в особых условиях. К жаростойким стёклам относятся боросиликатное стекло, лабораторное стекло и ситаллы.

Высокая антикоррозийная стойкость боросиликатного стекла и его теплостойкость позволяет использовать это стекло для создания специальных установок в химическом машиностроении. Из такого стекла получается также прекрасная жаростойкая кухонная посуда. Такая же высококачественная посуда может быть изготовлена и из лабораторного стекла. А ситаллы успешно используются в машиностроении.

Цветные стёкла

После застывания стеклянная масса имеет голубовато-зелёный или желтовато-зелёный оттенок. Но если ввести в шихту различные оксиды металлов, которые в процессе варки стекла изменяют его структуру, то после остывания стекло сможет выделять определённые цвета из проходящего через него светового спектра.

Такие стёкла применяются для изготовления художественных изделий, витражей, посуды.

Стекло соединило в себе две стихии: огонь и лёд. Огонь помогает стеклу появиться на свет. На лёд стекло становится похожим, когда застывает в форме какого-нибудь изделия.

Современным людям невозможно представить свою жизнь без стекла. Оно окружают нас повсюду: дома, в транспорте, на работе и на отдыхе. Невозможно назвать хотя бы одну отрасль промышленности, в которой стекло не использовалось бы.

Юрий Кукушкин

Стекло

История стекла уходит в глубокую древность. Известно, что в Египте и Месопотамии его умели делать уже 6000 лет назад. Вероятно, стекло начали изготавливать все же позже, чем первые керамические изделия, так как для его производства требовались более высокие температуры, чем для обжига глины. Если для простейших керамических изделий было достаточно только глины, то в состав стекла необходимо минимум три компонента.

Изделия из стекла так же, как и из керамики, практически не подвергаются атмосферным воздействиям и хорошо сохраняются даже под слоем земли. Эти изделия оказались важнейшими документами далекого прошлого. Они донесли до нас бесценную информацию об уровне культуры и техники древних народов. Благодаря стеклу до нашего времени дошли величайшие художественные произведения различных эпох культуры человечества.

Первый стекольный завод в России был построен в 1636 г. близ г. Воскресенска под Москвой. На нем выдували оконное стекло и стеклянную посуду. Через 30 лет в селе Измайлово, также под Москвой, был построен завод, на котором изготовляли высококачественные стаканы, графины, фляги, рюмки, кувшины и др. Особенно быстро стеклоделие развилось при Петре I. В XVIII в. около Москвы действовало шесть стекольных заводов.

Главный потребитель стекла в настоящее время – строительная индустрия. Больше половины всего вырабатываемого стекла приходится на оконное для остекления зданий и транспортных средств: автомашин, железнодорожных вагонов, трамваев, троллейбусов. Кроме того, стекло используют в качестве стенового и отделочного материала в виде пустотелых кирпичей, блоков из пеностекла, а также облицовочных плиток. Примерно треть производимого стекла идет на изготовление сосудов различного типа и назначения. Это прежде всего стеклянная тара – бутылки и банки. В большом количестве стекло расходуется на изготовление столовой посуды. Стекло пока незаменимо для производства химической посуды. В довольно большом количестве из стекла изготавливают вату, волокно и ткани для тепловой и электрической изоляции.

Относительная дешевизна стеклянных строительных материалов обусловливается широким распространением, а следовательно, доступностью и дешевизной сырья. Расплавленное стекло является удобным материалом для формования в изделия механизированным способом. Стекло хорошо поддается механической обработке. Это также снижает стоимость стеклянных изделий. Стекло пилят так же, как дерево, но для этого в кромку дисковой пилы зачеканивают алмазный или иной твердый порошок. Его можно сверлить обыкновенными стальными сверлами, применяя специальную смачивающую жидкость. Стекло колют на куски при помощи простого инструмента, напоминающего колун для дров, но действующим не ударом, а постепенно нарастающим усилием. Стекло можно обрабатывать на токарном станке резцами из особо твердой стали, вытачивая фигурные колонки так же, как из дерева или металла. Стекло шлифуют и полируют, применяя обычные абразивные порошки, инструменты и методы, давно известные и широко используемые в металлообрабатывающем производстве. Стекло можно сварить из одного кварцевого песка, химическая формула которого SiO 2 . Однако для этого нужна очень высокая температура (выше 1700°C). Получение таких температур в печах промышленного типа связано с большими трудностями. Обычные печи, в которых используются твердое, жидкое или газообразное топливо, для этого не годятся. Для плавления кварцевого песка применяют электрические печи специального устройства или горелки, в которых сжигается водород в токе кислорода. Расплавленный кварцевый песок представляет собой столь густую и вязкую массу, что из нее трудно удалить воздушные пузырьки и придать изделиям нужную форму.

В стекловарении используют только самые чистые разновидности кварцевого песка, в которых общее количество загрязнений не превышает 2...3%. Особенно нежелательно присутствие железа, которое даже в ничтожных количествах (десятые доли%) окрашивает стекло в зеленоватый цвет. Если к песку добавить соду Na 2 CO 3 , то удается сварить стекло при более низкой температуре (на 200...300°). Такой расплав будет иметь менее вязкий (пузырьки легче удаляются при варке, а изделия легче формуются). Но! Такое стекло растворимо в воде, а изделия из него подвергаются разрушению под влиянием атмосферных воздействий. Для придания стеклу нерастворимости в воде в него вводят третий компонент – известь, известняк, мел. Все они характеризуются одной и той же химической формулой – CaCO 3 .

Стекло, исходными компонентами шихты которого является кварцевый песок, сода и известь, называют натрий-кальциевым. Оно составляет около 90% получаемого в мире стекла. При варке карбонат натрия и карбонат кальция разлагаются в соответствии с уравнениями:

Na 2 CO 3 → Na 2 O + CO 2

CaCO 3 → CaО + CO 2

В результате в состав стекла входят оксиды SiO 2 , Na 2 O и CaО. Они образуют сложные соединения – силикаты, которые являются натриевыми и кальциевыми солями кремниевой кислоты.

