Неизвестный космос. Легкий космический самолет (ЛКС) Челомея

Летчик-космонавт СССР, дважды Герой Советского Союза, кандидат технических наук, генерал-майор авиации В. Шаталов

Схема освоения приземного воздушного и космического пространства.

Коридор возможных высот и скоростей полета крылатых летательных аппаратов.

Экспериментальные самолеты Национального управления по аэронавтике и исследованию космического пространства США для изучения проблем, связанных с освоением гиперзвуковых скоростей полета и созданием многоразового космического транспортного корабля.

Самолет-носитель B-52, под фюзеляжем которого подвешен экспериментальный самолет Х-15.

Схема полета современного истребителя напоминает схему полета разрабатываемого многоразового космического транспортного корабля.

Взлет истребителя с пороховыми ускорителями.

Истребители, снабженные под фюзеляжным дополнительным топливным баком.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Когда летишь на современном сверхзвуковом истребителе, забираешься на самый «потолок», на предельную высоту, кажется, что совсем немного недостает машине, чтобы вырваться из пут земного тяготения и выйти на орбиту. А когда возвращаешься из космического полета и корабль входит в плотные спои атмосферы, невольно думаешь о том, как было бы хорошо, если бы он обладал качествами самолета: можно было бы выполнить необходимый маневр и совершить привычную посадку на аэродром.

К сожалению, пока ни самолет, ни космический корабль не обладают такими качествами. Но я глубоко убежден, что дело это временное.

Авиация подготовила научные и технические заделы в области силовых установок, конструкции аппаратов, бортовых систем, приборов и оборудования, которые явились базой для создания ракеткой техники, для рождения космонавтики. И хотя космические корабли пока мало походят на самолет, а их полет мало напоминает полет самолетов, тем не менее в их конструкции и оснащении есть много от крылатых машин.

Авиацию по праву называют колыбелью космонавтики: только овладев полетом на больших скоростях и высотах, научившись создавать совершенные конструкции летательных аппаратов и мощные реактивные двигатели, человечество смогло предпринять штурм космоса. Многие ученые, конструкторы, участвующие в исследовании и освоении космического пространства, были тесно связаны с авиацией. Не случайно и то, что первыми покорителями космоса стали летчики.

В то же время многие проблемы, решаемые при создании ракетно-космической техники, и многие результаты исследований, полученные в космических полетах, имеют важное значение для дальнейшего развития авиации. Это теплозащита конструкции, терморегулирование, биологическая защита от космического излучения и многое другое.

Наблюдая прогресс авиационной и космической техники, мы вправе задать себе такой вопрос: будет ли в дальнейшем происходить сближение этих областей, или их развитие пойдет разными путями? Есть серьезные основания считать, что в недалеком будущем произойдет заметное сближение авиации и космонавтики.

Дальнейший прогресс авиации связывают в основном с двумя направлениями; с созданием аэробусов - крупных самолетов, способных перевозить по нескольку сот пассажиров, и с переходом к еще большим скоростям полета.

В последние годы очень быстро растут пассажирские перевозки на воздушных линиях, связывающих крупные города с местами массового туризма, с курортами. А поскольку значительная часть перевозок приходится сейчас на самолеты небольшой и средней вместимости, некоторые аэропорты работают очень напряженно.

Выход из создавшегося положения авиационные конструкторы видят в создании аэробусов - крупных самолетов для обслуживания линий небольшой и средней протяженности. Это будут представители третьего поколения реактивных пассажирских лайнеров. Большая коммерческая нагрузка, высокая крейсерская скорость, низкий расход топлива на километр пути, небольшие затраты на техническое обслуживание, большой ресурс самолета, двигателей и всех агрегатов - таковы должны быть достоинства аэробусов.

В Советском Союзе конструкторским бюро Сергея Владимировича Ильюшина разрабатывается аэробус «Ил-86». Он сможет перевозить 350 пассажиров со скоростью 950 километров в час на дальность до 4 600 километров.

Граница скорости полетов в пределах Земли известна - ее уже достигли баллистические ракеты и искусственные спутники Земли. Это первая космическая скорость - 7,9 км/сек. До нее авиации пока еще далековато - мировые достижения скорости самолетов находятся где-то в районе 3-4 тысяч километров в час, то есть 1 км/сек.

Что же стоит на пути достижения авиацией больших скоростей полета?

Своим возникновением и развитием авиация обязана воздушной оболочке планеты. Воздух создает опору летящему самолету, позволяет маневрировать в пространстве, он же используется для «дыхания» двигателей. Но одновременно воздух создает и аэродинамическое сопротивление, на преодоление которого тратится значительная мощность двигателей, причем с увеличением скорости это сопротивление резко возрастает. Кроме того, воздух ставит на пути к большим скоростям полета ряд пороговых препятствий, барьеров. Это хорошо известный теперь звуковой барьер. Его уже преодолела не только военная, но и гражданская авиация. Однако далось это не легко и не сразу. Это также тепловой барьер - недопустимый нагрев самолетов при полете на скоростях, в три и более раз превышающих скорость звука. К этому барьеру несколько лет назад вплотную подошла военная авиация. Экспериментальные самолеты предпринимают вылазки за его пределы. Но пока это лишь проба сил.

Попутно хочется отметить, что само название «барьер» для авиации не совсем удачно. Это не барьеры в обычном понимании слова - преодолел, а дальше снова легкая дорога. Это скорее рубеж, на котором авиация встречается с новыми серьезными трудностями, причем, появившись однажды, они уже не исчезают, а требуют к себе постоянного внимания.

Самолет, превысив скорость звука, преодолев звуковой барьер, все время как бы несет его на себе в виде ударной волны и становится своеобразным источником непрерывного, бесконечно растянутого взрыва. Такое же положение с тепловым барьером.

По мере развития авиации конструкторам приходится решать все более сложные задачи.

Если, к примеру, для небольших скоростей полете в атмосфере аэродинамические расчеты производятся независимо от тепловых, то при полетах на сверхзвуковых скоростях в аэродинамических расчетах приходится уже учитывать теплообмен, решать вопрос о тепловой защите аппарата, то есть решать типичную задачу теории тепломассообмена.

Современные лайнеры летают обычно на высоте 8-10 километров со скоростью около 900 километров в час. В этих условиях аэродинамический нагрев незначителен, и его во внимание не принимают. Если же самолет будет лететь на этой высоте со скоростью в 3 тысячи километров в час, то, как показывают простейшие расчеты, температура заторможенного воздушного потока - слоев воздуха, омывающих поверхность самолета,- составит плюс 280 градусов Цельсия. На гиперзвуковых скоростях (превышающих скорость звука в пять и более раз) она превысит тысячу градусов. При скорости 10 тысяч километров температура достигнет уже 3 600 градусов,

С трудными задачами теплозащиты уже столкнулись создатели космической техники. Были разработаны так называемые абляционные покрытия, теплозащитные свойстве которых основываются на переходе материала из твердого состояния в газообразное, минуя жидкую фазу. Абляционные покрытия защищают спускаемый аппарат космического корабля, тормозящийся при спуске в атмосфере Земли, от тепловых потоков, достигающих 6-8 тысяч градусов. Но действие таких покрытий связано с укосом массы, а следовательно, с изменением формы покрытия, что совершенно нежелательно для аппаратов, использующих в полете подъемную силу крыльев и корпуса, снабженных аэродинамическими органами управления.

Но даже если бы удалось создать надежную тепловую защиту, попет с гиперзвуковыми скоростями на освоенных высотах был бы невыгоден по экономическим соображениям - расход энергии на преодоление аэродинамического сопротивления воздуха был бы слишком большим.

Вот почему летать с большими скоростями можно лишь в разреженной атмосфере. Здесь и задачи теплозащиты аппарата могут быть решены доступными средствами. Другими словами, надо подниматься в область не освоенных еще высот, в область верхней атмосферы, которая лежит между высотами 30 и 150 километров. Самолеты не могут здесь летать вследствие недостаточной подъемной силы крыльев и тяги воздушно-реактивного двигателя, а орбитальный полёт космического корабля на таких высотах невозможен из-за большого аэродинамического торможения. Эта область разреженной атмосферы пока разделяет авиацию и космонавтику, не дает установить между ними более тесное взаимодействие.

А нужно ли такое взаимодействие? Да, нужно. В околоземном космическом пространстве без него вряд ли можно будет обойтись. С дальнейшим расширением деятельности человека в этом районе все обслуживание между Землей и околоземными орбитами, очевидно, придется взять на себя аппаратам самолетного типа.

Есть ли какие-либо данные о том, что авиация и космонавтика стремятся освоить пространство верхней атмосферы?

Есть... И уже немало.

В частности, экспериментальные пилотируемые самолеты с ракетными жидкостными двигателями, запускаемые в США с самолетов-носителей, достигали высоты более 80 километров и скорости полета около 6 тысяч километров в час. После отделения от носителей самолеты разгонялись и выходили на баллистическую траекторию, Для управления вне пределов плотной атмосферы на них использовались не аэродинамические, а струйные рули. Однако ограниченный запас топлива позволял самолетам выполнять лишь своеобразный подскок вверх, после чего они планировали и совершали посадку.

В полетах экспериментальных ракетных самолетов ученым и конструкторам удалось получить ответы на многие вопросы. В частности, немало нового узнали они об аэродинамике и устойчивости аппаратов, летающих на гиперзвуковых скоростях, о воздействии аэродинамического нагрева на их конструкцию и на работоспособность систем, об особенностях входа в плотные слои атмосферы на больших скоростях с использованием подъемной силы.

Авиация подбирается к области неосвоенных высот снизу, космонавтика - сверху.

Как известно, снижение кораблей «Восток» и «Восход» происходило по баллистической траектории. Рассеивание (проще говоря, показатель неточности попадания в расчетную точку приземления) и перегрузки при таком спуске были довольно значительными, ибо аппарат полностью отдавался во власть стихии - управлять им не представлялось возможным.

Меньшие перегрузки при снижении и значительно большую точность приземления можно было получить лишь при управляемом спуске, то есть при таком спуске, когда в атмосфере происходит управление траекторией спуска корабля. Именно так происходит спуск «Союзов». Правда, этот способ снижения с орбиты потребовал преодоления ряда технических трудностей. Во-первых, нужно было придать спускаемому аппарату форму, обеспечивающую ему аэродинамическое качество. (Эта характеристика, пришедшая из авиации, есть отношение подъемной сипы аппарата к величине его лобового сопротивления.) Кроме того, нужно было создать систему, управляющую кораблем как на внеатмосферном, так и на атмосферном участках полета, и решить ряд других задач. Но зато управляемый спуск позволил снизить перегрузки в 2-3 раза (с 8-10 до 3-4 единиц) и значительно уменьшить рассеивание точки приземления.

От управляемого спуска космического корабля до управляемого полета в верхней атмосфере дистанция еще, конечно, огромного размера. Но тем не менее можно считать, что определенный шаг в этом направлении был сделан и космонавтикой.

В последние годы советские ученые провели ряд других экспериментов, имеющих важное значение для сверхвысотной и сверхскоростной авиации будущего. Я имею в виду эксперименты на автоматических ионосферных лабораториях «Янтарь».

На борту этих лабораторий, запускавшихся с помощью геофизических ракет, устанавливались электрореактивные двигатели. Испытания показали достаточно устойчивую работу этих двигателей на разных высотах и в разных режимах. Примечательно то, что на борту не было ни горючего, ни окислителя. Рабочим телом служил азот атмосферы, правда, предварительно ионизированный. Таким образом, была доказана реальная возможность применения электрических реактивных двигателей для транспортных средств, совершающих полет в верхней атмосфере.

Процесс взаимопроникновения авиации и космонавтики начался уже давно, а в последнее время идет особенно активно. Если лет десять назад еще трудно было говорить об аппаратах, сочетающих качества космического корабля и самолета, то теперь положение изменилось. Облик таких аппаратов предстает достаточно отчетливо. И не только потому, что проведены многие фундаментальные исследования. Главное - конкретнее, определеннее стали цели их создания.

Будущее космонавтики в значительной мере связано с долговременными орбитальными станциями и лабораториями различного назначения. Советская наука рассматривает их создание как магистральный путь человека в космос.