В стекло вместо Na 2 O с успехом можно вводить K 2 О, а CaО может быть заменен MgO, PbO, ZnO, BaO. Часть кремнезема можно заменить на оксид бора или оксид фосфора (введением соединений борной или фосфорной кислот). В каждом стекле содержится немного глинозема Al 2 O 3 , попадающего из стенок стекловаренного сосуда. Иногда его добавляют специально. Каждый из перечисленных оксидов обеспечивает стеклу специфические свойства. Поэтому, варьируя этими оксидами и их количеством, получают стекла с заданными свойствами. Например, оксид борной кислоты B 2 O 3 приводит к понижению коэффициента теплового расширения стекла, а значит, делает его более устойчивым к резким температурным изменениям. Свинец сильно увеличивает показатель преломления стекла. Оксиды щелочных металлов увеличивают растворимость стекла в воде, поэтому для химической посуды используют стекло с малым их содержанием. В табл. 1 приведен состав (в%) некоторых типичных промышленных стекол.

Таблица 1

Сода – сырье относительно дорогое и имеющее огромный спрос со стороны различных отраслей народного хозяйства. Поэтому в качестве источника Na 2 O при варке стекла используют также природный минерал Na 2 SO 4 . В СССР его огромные залежи имеются на месте бывшего залива Кара-Богаз-Гол (рядом с Каспийским морем). Однако в этом случае варка стекла требует более высоких температур. Кроме того, в шихту необходимо вводить уголь для восстановления серы в соответствии с уравнением

2Na 2 SO 4 + С → 2Na 2 O + 2SO 2 + CO 2

При варке стекла первым плавится оксид щелочного металла, после чего в этом расплаве начинают растворяться зерна кварца и известняка, вступая в химическое взаимодействие. Поэтому чем больше в стекле оксидов щелочных металлов, тем при меньших температурах оно плавится. В Древнем Египте, когда техника получения высоких температур была несовершенна, в стеклоделии преобладали рецепты с повышенным содержанием оксидов щелочных металлов (до 30%) и малым содержанием извести (около 3...5%). В эллинистическую эпоху, с усовершенствованием техники получения высоких температур, содержание оксидов щелочных металлов снижается до 16...17%, а извести повышается до 10%. Естественно, что такие стекла стали более стойкими к воде. В настоящее время варка стекла проводится при температуре 1400...1500°C в течение нескольких часов. Процесс варки стеклоделы делят на три стадии: провар шихты, осветление (удаление «мошки» и «свилей»), студка – осторожное охлаждение.

Мошкой стеклоделы называют мелкие пузырьки газа, распределенные по всей массе стекла. Ее удаление из жидкой массы производят «бурлением» при помощи деревянной чурки или обыкновенного сырого картофеля. Помещенные в жидкое стекло, они дают обильное выделение газов, которые и очищают от мошки всю массу. Ее наличие в изделиях считается браком. Мошка особенно недопустима в оптических стеклах.

Стекольным свилем называют нитеобразные потоки, подобные тем, которые можно наблюдать в процессе растворения сахара в воде при медленном перемешивании. Свиль – это видимая граница двух соседних участков стекольной массы. Наличие свилей свидетельствует о плохой перемешанности стекольной массы при варке, т.е. о его низком качестве.

Охлаждение стекла, а точнее изделия из него проводят медленно, чтобы избежать в нем напряжений. При быстром охлаждении стекла поверхностные слои тела затвердевают и могут иметь температуру, близкую к комнатной, а внутренние части, вследствие низкой теплопроводности, могут иметь температуру до 1000°C. Поскольку внутренние части при охлаждении сжимаются, а наружные уже не уменьшаются в размере, в них возникают высокие поверхностные сжимающие напряжения. Внутренние слои, наоборот, испытывают высокие растягивающие напряжения. Такое стеклянное тело называют «закаленным». Закаленное стекло обладает высокой механической прочностью. Однако у него есть и недостатки. При нарушении поверхностного слоя (например, нанесение царапины), т.е. при нарушении сжимающих и растягивающих сил, закаленное стекло разлетается вдребезги.

При медленном охлаждении стеклянного тела растягивающие и сжимающие напряжения не возникают. Такое стекло называют «отожженным». Мелкие изделия, например столовая посуда, отжигаются (охлаждаются) в течение нескольких часов. Крупные и прецизионные изделия, например линзы астрономических объективов диаметра 1 м и более, отжигаются в течение нескольких месяцев.

Окраску стекла осуществляют введением в него оксидов некоторых металлов или образованием коллоидных частиц определенных элементов. Так, золото и медь при коллоидном распределении окрашивают стекло в красный цвет. Такие стекла называют золотым и медным рубином соответственно. Серебро в коллоидном состоянии окрашивает стекло в желтый цвет. Хорошим красителем является селен. В коллоидном состоянии он окрашивает стекло в розовый цвет, а в виде соединения CdS·3CdSe – в красный. Такое стекло называют селеновым рубином. При окраске оксидами металлов цвет стекла зависит от его состава и от количества оксида-красителя. Например, оксид кобальта (II) в малых количествах дает голубое стекло, а в больших – фиолетово-синее с красноватым оттенком. Оксид меди (II) в натрий-кальциевом стекле дает голубой цвет, а в калиево-цинковом – зеленый. Оксид марганца (П) в натрий-кальциевом стекле дает красно-фиолетовую окраску, а в калиево-цинковом – сине-фиолетовую. Оксид свинца (II) усиливает цвет стекла и придает цвету яркие оттенки.

Бутылочное стекло низкого сорта, как правило, имеет окраску, которая зависит от присутствия в нем ионов Fe 2+ и Fe 3+ . Стекольное сырье трудно очищается от железа и поэтому в дешевых сортах оно всегда присутствует. Ионы Fe 2+ хорошо поглощают лучи света с длиной волны примерно 600 ммк (желтые и красные) и, следовательно, окрашивают стекло в дополнительный голубой цвет. Ионы Fe 3+ поглощают лучи с длиной волны 500 ммк (синие и фиолетовые), окрашивая стекло в желтоватый цвет. Важно отметить, что ионы Fe 2+ в области видимого света имеют удельное поглощение, примерно в 10 раз большее, чем ионы Fe 3+ . Поскольку в стекле одновременно содержатся как ионы Fe 2+ , так и ионы Fe 3+ , они и придают стеклу зеленоватую окраску (бутылочный цвет).

Существуют химические и физические способы обесцвечивания стекла. В химическом способе стремятся все содержащееся железо перевести в Fe 3+ . Для этого в шихту вводят окислители – нитраты щелочных металлов, диоксид церия СеO 2 , а также оксид мышьяка (III) As 2 O 3 и оксид сурьмы (III) Sb 2 O 3 . Химически обесцвеченное стекло лишь слегка окрашено (за счет ионов Fe 3+) в желтовато-зеленоватый цвет, но обладает хорошим светопропусканием. При физическом обесцвечивании в состав стекла вводят «красители», т.е. ионы, которые окрашивают его в дополнительные тона к окраске, создаваемой ионами железа, – это оксиды никеля, кобальта, редкоземельных элементов, а также селен. Диоксид марганца MnO 2 обладает свойствами как химического, так и физического обесцвечивания. В результате двойного поглощения света стекло становится бесцветным, но его светопропускание понижается. Таким образом, следует различать светопрозрачные и обесцвеченные стекла, поскольку эти понятия различны.

Следует также отметить, что окрашенное стекло иногда предохраняет содержимое бутылок от нежелательного фотохимического воздействия. Поэтому окраску бутылочного стекла иногда специально усиливают.

Одним из важнейших свойств стекла является прозрачность. Однако в ряде случаев стеклу специально придают непрозрачность путем его «глушения». Это процесс, в результате которого стекло становится непрозрачным. Вещества, способствующие помутнению стекла, называют глушителями. Глушение происходит вследствие распределения по всей массе стекла мельчайших кристаллических частиц. Они представляют нерастворившиеся частицы глушителя или частицы, выделившиеся из жидкой массы при охлаждении стекла. Эти частицы обычно прозрачны, но их показатель преломления отличается от показателя преломления стекла. Поэтому падающий на них луч отклоняется от прямолинейного направления и стекло перестает быть прозрачным. В далеком прошлом в качестве глушителей стекла использовали костяную муку, содержащую фосфат кальция Ca 3 (PO 4) 2 , а также оксиды олова SnO, мышьяка As 2 O 3 и сурьмы Sb 2 O 3 . В настоящее время для этой цели применяют криолит Na 3 , плавиковый шпат CaF 2 и другие фторидные соединения.

Сильно заглушенное стекло (белого цвета) называют молочным. Для его изготовления чаще всего используют криолит. Молочное стекло используют главным образом для изготовления осветительной арматуры.

Несмотря на то что возраст стеклоделия оценивается в 6 тыс. лет, прозрачное и бесцветное стекло люди научились варить лишь на пороге новой эры. До этого производилось непрозрачное окрашенное в различные тона стекло и из него изготавливались главным образом мелкие изделия: бусы, браслеты, пуговицы, кольца, печатки, шахматные фигуры и др. Стеклодувы античной эпохи начали широко применять холодную обработку стекла: рельефную резьбу, гравировку, шлифовку. Как только было получено прозрачное стекло, стеклоделы стали стремиться изготовить из него оконные пластины. Ученые предполагают, что оконное стекло вначале было цветным. Это объясняется тем, что бесцветное стекло получить было весьма непросто, так как сырье обычно содержит различные примеси, которые придают стеклу окраску. Особенно часто в сырье присутствуют соединения железа. Получение пластин для остекления окон оказалось весьма непростым делом. Изготовление полых изделий довольно сложной формы путем выдувания для человека было более простой задачей, чем получение листового стекла. Эта задача была решена лишь к концу средневековья. При раскопках Помпеи, погребенной под пеплом вулкана Везувия в 79 г. н.э., было установлено, что в очень редких случаях в окна были вставлены пластины стекла, которые были довольно толстыми. По-видимому, тонкое листовое стекло итальянские стеклоделы еще не научились делать.

Считают, что метод выдувания, так же как и способ варки прозрачного стекла, был открыт в период смены летоисчисления. Поводов для его открытия было предостаточно. Для получения высоких температур в металлургии был уже известен способ дутья. При варке стекла, требующей также высоких температур, дутье, в частности, проводилось при помощи легких человека. Для этого использовались длинные и полые тростниковые трубки, конец которых обмазывался глиной. Последнее было необходимо для того, чтобы трубка не загоралась. Таким образом, для открытия метода выдувания стеклянных изделий были созданы все предпосылки. Нужен был только случай, когда конец трубки прикоснется к жидкой стекольной массе. Если это произошло, то, продолжая дуть в трубку, человек должен получить что-то похожее на пузырь. Следующим шагом было помещение выдуваемого «пузыря» в деревянную форму, и полое стеклянное изделие почти готово. Как здесь не вспомнить хорошо известное изречение, что «все гениальное просто».

Вероятно, метод выдувания изделий из стекла был изобретен в различных местах, где культивировалось стеклоделие, примерно в одно и то же время. Однако принято считать, что способ выдувания был изобретен в Александрии в I в. до н.э. На первый взгляд, удивительно, что люди научились делать стеклянные изделия сложной полой конфигурации, но не умели делать листовое стекло. Однако для этого были свои весьма основательные технические затруднения.