Опыт создания и эксплуатации орбитальных станций советской «Салют» и американской «Скайлэб» показал, что современной космонавтике такая задача уже по плечу.

Но сами станции представляют лишь часть космической системы. Для их эксплуатации- смены экипажей, доставки запасов продовольствия, топлива для двигателей и других материалов - нужны транспортные корабли, которые совершали бы регулярные рейсы по трассе Земля - орбита - Земля.

Это звено системы оказалось пока наиболее слабым. Современные ракетно-космические транспортные средства сравнительно дороги, недостаточно грузоподъемны, требуют долгого времени для подготовки к старту. Все космические аппараты (пилотируемые и беспилотные) выводятся сейчас в космос с помощью одноразовых ракет-носителей. Сложные космические корабли также предназначаются лишь для одного полета.

Разве можно примириться, например, с тем, чтобы крупный океанский лайнер, строящийся несколько лет, предназначался для одного-единствениого рейса? А в космонавтике именно так дело и обстоит.

Возьмем, к примеру, американскую ракету-носитель «Сатурн-5», которая обеспечивала полеты кораблей «Аполлон» к Луне. Этот исполин высотой более 100 метров и весом почти в 3 тысячи тонн фактически прекращал свое существование через несколько минут после старта. А ведь каждая такая ракета стоит ни много ни мало 280 миллионов долларов. Через 10-12 дней от всей сложнейшей системы «Сатурн» - «Аполлон» оставалась лишь небольшая обгоревшая в атмосфере и практически непригодная для дальнейшей эксплуатации спускаемая капсула, в которой экипаж возвращался на Землю. Победная дорога космонавтики усеяна сгоревшими обломками ракет, блоков космических кораблей и брошенными на орбитах спутниками.

Такая «одноразовость» техники превращается в серьезный тормоз дальнейшего развития космонавтики и космических исследований. На первых порах, когда запусков было не так много, а исследования не косили столь большого масштаба, с этим можно было мириться. В дальнейшем же подобное расточительство станет невозможным.

Выход из создавшегося положения специалисты видят в разработке принципиально новых космических транспортных кораблей. Существует много различных проектов, но все такие корабли по замыслу конструкторов должны «уметь» летать в атмосфере, выходить на околоземную орбиту, находиться на ней достаточно продолжительное время, а затем совершать посадку по-самолетному, на свой аэродром. И, что особенно важно, сохранять как можно больше элементов системы для повторного использования.

Чтобы удовлетворять этим требованиям, новые космические корабли должны существенно отличаться от нынешних. Во всяком случае, их орбитальные ступени должны обладать многим из того, что есть у современного самолета.

В поисках схемы нового космического транспортного корабля научно-техническая мысль прошла долгий и сложный путь. Идеальной схемой корабля, отвечающей самым строгим требованиям, сейчас считается двухступенчатая схема с параллельным расположением ступеней. Обе ступени, возвращаемые, пилотируемые, снабжены крылом; как и самолет, они стартуют с аэродрома и садятся на аэродром. Такой корабль можно представить в виде двух самолетов: внизу большой - самолет-разгонщик, а на нем меньший. Большой взлетает с аэродрома, и после того, как достигнута расчетная скорость, меньший отделяется от него и с помощью своих двигателей выходит на орбиту. Самолет-разгонщик тем временем возвращается на аэродром. Выполнив задачу, орбитальный самолет сходит с орбиты и также совершает посадку на аэродром.

Горизонтальный, или самолетный, старт предпочтительнее для многоразового космического корабля, хотя при ракетном старте выводится большая полезная нагрузка. Горизонтальный старт дает возможность выполнять боковой маневр при выведении корабля и запускать вторую ступень практически в любое время без ограничения по азимуту. А это значит, что транспортная система с горизонтальным стартом более маневренна.

Однако реализация такого проекта сегодня еще слишком сложна. Он опережает время, включает еще много нерешенных проблем.

Наиболее приемлемым пока считается проект транспортного корабля, у которого первая ступень - непилотируемая, частично восстанавливаемая для повторного использования, а вторая ступень - пилотируемая, самолетного типа. Отход от «идеальной» схемы означает прежде всего возвращение к вертикальному ракетному старту, утрату в полете некоторых элементов системы. Заметьте: утрату не всей ракеты-носителя и не всего корабля, как сейчас, а лишь некоторых элементов.

В США разрабатывается космический транспортный корабль под названием «Шаттл» («Челнок»). Он имеет двухступенчатую схему с параллельным расположением ступеней, обе ступени возвращаемые; двигательные установки ступеней включаются одновременно. Первая ступень состоит из двух спасаемых (то есть возвращаемых на Землю и пригодных для повторного использования) непилотируемых ракетных блоков с двигателями, работающими на твердом топливе. Вторая ступень крылатая, пилотируемая, оснащенная в водородно-кислородными ЖРД и сбрасываемым перед выходом на орбиту топливным баком. В этой схеме используются преимущества ракетной техники, в частности, применяется высокоэнергетическое топливо и вертикальный старт. Единственная часть системы, которая будет утрачиваться в полете, - топливный бак второй ступени.

Вся эта система чем-то напоминает истребитель, снабженный подфюзеляжным дополнительным топливным баком и двумя пороховыми ускорителями. Взлет такого самолета не раз демонстрировался на воздушных парадах. Только в отличие от него космический транспортный корабль будет иметь топливный бак огромных размеров, превышающий по размерам и весу сам корабль почти вдвое. А вместо компактных пороховых ускорителей - два больших спасаемых твердотопливных ракетных блока.

Отмечая недостатки существующих пилотируемых космических кораблей, мы назвали два: одноразовость и недостаточную грузоподъемность. В действительности недостатков гораздо больше, В частности, нынешние корабли мало маневренны, выполняют только парашютную поездку, для поиска и эвакуации их спускаемых аппаратов требуется специальная служба. Пока все они совершают полет по «жестким» орбитам, не производят маневра плоскостью орбиты, поскольку такой маневр связен с огромным расходом топлива. Вследствие этого корабли не могут спускаться в заданный район, если через него не проходит очередной виток.