Оконное стекло

Впервые оконное стекло, хотя и весьма несовершенное, появилось на рубеже старой и новой эры летоисчисления у римлян. Однако после падения Римской империи секреты его производства были утеряны и в начальный период средневековья в Европе оконного стекла не знали. Естественно возникает вопрос, а что же было в окнах? Часто окна закрывались сплошными деревянными ставнями. В теплые дни они открывались, впуская дневной свет внутрь помещения. В иное время окна закрывались и помещение освещали свечами. В России свечи, которые были дороги, часто заменялись горящей лучиной.

В некоторых дворцах, парадных зданиях и культовых сооружениях в Европе в мелкие ячейки в оконных проемах вставляли пластинки слюды, которые ценились очень дорого. В домах простых людей для этой цели использовались бычий пузырь и промасленная бумага или ткань. В середине XVI в. даже во дворцах французских королей окна закрывались промасленным полотном или бумагой. Лишь в середине XVII в. при Людовике XIV в окнах его дворца появилось стекло в виде маленьких квадратиков, вставленных в свинцовый переплет. Листовое стекло большой площади долго не умели получать. Поэтому даже в XVIII в. застекленные окна имели мелкий переплет. Обратите внимание на реставрированные здания петровской эпохи, например на Меньшиковский дворец в Санкт-Петербурге. Однако вернемся к истокам производства оконного стекла.

Как уже было сказано, римляне научились изготовлять оконное стекло в конце старой эры. Они делали это путем отливки и раскатывания жидкого стекла в форму в виде противня, который изготавливался из глины. Отливки извлекались из формы еще в горячем виде, пока стекло сохраняло пластичность. Таким способом получали оконное стекло толщиной около 10 мм и площадью до 0,5 м 2 . Поскольку прилегающая к форме сторона листа оказывалась шероховатой, то стекло не было прозрачным.

Такое стекло находили при раскопках в западноевропейских колониях Рима, а также на Востоке вплоть до Черноморского побережья. Как уже было отмечено, после распада Римской империи это ремесло пришло в упадок и способ производства был забыт и никогда не возобновлялся. Новый способ производства оконного стекла был разработан несколько столетий спустя, т.е. в средние века. Этот способ принципиально отличался от древнеримского, так как получался не отливкой, а выдуванием. Вначале выдували шар, который раскатыванием на плитке и размахиванием в воздухе превращался в подобие большой ампулы. После отрезания верхней и нижней части получался цилиндр. Последний разрезался вдоль твердым минералом и на раскаленной глиняной плите разглаживался в лист деревянной гладилкой. Стекло получалось довольно тонким, хотя и небольшого размера. Сторона, прилегавшая к плите при разглаживании, также получалась шероховатой, а значит, стекло опять же было непрозрачным.

На территории древнеславянского государства археологи многократно находили фрагменты стеклянных кругов диаметром 200...250 мм с хорошо заделанными кромками. Ученые сходятся во мнении, что эти стеклянные круги служили для остекления окон крупных общественных зданий, например храма Киевской Софии и других церквей домонгольской Руси. Считают, что способ их производства сводился к следующему. В форме выдувался сосуд, похожий на конусообразный графин. Дно этого «графина» обрезалось и кромка завертывалась.

В конце средневекового периода в Европе начали широко применять «лунный» способ изготовления листового стекла. В его основу также был положен метод выдувания. При этом способе вначале выдувался шар, затем он сплющивался, к его дну припаивалась ось, а около выдувательной трубки заготовка обрезалась. В результате получалось подобие вазы с припаянной ножкой-осью. Раскаленная «ваза» вращалась с большой скоростью вокруг оси и под действием центробежной силы превращалась в плоский диск. Толщина такого диска была 2...3 мм, а диаметр доходил до 1,5 м. Далее диск отделялся от оси и отжигался. Такое стекло было гладким и прозрачным. Характерная его особенность – наличие в центре диска утолщения, которое специалисты называют «пупком». Лунный способ производства сделал листовое стекло доступным для населения. Однако на смену ему уже в начале XVIII в. пришел другой более совершенный «халявный» способ, который использовался во всем мире почти в течение двух столетий. По существу, это было усовершенствование средневекового способа выдувания, в результате которого получался цилиндр. «Халявой» называли формируемую массу стекла на конце выдувной трубки. Она доходила до 15...20 кг и из нее в итоге получались листы стекла площадью до 2...2,5 м 2 .

Этот способ позволил получать оконное стекло хорошего качества и относительно недорогое для широких слоев населения. Таким образом, проблема светлого и теплого жилища была разрешена лишь в XVIII в. Это было достигнуто трудом многих поколений стеклоделов в течение двух тысячелетий.

Однако «халявный» способ трудно поддавался механизации, а потребности в оконном стекле росли быстрыми темпами. Поэтому поиски новых способов продолжались и в результате в начале XX в. был внедрен в промышленность механизированный процесс. В основе его лежало наблюдение американца Кларка, сделанное в первой половине XIX в. Оно состояло в том, что если на поверхность жидкого стекла положить железный стержень («приманку»), а затем поднимать его, то стеклянная масса приварится (приклеится) к стержню и потянется за ним в виде полотна. При остывании на воздухе получается стеклянный лист. Однако он получался не с параллельными кромками, а в виде клиновидного полотнища. Следующим шагом на пути разработки механизированного способа было изобретение бельгийца Фурко. Он предложил положить на поверхность расплавленной массы керамический брус («лодочку») с продольной щелью. Керамика легче расплавленной стеклянной массы и потому лодочка плавает на поверхности. Если нажать на лодочку, то расплавленная масса выдавливается из щели. На нее опускают «приманку» и тянут вверх. Если скорость подъема приманки будет равна скорости выдавливания стекломассы, то получится правильное полотнище с параллельными кромками. Дальнейшее завершение решения проблемы носит чисто технический и конструкторский характер – устанавливаются подъемные валики, холодильник и другие приспособления. Толщина листа зависит от скорости подъема и скорости охлаждения листа.

В настоящее время оконное стекло производят по данному способу. Имеется и несколько другой вариант технологического оформления процесса производства листового стекла, который используют в США. В нем вместо лодочки с каждого борта полотна располагается пара роликов, между которыми и проходит полотно. Ролики препятствуют сужению полотна и потому отпадает необходимость в лодочке.

В современном строительстве для остекления общественных зданий, гостиниц и витрин магазинов, а также для авто- и вагоностроения, широко используют стекло толщиной 6...8 мм и даже до нескольких сантиметров. Такое стекло называют зеркальным. Оно изготавливается методом проката с последующей шлифовкой и полировкой. Когда говорят о здании, построенном из стекла и бетона, то имеют в виду именно такое зеркальное стекло.

Из сказанного видно, какими усилиями далось человеку прозрачное стекло. Однако в некоторых деталях промышленного и бытового интерьера необходимо, чтобы стекло, наоборот, было непрозрачным, но пропускало свет. Стекло для таких целей подвергают пескоструйной обработке или грубой шлифовке. В настоящее время с этой же целью изготавливают узорчатое листовое стекло, т.е. имеющее какой-либо рисунок. Его получают прокатом на столах или между вальцами, на которые нанесен рисунок.

Мелкие стеклянные изделия делают матовыми обработкой фтороводородной (плавиковой) кислотой. Последняя взаимодействует с диоксидом кремния, находящимся на поверхности, с образованием летучего тетрафторида кремния SiF 4 в соответствии с уравнением

SiO 2 + 4HF = SiF 4 + 2H 2 О

Вряд ли современный человек может оценить тот комфорт и удобство, которое дает ему прозрачное листовое стекло. Человек рождается в светлом и теплом помещении и принимает это как должное.

Фотохромные стекла

Фотохромные стекла изменяют окраску под действием излучения. В настоящее время получили распространение очки со стеклами, которые при освещении темнеют, а в отсутствие интенсивного освещения вновь становятся бесцветными. Такие стекла применяют для защиты от солнца сильно остекленных зданий и для поддержания постоянной освещенности помещений, а также на транспорте. Фотохромные стекла содержат оксид бора B 2 O 3 , а светочувствительным компонентом является хлорид серебра AgCl в присутствии оксида меди (I) Cu 2 O. При освещении происходит процесс

AgCl – [h ν (свет)] → Ag 0 + Cl 0

Выделение атомарного серебра приводит к потемнению стекла. В темноте реакция протекает в обратном направлении. Оксид меди (I) играет роль своеобразного катализатора.

При интенсивном облучении стекла (в том числе и лабораторного) γ-лучами нейтронами и в меньшей мере α-, и β-лучами также происходит окрашивание стекла (чаще в темные и черные цвета). Это связано с изменением структуры стекла и образования ионов, которые играют роль «цветовых центров». При нагревании стекла до температур, близких к температуре размягчения, окраска исчезает. Иногда подобные стекла используют в качестве дозиметров больших доз излучений.

Витраж

Витраж – это декоративная орнаментальная или тематическая композиция, изготовленная из кусков разноцветного стекла, заполняющая оконный проем. Витраж широко использовался для архитектурного оформления готических храмов. Позже в виде витражей начали выполняться гербы городов в городских ратушах и других зданиях общественного назначения. В подражание этому дворянские дома в виде витражей стали оформлять семейные гербы.

Искусство витража получило развитие в эпоху средневековья и достигло наибольшего расцвета в эпоху Возрождения. Слово витраж происходит от франц. vitre – оконное стекло. Кроме разноцветного стекла использовались стекла, расписанные красками. В качестве последних широко применяли тонкорастертые смеси оксидов металлов (меди, железа и др.) с легкоплавким стеклом. Смеси замешивались на воде, вине или растительном масле и в виде кашицы наносились на стекло. После высыхания расписанное стекло подвергалось обжигу при умеренной температуре. По описанию монаха Теофила в XII в. витражи изготавливались следующим образом. Заранее нарезанные и хорошо подогнанные друг к другу куски цветного стекла обертывались по краям полосками свинца. Обернутые куски раскладывались на столе и плотно подгонялись один к другому, а затем свинцовые перемычки спаивались припоем из сплава олова и свинца. Спаивание проводилось с обеих сторон.

В настоящее время искусство витража начинает возрождаться. Особенно ярко проявляется это в Прибалтике.

Хрусталь, хрустальное стекло

Хрусталь, хрустальное стекло – это силикатное стекло, содержащее различное количество оксида свинца. Часто на маркировке изделия указывается содержание свинца. Чем больше его количество, тем выше качество хрусталя. Хрусталь характеризуется высокой прозрачностью, хорошим блеском и большой плотностью. Изделия из хрусталя в руке чувствуются по массе.

Строго хрусталем называют свинцово-калиевое стекло. Хрустальное стекло, в котором часть K 2 О заменена на Na 2 O, а часть PbO заменена на CaO, MgO, BaO или ZnO, называют полухрусталем.

Считают, что хрусталь был открыт в Англии в XVII столетии.

Кварцевое стекло

Его получают плавлением чистого кварцевого песка или горного хрусталя, имеющих состав SiO 2 . Для изготовления кварцевого стекла требуется очень высокая температура (выше 1700°C).