Создание аппарата, обладающего большими маневренными возможностями на орбите, заметно расширило бы перспективы всей околоземной космонавтики. Можно было бы уже не запускать, а просто доставлять спутники не орбиты в грузовом отсеке корабля, обслуживать и ремонтировать их в космосе, возвращать на Землю материалы исследований и наблюдений, выполненные спутниками, и даже сами спутники е случае их выхода из строя. Не пришлось бы больше решать сложные проблемы, связанные, в частности, с отделением носовых обтекателей, раскрытием антенн, панелей солнечных батарей. На орбите перед отделением спутника от корабля можно проверить работу его аппаратуры. Значительно снизились бы затраты на разработку выводимых на орбиту аппаратов, поскольку менее жесткими оказались бы ограничения их веса и габаритов. Кроме того, можно было бы обходиться без сложных мер защиты от воздействия больших перегрузок, вибрации, шумов.

С помощью маневрирующих пилотируемых аппаратов может быть организована эффективная служба помощи в космосе.

Ныне спасательный корабль может сблизиться с кораблем, терпящим бедствие, лишь в том случае, если он запущен в тот момент, когда орбита корабля, терпящего бедствие, проходит над местом старта. А повторяется это лишь раз в сутки.

Теперь представим себе, что необходимо срочно эвакуировать экипаж орбитальной станции и что в космосе уже находится пригодный для этого корабль, но угол наклона его орбиты относительно плоскости земного экватора не такой, как у орбиты станции. Сейчас в подобной ситуации для сближения корабля и станции ничего сделать нельзя. А вот транспортный корабль, обладающий аэродинамическим качеством, в состоянии выполнить нужный маневр. Для этого ему придется погрузиться в атмосферу, проделать необходимые эволюции, а затем снова выйти на орбиту. Путем многократного погружения в атмосферу можно значительно изменить плоскость орбиты космического аппарата. Конечно, это также требует расхода топлива, но значительно меньшего, чем маневрирование на орбите, ибо в осуществлении маневра такому кораблю помогает атмосфера.

Когда в свете новых требований, предъявляемых к космическому полету, начинаешь думать: что же надо совершенствовать - современный космический корабль или современный самолет, то неизбежно приходишь к выводу, что путь к новому кораблю от авиации, пожалуй, ближе, чем от космонавтики. Орбитальная ступень этого корабля должна иметь все, чем располагает самолет: фюзеляж достаточно большой длины, крылья, систему для захода на посадку, шасси, аэродинамические органы управления.

Но разработка такого корабля (его с полным основанием можно назвать воздушно-космическим самолетом) - задача не простая. Ряд научных и технических проблем, решенных ранее применительно к нуждам космонавтики, приходится решать заново. Возьмем хотя бы теплозащиту орбитальной ступени при входе в плотные спои атмосферы. Возникает необходимость в разработке новых методов теплозащиты и новых теплозащитных материалов.

В отличие от спускаемого аппарата космического корабля орбитальная ступень воздушно-космического самолета должна рассеивать значительную часть кинетической энергии не в плотной атмосфере, а на больших высотах, вследствие чего ее нагрев будет определяться прежде всего углом входа в атмосферу. Облегчить тепловой режим орбитальной ступени при входе в плотные слои атмосферы может спуск ее на больших углах атаки. Тогда непосредственному воздействию набегающего потока будут подвергаться только нижние поверхности ступени, площадь которых составляет примерно одну треть от всей поверхности. То есть большая часть поверхности орбитальной системы не потребует сложной теплозащиты. И самое главное - не будет областей с очень большими температурами, что наблюдается при малых углах атаки.

Продолжительность полета на атмосферном участке снижения нового космического аппарата может возрасти с десяти минут, так обстоит дело сейчас, до часа и более. В этих условиях температура большей части, если не всей конструкции аппарата, будет близка к равновесной температуре излучения, что позволит не применять для теплозащиты абляционные материалы.

Однако проектирование конструкции, охлаждаемой излучением, требует точного знания местных тепловых потоков по всей поверхности. Выбор материалов должен быть сделан без ошибок, которые допустимы при более толстом теплозащитном покрытии из абляционного материала. Поскольку тепловые потоки связаны с распределением давления, выбор геометрической формы аппарата приобретает огромное значение.

При исследовании различных форм космических самолетов особое внимание уделяется их маневренности на гиперзвуковой скорости и величине аэродинамического качества. Чем большим аэродинамическим качеством будет обладать такой самолет, тем меньше ему придется ожидать момента схода с орбиты для возвращения в заданный район земного шара. При достаточно большом значении аэродинамического качества аппарат может достичь любой точки на земной поверхности, спускаясь с орбиты в любой момент.

У техники уже есть опыт создания универсальных транспортных средств, таких, скажем, как плавающие и летающие автомобили или самолеты-амфибии. В большинстве случаев в них механически объединены и самостоятельно действуют разные машины. Плавающий автомобиль, например, и до сих пор имеет все необходимое для движения по суше плюс водонепроницаемый корпус, винт или водометный движитель. Самолет-амфибия - это лодка или катамаран плюс самолет.

Полет в двух столь отличных друг от друга средах, как атмосфера и космический вакуум, потребует оснащения нового аппарата как аэродинамическими, так и газореактивными органами управления. Первые (киль, руль поворота, элевоны) будут предназначаться для полета в плотных слоях атмосферы, вторые (группы реактивных двигателей или газовых сопел) - для полета в космосе и в верхней разреженной атмосфере. Такое сочетание считается в технике вынужденным, нежелательным, но неизбежным,

В принципе новый аппарат можно было бы снабдить только газореактивными органами управления - реактивная тяга универсальна для обеих сред, но в этом случае пришлось бы отказаться от многих преимуществ, которые дает атмосфера, иметь значительно больший запас топлива или газа, причем носить этот запас до конца полета.

Боковой маневр и маневр по дальности (к примеру, при выборе точки приземления) космический самолет будет выполнять за счет аэродинамических сил, изменяя свои угол крена и угол атаки. Величина боковой дальности (максимальное отклонение вправо и влево) зависит от аэродинамического качества орбитальной ступени: чем оно выше, тем больше боковая дальность. Чтобы получить, например, боковую дальность ±2 000 км, орбитальная ступень должна иметь аэродинамическое качество на спуске около 1,3.