Расплавленный кварц обладает высокой вязкостью и из него трудно удаляются пузырьки воздуха. Поэтому кварцевое стекло часто легко узнается по заключенным в нем пузырькам. Важнейшим свойством кварцевого стекла является способность выдерживать любые температурные скачки. Например, кварцевые трубы диаметром 10...30 мм выдерживают многократное нагревание до 800...900°C и охлаждение в воде. Брусья из кварцевого стекла, охлаждаемые с одной стороны, сохраняют на противоположной стороне температуру 1500°C и потому используются в качестве огнеупоров. Тонкостенные изделия из кварцевого стекла выдерживают резкое охлаждение на воздухе от температуры выше 1300°C и потому с успехом используются для высокоинтенсивных источников света. Кварцевое стекло из всех стекол наиболее прозрачно для ультрафиолетовых лучей. На этой прозрачности отрицательно сказываются примеси оксидов металлов и особенно железа. Поэтому для производства кварцевого стекла, идущего на изделия для работы с ультрафиолетовым излучением, предъявляются особо жесткие требования к чистоте сырья. В особо ответственных случаях кремнезем очищается переводом в тетрафторид кремния SiF 4 (действием плавиковой кислоты) с последующим разложением водой на диоксид кремния SiO 2 и фтороводород HF.

Кварцевое стекло прозрачно и в инфракрасной области.

Ситаллы

Ситаллы – стеклокристаллические материалы, получаемые регулируемой кристаллизацией стекла. Стекло, как известно, – это твердый аморфный материал. Его самопроизвольная кристаллизация в прошлом приносила убытки на производстве. Обычно стекломасса довольно стабильна и не кристаллизуется. Однако при повторном нагревании изделия из стекла до определенной температуры стабильность стекломассы снижается и она переходит в тонкозернистый кристаллический материал. Технологи научились проводить процесс кристаллизации стекла, исключая его растрескивание.

При производстве изделий из стеклокристаллических материалов сначала формуют стеклянные изделия, которые повторным нагреванием подвергают направленной кристаллизации.

Ситаллы обладают высокой механической прочностью и термостойкостью, водоустойчивы и газонепроницаемы, характеризуются низким коэффициентом расширения, высокой диэлектрической проницаемостью и низкими диэлектрическими потерями. Они применяются для изготовления трубопроводов, химических реакторов, деталей насосов, фильер для формования синтетических волокон, в качестве футеровки электролизных ванн и материала для инфракрасной оптики, в электротехнической и электронной промышленности.

Прочность, легкость и огнестойкость обусловили применение ситаллов в жилищном и промышленном строительстве. Из них изготавливают навесные самонесущие панели наружных стен зданий, перегородки, плиты и блоки для внутренней облицовки стен, мощения дорог и тротуаров, оконные коробки, ограждения балконов, лестничные марши, волнистую кровлю, санитарно-техническое оборудование. В быту с ситаллами чаще встречаются в виде белой непрозрачной жаростойкой кухонной посуды. Установлено, что ситаллы выдерживают около 600 резких тепловых смен. Изделия из ситаллов не царапаются и не прогорают. Их можно снять с плиты в раскаленном до красна состоянии и опустить в ледяную воду, извлечь из холодильника и поставить на открытое пламя, не опасаясь растрескивания или разрушения.

Ситаллы – один из видов стеклокристаллических материалов, которые ведут свою историю всего лишь с 50-х годов текущего столетия, когда был выдан на них первый патент.

«Безопасные» стекла

Вероятно, каждому городскому жителю довелось видеть на автотранспорте разбитое лобовое стекло. Первым из «безопасных» стекол, примененных для остекления автомобилей, был триплекс. Он и в настоящее время несет свою службу. При ударе на триплексе образуются многочисленные радиальные и концентрические трещины, но не осколки. Это резко снижает возможность ранения осколками стекла пассажиров. Триплекс состоит из пакета, образованного из двух или более листов обыкновенного стекла, между которыми проложена прозрачная пластичная пленка, прочно соединенная со стеклом склеивающим составом. Благодаря прочной склейке образующиеся при ударе осколки удерживаются на прокладке. Наиболее широко распространенным является трехслойный триплекс. В качестве органической прокладки в нем используют целлулоид. Его изготовление включает следующие операции: стекла покрываются с одной стороны раствором желатина в воде и высушиваются, целлулоидная прокладка обрабатывается с двух сторон дигликолево-спиртовым составом, собранный пакет помещается в вакуум, а затем подогревается до 100°C и прессуется в автоклаве при давлении около 15 атм. Заключительной операцией после обточки абразивными кругами является шпаклевка кромок триплекса смолистыми составами, предотвращающая действие воды на желатин и расслаивание изделия.

В промышленном строительстве широко применяют «армированное» стекло, внутрь которого введена металлическая сетка. Это стекло также может быть отнесено к безопасным, так как при ударе его осколки не рассыпаются, а удерживаются сеткой. «Армированные» стекла обладают противопожарными свойствами, поскольку задерживают развитие пламени в помещениях. Это происходит потому, что от пламени такие стекла не высыпаются из рамы, а лишь растрескиваются. В результате они препятствуют образованию сквозняков, раздувающих огонь.

Пеностекло

Пеностекло – пористый материал, представляющий собой стеклянную массу, пронизанную многочисленными пустотами. Оно обладает тепло- и звукоизоляционными свойствами, небольшой плотностью (примерно в 10 раз легче кирпича) и высокой прочностью, сравнимой с бетоном. Пеностекло не тонет в воде и потому используется для изготовления понтонных мостов и спасательных принадлежностей. Однако его главная область применения – строительство. Пеностекло является исключительно эффективным материалом для заполнения внутренних и наружных стен зданий. Оно легко поддается механической обработке: пилением, резанием, сверлением и обтачиванию на токарном станке.

Для изготовления пеностекла используют стеклянный бой и различные отходы стекольного производства. К ним добавляют пенообразователи, которые образуют газы при высокой температуре: кокс, мел и др. Стеклянный бой и пенообразователи подвергаются тонкому измельчению и хорошо перемешиваются. Смесь помещается в железные формы и нагревается в печи до 700...800°C, при которых пылинки стекла спекаются и образуют полости. При дальнейшем повышении температуры пенообразователи приводят к образованию газов, растягивающих стеклянные полости (процесс вспенивания). Затем следует довольно резкое охлаждение, в результате чего вязкость стекольной массы повышается, пена становится устойчивой и при дальнейшем охлаждении окончательно закрепляется.

Стеклянная вата и волокно

При нагревании стекло размягчается и легко вытягивается в тонкие и длинные нити. Тонкие стеклянные нити не имеют и признаков хрупкости. Их характерным свойством является чрезвычайно высокое удельное сопротивление разрыву. Нить диаметром 3...5 мкм имеет сопротивление на разрыв 200...400 кг/мм 2 , т.е. приближается по этой характеристике к мягкой стали. Из нитей изготавливают стекловату, стекловолокно и стеклоткани. Не трудно догадаться об областях использования этих материалов. Стекловата обладает прекрасными тепло- и звукоизоляционными свойствами. Ткани, изготовленные из стеклянного волокна, обладают чрезвычайно высокой химической стойкостью. Поэтому их применяют в химической промышленности в качестве фильтров кислот, щелочей и химически активных газов. Вследствие хорошей огнестойкости стеклоткани применяют для пошива одежды пожарных и электросварщиков, театральных занавесей, драпировок, ковров и т.п. Стеклоткани кроме огнестойкости и химической стойкости обладают также высокими электроизоляционными свойствами.

Переработка в стекловату осуществляется продавливанием стекломассы через термостойкую пластину с многочисленными отверстиями («фильерами»). Вытекающие через фильеры нити захватываются вращающимся барабаном, наматываются на него и растягиваются. Растяжение нити (утоньшение) зависит от скорости вращения барабана. Роль барабана иногда играет вращающийся диск, на который падает нить.

Существует и принципиально иной способ вытягивания нитей: на вытекающие из фильер нити направляется струя пара или сжатого воздуха. Стеклянные нити растягиваются и в спутанном состоянии образуют войлок.

Стеклопластики и стеклотекстолиты

Первыми называют материалы, получаемые путем горячего прессования стекловолокна, перемешанного с синтетическими смолами. В качестве смол чаще всего используют полиэфирные, фенольные, эпоксидные и карбамидные. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности. Они успешно конкурируют с алюминием и сталью.

В строительстве стеклопластики (волнистые и плоские) применяют для покрытия крыш и для устройства внутренних перегородок. В судостроительной промышленности из них делают корпуса лодок и катеров, в электротехнической их применяют для изготовления аккумуляторных батарей, а в угольной – для труб и призабойных стоек. В некоторых странах из них изготавливают кузова автомобилей, не подвергающиеся коррозии. Стеклопластики на основе стеклянных тканей называют стеклотекстолитами. Их получают пропиткой теми же смолами стеклотканей. Затем заготовки сушат, разрезают на куски определенного формата, собирают в пакеты и прессуют под давлением.

Стеклопластики изготавливают также на основе нетканых стекломатериалов. По сравнению со стеклотекстолитами последние имеют меньшую прочность на разрыв. Эти материалы идут на изготовление облицовочных изделий, жесткой кровли, стеклошифера, стекло-черепицы, оконных проемов.

Посуда из стекла

Качество посуды зависит от состава стекла, способа ее выработки и характера декоративной обработки. Самым дешевым стеклом является кальциево-натриевое. Для посуды улучшенного качества используют кальциево-натриево-калиевое стекло, а для посуды высших сортов – кальциево-калиевое. Самые лучшие сорта посуды изготавливают из хрусталя.

Посудные изделия вырабатывают выдуванием или прессованием. Выдувание, в свою очередь, бывает машинным и ручным. Способ выработки, естественно, отражается на качестве посуды. Сложные по форме и художественные изделия изготавливают только ручным способом. Прессованные изделия легко отличаются от выдутых характерными мелкими неровностями на поверхности, в том числе и на внутренней. На выдутых изделиях они отсутствуют.

Декоративная обработка посуды подразделяется на матирование, гравирование, травление и шлифовку.

Матирование заключается в нанесении матового рисунка при сохранении блестящего фона и реже, наоборот, создании матового фона, а рисунок создается блестящими частями изделия. Для матирования поверхности используют пескоструйные аппараты, в которых создается струя сухого песка. Песчинки оставляют на поверхности мелкие сколы и царапины, которые и придают ей матовый вид, превращая блестящую поверхность изделия в непрозрачную. Для защиты части поверхности от струи песка используют шаблоны, которые накладывают на поверхность изделия. Их изготавливают из резиновых или цинковых листов.

Гравирование изделий проводят при помощи медных вращающихся дисков диаметром 2...10 мм, на которые подается масло с наждачным порошком. Простые рисунки наносят на стеклоизделия при помощи машин посредством пульсирующего нажимания на поверхность специальными иглами. Такие машины по заданной программе могут обрабатывать одновременно четыре-шесть и более изделий.

Травление изделий проводят фтороводородной кислотой. Они предварительно покрываются предохранительным слоем мастики, состоящей из смеси стойких к фтороводородной кислоте веществ (воск, парафин, битум, канифоль). По слою мастики с помощью металлической иглы прорезается рисунок, обнажающий поверхность стекла, подлежащего травлению. Далее изделие помещают на 20...30 мин в травильную ванну, заполненную фтороводородной кислотой или ее смесью с небольшим количеством серной кислоты. В зависимости от концентрации травильного раствора рисунок может быть блестящим или матовым. При использовании газообразного фтороводорода рисунок всегда получается матовым.

После завершения процесса травления изделия промывают водой, а затем для снятия защитной мастики нагревают паром или помещают в ванну с горячей водой.