Напрасно стали бы мы рассматривать все проблемы, связанные с созданием космического аппарата нового типа - их очень много. Это устойчивость и управляемость аппарата, особенно при входе в атмосферу и при посадке, это двигательные установки для обеих ступеней, заправка и хранение топлива. Для нового космического аппарата понадобятся малогабаритные источники электроэнергии - на нем негде установить панели солнечных батарей. Не обойтись без усовершенствования командно-измерительного комплекса, разработки новых систем спасения космонавтов на всех этапах полета, без разрешения многих вопросов эксплуатации. Однако решение всех этих проблем по силам современной науке и технике. Создание космического самолета - вполне реальное дело, и, очевидно, недалеко время, когда мы станем свидетелями его первого полета.

От тесного содружества авиации и космонавтики, этих передовых областей науки и техники, выиграет не только космонавтика. Не менее впечатляющими могут стать в недалеком будущем достижения авиации. Освоение сверхзвуковых скоростей и больших высот даст толчок развитию гиперзвуковых самолетов как транспортного средства. Самолеты, которые придут на смену современным сверхзвуковым лайнерам, смогут за несколько часов доставлять людей и грузы в любую точку земного шара.

Таинственный космический самолет, управляемый ВВС США, завершил свой 600-й день на орбите, но мы до сих пор так и не узнали, что он на самом деле там делает.

Что известно о космическом самолете?

Космический самолет Boeing X-37B, который также называется Orbital Test Vehicle, был запущен 20 мая 2015 года с мыса Канаверал во Флориде. Это четвертая миссия в программе и вторая для этого транспортного средства. Предыдущая миссия в программе длилась 675 дней, с 11 декабря 2012 года по 17 октября 2014-го.

Несмотря на то что космические аппараты программы в общей сложности провели почти 2000 дней на орбите, цель космического самолета остается загадочной. X-37B представляет собой небольшой аппарат, 8,8 м в длину. Он также имеет грузовой отсек и может использовать роботизированную руку.

Самолет запускается вертикально ракетой и приземляется в горизонтальном положении на взлетно-посадочной полосе. Он работает на солнечных батареях, благодаря которым может оставаться на орбите так долго, путешествуя на скорости 28 тысяч км/ч.

Мы знаем о некоторых полезных задачах, которые этот космический аппарат осуществляет на орбите. Для этого аппарата, как известно, НАСА использовало ионный двигатель малой тяги. Но общая цель космического самолета до сих пор не ясна.

Теории

Согласно одной из теорий, самолет испытывает двигатели малой тяги на низкой орбите (примерно 320 км), с целью размещения там разведывательных спутников в будущем, чтобы получить изображения Земли с более высоким разрешением. Или же он уже может выполнять разведку.

Согласно данным веб-сайта ВВС США, первичные цели X-37B являются двойными: испытание многоразовых технологий космических аппаратов и операционные эксперименты, результаты которых могут быть возвращены на Землю для исследований. Но многие считают, что космический аппарат может служить и другим целям.

Во всяком случае, очень здорово, что на орбите существуют рабочие космические самолеты. Даже если мы никогда не узнаем, в чем заключается их миссия.

В отличии от микояновской конструкции МиГ-2000 АНТК им.Туполева продвинулось намного дальше и в случае благоприятного стечения обстоятельств первый в мире ВКС мог появиться уже к 2000 году. Но, как известно, политические события в СССР полностью “похоронили” этот перспективный проект. История Ту-2000 началась ещё в 1970-е годы, когда ОКБ-156, частично в инициативном порядке, приступило к разработке ВКС для нужд армии со стартовой массой порядка 300 тонн. Было предложено несколько проектов, включая довольно оригинальные ...

Так, рассматривалась возможность использования ЖРД на тепловыделяющих элементах, ядерной силовой установки, а также установка плазменных или ионных двигателей. Проекты посчитали интересными, но воплощать их в жизнь не спешили - в те годы военные отдавали большее предпочтение ракетным системам. Катализатором процесса развития советских ВКС послужило появление “Space Shuttle”. После 1981 года работы в этом направлении резко активизировались и спустя три года ОКБ-156 выступило с рядом конкретных технических предложений по созданию авиационно-космической системы на базе одноступенчатого орбитального самолёта. В качестве силовой установки предлагалось использование двигателей на основе ЖРД. Старт мог производится как с земли, так и с самолётов-носителей. В скором времени на рассмотрение поступили проекты с комбинированной силовой установкой (ТРД+ПВРД+ЖРД), один из которых стал прообразом ВКС под индексом “2000” или Ту-2000. Этот вариант был наиболее осуществим при условии решения двух проблем - повышение экономичности и увеличение запаса топлива на старте.

Самолёт “2000” имел схему “бесхвостка” с расположением двигателей под фюзеляжем и треугольным крылом малого удлинения. Все элементы ВКС конструктивно интегрировались вокруг силовой установки, состоявшей из следующих компонентов:

4 ТРД в хвостовой части фюзеляжа;
- основной разгонный ШПВРД (располагался в задней части фюзеляжа);
- 2 ЖРД для маневрирования в безвоздушном пространстве (устанавливались между ТРД).

Столь большое количество двигателей потребовалось для обеспечения максимальной экономичности на различных режимах полёта.

Фюзеляж Ту-2000 большого размера, в основном занят топливными баками с жидким водородом. В носовой част» фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа. На экспериментальном ВКС будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.


Дополнительным “пинком” к продвижению проекта послужила информация о ВКС X-30, создаваемом фирмой Rockwell в рамках проекта NASP (National Aero-Space Plane). Учитывая эту ситуацию были изданы постановления правительства СССР от 27 января и 19 июля 1986 о создании аналогичной воздушно-космической системы. Далее, 1 сентября Министерство обороны выпустило техническое задание на одноступенческий многоразовый воздушно-космический самолет (МВКС), который должен был решать военных задач как в атмосфере, так и в ближнем космическом пространстве, а также обеспечить высокоскоростную трансатмосферную межконтинентальную транспортировку.
В конкурсе приняли участия ОБК Туполева, ОКБ Яковлева и НПО “Энергия”, но безусловным фаворитом был конечно же Ту-2000, разработка которого велась больше 10 лет. “Туполевцы” оказались более последовательными и спланировали развитие МВКС в два этапа.