Декоративная шлифовка основана на удалении части стекла с поверхности изделия. Она бывает поверхностная (валовая) и глубокая (алмазное гранение).

При валовой шлифовке создают на поверхности изделия срезы в виде кружков и овалов, а также нарезают на округлой поверхности плоские грани (обычно не по всей высоте, а на некоторой ее части). Их нарезают при помощи вертикальных кругов из естественных камней или из искусственных наждачных корундовых материалов. Вышлифованное место получается матовым и для восстановления прозрачности на нем проводится полировка на пробковых, деревянных (тополевых) или войлочных кругах.

Алмазному гранению подвергается главным образом хрустальная посуда. Это гранение заключается в прорезании глубоких клинообразных канавок, которые создают пучки лучей, звездочек и других фигур.

Глубокое гранение проводят на корундовых кругах. Круги с алмазной крошкой позволяют резко увеличить скорость резания. Однако у специалистов и ценителей хрусталя изделия, обработанные алмазным инструментом, ценятся ниже, чем обработанные корундовым. Часто для удешевления обработки изделия прессуют, а затем по углублениям проходят резцом. Естественно, такое изделие ценится гораздо ниже.

После алмазного гранения изделие подвергают шлифовке. Однако иногда канавки алмазной грани оставляют матовыми. Вкусы покупателей различны и стеклоделы должны учитывать это.

Благодаря алмазному гранению изделия приобретают особый блеск и дают игру света, особенно при искусственном освещении. Глубокой шлифовке можно подвергать изделия достаточной толщины. Поскольку хрустальное стекло характеризуется большой вязкостью и быстро охлаждается, выдуваемые из него изделия чаще всего имеют толстые стенки. Такие изделия хорошо поддаются алмазному гранению.

Алмазное гранение и поверхностная шлифовка особенно эффективны на изделиях из многослойного цветного стекла. Срезы обнажают нижележащие слои и в результате получается узор различной окраски.

Изобретение стекла стало важным моментом в исто­рии сразу нескольких древних цивилизаций.

Считается, что впервые стекло было получено в древнем Египте около 5000 лет назад, другие древние народы также знали о стекле - кто-то «додумался» до него сам, а кто-то позаимствовал рецепты его приготовления у соседей. Но как бы то ни было, а стекло - твердый, прочный, прозрачный и достаточно пластичный мате­риал - сыграло немалую роль в развитии человеческой циви­лизации, служа достижению декоративных и чисто практичных целей.

Кстати, наши предки нисколько не сомневались в том, что стекло действительно твердо, хотя и обладает хрупкостью. Да и мы привыкли думать, что стекло, с физической, химической и структурной точки зрения, мало отличается от обычного кам­ня, куска железа или дерева. Однако это глубокое заблуждение, так как обычное стекло - жидкость с огромной вязкостью .

Почти все окружающие нас твердые тела являются кристал­лами . Металлы, большинство полимеров, природные минералы, соль и сахар, даже замерзшая вода - все это и многое другое состоит из мельчайших кристаллов самой разной структуры. Здесь необходимо сразу сделать важное замечание. Кристалли­ческие тела - это не только те красивые драгоценные камни, играющие на свету всеми цветами радуги, но и любые другие тела, в которых атомы, ионы или молекулы «упакованы» с вполне определенной закономерностью, составляя так называемую кристаллическую решетку.

Однако среди твердых веществ и тел есть и такие, которые вовсе не являются кристаллами, то есть атомы или молекулы в них расположены беспорядочно, без видимой закономерности. Такие тела принято называть аморфными и, несмотря на то что они являются твердыми, их структура максимально близка к жидкости. Структура аморфных тел и веществ определяет их свойства, которые действительно совпадают со свойствами жид­кости, правда, с некоторыми оговорками.

Как известно, самое обычное стекло может быть получено расплавлением трех веществ: оксида кремния (обычного песка), соды и извести (либо поташа). Эти компоненты в определенных пропорциях смешиваются и доводятся до температуры пример­но 1400 °С. Смесь плавится, образуя стекловидную прозрачную массу, из которой можно изготавливать различные предметы. При этом у стекла есть особенность - чем выше температура, тем менее вязким оно становится, теоретически его можно сде­лать таким же жидким, как вода.

Интересно, что при охлаждении стекла оно начинает не про­сто затвердевать, а увеличивать свою вязкость , то есть даже при обычных, комнатных температурах самое обыкновенное окон­ное стекло остается жидкостью, но очень и очень вязкой - она продолжает течь, но со скоростью, едва различимой самыми чувствительными приборами.

Существуют аморфные вещества, внешне твердые, но с вяз­костью, гораздо меньшей, чем у стекла. В частности, это сургуч, сапожный вар (или корабельная смола), естественные смолы не­которых растений и т. д. Если взять небольшую емкость с тем же сургучом и положить на его поверхность монетку, то через опре­деленное время (на это может уйти несколько месяцев) монет­ка окажется на дне емкости. Предмет под действием тяжести с очень медленной скоростью пройдет сквозь слой сургуча, при этом сам сургуч останется таким же твердым и хрупким. Теоре­тически такой опыт можно провести и со стеклом, однако в этом случае придется ждать сотни и тысячи лет, но и по истечении этого срока монетка вряд ли окажется внутри стекла.

Дело в том, что стекло имеет склонность к расстекловыванию или, проще говоря, кристаллизации : стекло из вещества аморфного превращается в вещество кристаллическое, при этом оно становится мутным, теряет прозрачность, прочность и пла­стичность. Однако, для того чтобы такое случилось с обычным стеклом в окне, должно пройти слишком много времени.

Так что стекло, хотя и является твердым, относится к веще­ствам аморфным и, как это ни удивительно, обладает свойства­ми жидкости. Но, к счастью, вязкость этой жидкости настолько велика, что она течет медленно даже по историческим меркам.