Этап 1 - создание экспериментального самолёта Ту-2000А. Полётная масса этой машины оценивалась в 70-90 тонн, скорость - около М-6 на высоте 30 км. Геометрические размеры: длина - 60 м, размах крыла - 14 м, стреловидность по передней кромке крыла - 70 град.

Этап 2 - здесь имелись варианты: космический бомбардировщик Ту-2000Б, МВКС или пассажирский гиперзвуковой лайнер.

Ту-2000Б проектировался как двухместный бомбардировщик с дальностью 10,000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6 на высоте в 30 км.

Ту-2000 в варианте МВКС имел бы стартовый вес 260 тонн, высоту полета более 60 км и скорость от М=15 до М=25 (орбитальная скорость). Полезная нагрузка 8-10 тонн может выводиться на орбиту высотой 200 км.


Проект лайнера не находился тогда в числе приоритетных и его детальная проработка не производилась.

Итак, в закату Советского Союза и его военно-промышленного комплекса работы по Ту-2000А велись в полном объёме. Конечно, “перестройка” изрядно подкосила финансирование военных проектов, но даже тогда сделано было немало. К декабрю 1991 года были изготовлены кессон крыла из никелевого сплава, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы. Заметим, что американцы застряли со своим Х-30 лишь на попытке постройки секции фюзеляжа из титанового сплава. Если был не коллапс СССР проект Ту-2000 вполне мог быть реализован к 2000 году, но история рассудила иначе.

Так что же было дальше? Летом 1992 года рассекреченный проект Ту-2000 решили поставить на коммерческую основу (другого выхода у “туполевцев” просто не оставалось), после чего макет МВКС был показан на выставке “Мосаэрошоу-92″ на стенде ОКБ им. А. Н. Туполева. Как обычно, высшим руководством России “пачками” раздавались обещания о “поднятии оборонного престижа” и т.д., но реально ничего делалось. В скором времени финансирование вообще прекратили и в настоящее время Ту-2000 считается “замороженным” проектом. Небольшая надежда на продолжение работ была в середине 1990-х гг. Тогда даже выполнили финансовые расчеты - в ценах 1995 года стоимость постройки одного Ту-2000 равнялась 450 млн.долларов при общих затратах на опытно-конструкторские разработки около 5,29 млрд.долларов. Стоимость каждого запуска ВКС оценивалась в 13,6 млн. долларов при темпе 20 пусков в год. Предполагалось также, что с момента начала необходимого финансирования НИОКР можно выполнить за 13-15 лет.

Как видим, проект был совсем не дешевым и потянуть его российская оборонка не смогла в принципе. Даже в 2010 году вопрос о возобновлении работ по Ту-2000 не поднимался. Справедливости ради отметим, что проект NASP X-30, столь рекламируемый в середине 1980-х гг., через несколько лет “заглох” и в 1992 году его финансирование тоже прекратили. Окончательное решение о закрытии программы X-30 было принято годом позже.

Практически все работы, связанные с авиационно-космической тематикой, в ОКБ А.Н.Туполева были свернуты в начале 60-х годов. Вновь к этой тематике ОКБ возвращается в 70-ые годы, когда в СССР начинаются перспективные работы над авиационными воздушно-космическими системами на базе одноступенчатых орбитальных самолетов. Это принципиально новое направление, родившееся на стыке авиационной, ракетной и космической техники, интенсивно разрабатывается начиная с середины 70-х годов ведущими аэрокосмическими фирмами мира. По замыслам разработчиков, реализация столь сложной и масштабной программы создания подобного воздушно-космического самолета (ВКС) должна позволить не только создать принципиально новый класс летательных аппаратов, способных экономически и экологически эффективно решать многие проблемы военного и гражданского характера, но и даст возможность освоить перспективные технологии, которые будут определять во многом уровень передовых отраслей ведущих стран в XXI веке.


Увеличение частоты запусков ракетно-космических систем и дальнейший их рост в перспективе ставит перед разработчиками ряд экономических и экологических проблем и ограничений. Необходимо снизить стоимость вывода полезной нагрузки на орбиту, прекратить засорение ближнего космоса отработанными частями ракетоносителей, значительно уменьшить или даже ликвидировать территории, отчуждаемые для падения отработанных ступеней. Большое значение имеет обеспечение гарантированной частоты запусков, снижение стоимости и сложности наземного комплекса, а также гибкости базирования.

Обеспечить все эти весьма противоречивые требования можно в случае создания и широкого использования одноступенчатых воздушно-космических летательных аппаратов горизонтального взлета и посадки многоразового использования. Наиболее важным фактором для улучшения экономических показателей является возможность эксплуатации ВКС подобно самолету, что позволит значительно сократить количество наземного обслуживающего персонала и исключить сложные элементы наземного комплекса (системы вертикальной сборки, стартовые площадки, специальные мероприятия и помещения для хранения блоков первых ступеней и т.д.). Значительно сокращаются затраты на оперативное техническое обслуживание (за счет сокращения времени на подготовку к повторному вылету), что приближает ВКС по характеристикам эксплуатационной технологичности к существующим тяжелым самолетам.

Одноступенчатым ВКС целесообразно решать все задачи, связанные с выведением грузов малой и средней размерности на относительно низкие орбиты. Эксплуатационная гибкость подобного ВКС позволяет один и тот же летательный аппарат использовать для выполнения практически любого из возможных заданий с помощью системы сменных модулей.

В 1968-1971 годах в ОКБ А.Н.Туполева в проработке находилось несколько технических предложений по ВКС с горизонтальным стартом и посадкой. Взлетная масса летательных аппаратов, согласно проектов, достигала 300 тонн. В качестве силовой установки предлагалось использовать ЖРД на тепловыделяющих элементах с использованием ЯСУ, в качестве рабочего тела - водород. Рассматривались варианты многоэтапного вывода полезных нагрузок с ВКС, находящихся на орбите вокруг Земли, на межпланетные орбиты с использованием ионных и плазменных маршевых двигателей. В тот период основное внимание ОКБ было сосредоточено на СПС-1 и многорежимных тяжелых боевых самолетах. На развертывание крупномасштабных и дорогостоящих исследовательских работ по одноступенчатым ВКС не было ни средств, ни свободных необходимых научно-технических и людских ресурсов, кроме того, до первых успехов в американской программе по «Шатлу» военные не проявляли особого интереса к проектам отечественных ВКС, делая традиционно ставку в оборонных космических программах на традиционные ракетно-космические системы. Поэтому все эти оригинальные предложения ОКБ не вышли из стадии эмбрионального состояния.

С началом работ на Западе по одноступенчатым ВКС, работы по данной тематике оживились и в СССР. К середине 80-х годов совместно с ЦАГИ, ОКБ Н.Д.Кузнецова, с другими предприятиями и организациями отечественного ВПК ОКБ подготовило ряд конкретных технических предложений по созданию авиационно-космической системы на базе одноступенчатого орбитального самолета с маршевой и корректирующей силовыми установками на основе ЖРД, с наземным или воздушным стартом с тяжелых самолетов-носителей.


Следующим этапом в создании одноступенчатого ВКС в ОКБ стало начало проектирования летательного аппарата с маршевой силовой установкой, построенной на комбинации двигателей принципиально различного типа (ТРД + ПВРД + ЖРД). За прошедшие годы ОКБ удалось накопить большой научно-технический и технологический материал, дающий возможность перейти к практической реализации проекта одноступенчатого ВКС. По теме одноступенчатого орбитального ВКС ОКБ за эти годы подготовило несколько проектов, отличавшихся различными техническими решениями в части компоновки летательного аппарата и его силовой установки. Одним из последних проектов стал проект, получивший обозначение самолет «2000» или Ту-2000 с комбинированной силовой установкой (ТРД + ШПВРД + ЖРД).

Ответом на разработку США трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента. 1 сентября Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту; обеспечить высокоскоростную трансатмосферную межконтинентальную транспортировку, и решение военные задач как в атмосфере, так и в ближнем космическом пространстве. Из представленных ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» проектов одобрение получил Ту-2000.

Исследования, проведенные в ОКБ по проблеме создания одноступенчатого ВКС, дают основание утверждать, что одноступенчатый ВКС способен стать реальностью, если решить, в частности, проблемы существенного повышения экономичности силовой установки и значительно поднять относительный запас топлива на взлете летательного аппарата.

По мнению ОКБ, на сегодняшний день, существенно повысить экономичность силовой установки можно, используя в качестве окислителя кислород воздуха, то есть применяя ВРД. Единственным типом ВРД, который можно использовать при гиперзвуковых скоростях полета, на которые рассчитывается ВКС, является ПВРД. В свою очередь, использование ПВРД требует выполнения полета в атмосфере с высокими скоростными напорами для ограничения габаритов и массы силовой установки. Высокие скоростные и тепловые нагрузки конструкции летательного аппарата требуют увеличения массы пустого аппарата. Это увеличение целесообразно лишь тогда, когда существенно снижается общая масса бортового запаса топлива. Использование в качестве окислителя атмосферного воздуха позволяет уменьшить секундный расход топлива, однако существенное снижение общей массы ВКС может быть достигнуто только при условии работы ПВРД в широком диапазоне чисел М полета (широкодиапазонный ПВРД - ШПВРД). Это дает существенную разность между уменьшением массы топлива и увеличением массы конструкции, связанным с использованием ПВРД, и обеспечивает выигрыш в относительной массе полезной нагрузки. Другим определяющим условием реализации одноступенчатого ВКС является использование в качестве топлива жидкого водорода. Уникальное сочетание высокой массовой теплотворной способности и высокой удельной теплоемкости позволяют создать более легкие и компактные двигатели с требуемым удельным расходом топлива. Одновременно использование хладоресурса жидкого водорода дает возможность спроектировать достаточно легкую охлаждаемую конструкцию планера и воздухозаборника, а также обеспечивать необходимые температурные режимы бортовых систем и оборудования. Применение ПВРД требуют большую часть разгонной траектории до орбитальной скорости выполнять в плотных слоях атмосферы, что вызывает сильный кинетический нагрев конструкции, особенно передних кромок крыла, воздухозаборника, носка фюзеляжа и всей нижней поверхности ВКС. Расчеты, проведенные в ОКБ, показали, что без применения жидкого водорода в качестве охлаждающего хладоагента не удается обеспечить нормальный температурный режим конструкции планера, самих ПВРД, оборудования, а также обеспечить нормальные условия для экипажа, грузов, в том числе и специальных, а в перспективе для пассажиров.

В связи с низкой плотностью жидкого водорода ведутся исследования по созданию технологии производства и хранения на борту ЛА переохлажденного (шугообразного) водорода.

Из условий применения на ВКС основной разгонной силовой установки на базе ПВРД для него наиболее рационально применение комбинированной силовой установки, включающей экономичные ТРД, работающие в диапазоне скоростей, соответствующих диапазону М=0-2,5, ПВРД (ШПВРД), обеспечивающих разгон до М=20-25, и ЖРД для доразгона до орбитальной скорости и маневрирования на орбите.

Для того, чтобы одноступенчатый ВКС был конкурентоспособен в сравнении с другими транспортными ракетно-космическими средствами, при его проектировании необходимо обеспечить выполнение ряда требований к летным характеристикам. ВКС должен обладать способностью совершать взлеты и посадки со стандартных взлетно-посадочных полос длиною до 3000 м, совершать полеты с разворотом на дозвуковой скорости после взлета для выхода в заданную точку начала разгона и перед посадкой для захода на заданный аэродром, осуществлять перелеты для изменения аэродрома базирования, быстро выполнять разгон до заданной скорости и высоты, включая выход на круговую орбиту, выполнять неоднократные орбитальные маневры, выполнять автономный орбитальный полет продолжительностью до суток, выполнять крейсерский полет в атмосфере с гиперзвуковыми скоростями, выполнять торможение со снижением при возвращении с орбиты, в процессе разгона до орбитальных параметров и в процессе снижения выполнять маневрирование для прохода заданной трассы и выхода на заданную орбиту и заданный аэродром, изменять плоскость орбитального полета.


Из-за сложности решения комплекса научно-технических, технологических и эксплуатационных проблем создания одноступенчатого ВКС в ходе проектирования решено было, что целесообразно практические работы начать с постройки и испытаний экспериментального ВКС несколько меньшей размерности, чем окончательный вариант. На этом летательном аппарате будут проверены в реальных условиях полета новые концепции и технические решения, заложенные в аэродинамическую схему, силовую установку, конструкцию и теплозащиту планера, самолетных систем, двигателей и оборудования. Необходимость создания экспериментального ВКС обусловлена, кроме всего прочего, отсутствием условий натурного моделирования на наземных установках при числах М=6...8 явлений аэротермодинамики, процессов горения в двигательной установке, процессов нагрева конструкции.

Принципиальная новизна разрабатываемого ВКС, неопределенность в характере внешних воздействий на него, отсутствие в настоящее время проверенных технических решений по ряду направлений, а также необходимого набора конструкционных материалов и полуфабрикатов обуславливают необходимость поэтапной разработки и испытаний экспериментального ВКС. Поэтому вся программа по созданию экспериментального ВСК была разбита на два этапа: создание экспериментального гиперзвукового самолета ЭГС с максимальной скоростью полета до М=5..6 и создание экспериментального ВКС - прототипа одноступенчатого многоразового ВКС, обеспечивающего проведение летного эксперимента во всей области полетов, вплоть до выхода в космос. В настоящее время в ОКБ определились по основным техническим решениям ВКС второго этапа (создание летательного аппарата по первому этапу укладывается в рамки глубокой модернизации одного из существующих сверхзвуковых летательных аппаратов). M.Wade утверждает, что на втором этапе помимо МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б и пассажирского гиперзвукового самолета. Ту-2000Б проектировался как двухместный бомбардировщик с дальностью 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6 на высоте в 30 км. Возможно, это отголоски работ по проекту «360».

До приостановки работ в 1992, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы. ЭГС должен был использовать турбопрямоточные двигатели с переменным циклом, использующие метан или жидкий водород.

По данным специалистов АНТК им. А.Н.Туполева, НИОКР можно выполнить за 13-15 лет с начала необходимого финансирования. В ценах 1995 г. стоимость постройки ВКС (при затратах на ОКР 5,29 млрд. долл.) будет около 480 млн.дол. Предполагаемая цена запуска - 13,6 млн.дол. (при темпе 20 пусков в год).

Макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92» на стенде ОКБ им.А.Н.Туполева.

В настоящее время в ОКБ продолжаются исследовательские и экспериментальные работы по программе создания ВКС Ту-2000.

Для отработки ГПВРД на жидком водороде должна использоваться ГЛЛ «Игла».


ОСОБЕННОСТИ КОНСТРУКЦИИ. Для ВКС принята аэродинамическая схема "бесхвостка", все элементы ВКС конструктивно интегрированы вокруг силовой установки, состоящей из четырех ТРД, находящихся в хвостовой части, основного разгонного ШПВРД, расположенного под фюзеляжем в задней его части, и двух ЖРД для маневрирования в космическом пространстве, установленных между ТРД. ВКС имеет треугольное крыло относительно небольшой площади и малого удлинения, большую роль в создании подъемной силы берет на себя фюзеляж с плоской нижней поверхностью. Органы управления традиционные для данной схемы ЛА: элевоны на крыле и руль поворота на киле. Основной двигатель - ШПВРД включает в себя воздухозаборник внешне-внутреннего сжатия, регулируемые камеры сгорания с косым срезом и многоканальную систему подачи топлива. Основной разгонный режим выполняется на ШПВРД. Воздушные каналы ТРД после достижения скорости М=2..2,5 и начала работы ШПВРД закрываются заслонками, которые в открытом состоянии образуют входное устройство воздухозаборника ТРД.

Особенностью конструкции ВКС является интегральное решение во взаимной компоновке планера и силовой установки, особенностью касающейся ШПВРД. Нижняя поверхность фюзеляжа выполняет функции: обеспечивает внешнее сжатие воздуха, входящего в ШПВРД, является верхней поверхностью замкнутой камеры внутреннего сжатия воздуха и сгорания топлива, служит верхней профилированной поверхностью сопла с косым срезом.

Фюзеляж ВКС большого размера, в основном занят топливными баками с жидким водородом. В носовой част» фюзеляжа расположена кабина экипажа на двух членов экипажа. Система автоматического спасения экипажа обеспечивает спасение от земли до максимальных высот. Носовая часть вместе с кабиной отделяемая и прорабатывалась в двух вариантах: с отделяемой и спасаемой на парашюте кабиной экипажа и катапультируемыми креслами самолетного типа. На экспериментальном ВКС будут использоваться катапультируемые кресла с предварительным отделением носовой части и кабины экипажа.

За кабиной экипажа находится технический отсек радиоэлектронного оборудования, в этот же отсек убирается передняя стойка шасси. Средняя и задняя части фюзеляжа заняты топливным баком с жидким водородом. Для питания ЖРД окислителем в хвостовой части фюзеляжа установлен кислородный бак. Все двигатели в качестве горючего используют жидкий водород из единой топливной системы.

Шасси ВКС нормальной трехточечной схемы с носовым колесом: передняя стойка со спаренными колесами малого диметра с высоким давлением в пневматиках колес, основные стойки - одноколесные, убираются в фюзеляж в отсеки в районе крыла.

Экспериментальный ВКС второго этапа согласно предварительных расчетов ОКБ должен иметь взлетную массу в пределах 70-90 тонн, запас жидкого водорода - 30 тонн и жидкого кислорода - 5 тонн. В окончательном варианте взлетная масса ВКС увеличится до 210-280 тонн. Подобный аппарат будет доставлять на околоземную орбиту 200-400 км полезный груз в 6-10 тонн. Компоновочно он будет повторять экспериментальный ВКС, но в отличие от него, на нем планируется, устанавливать более мощный ШПВРД, число ТРД увеличить до 6, как и на экспериментальном ВКС - два ЖРД.


Источник -

". Инженеры гордятся своими разработками и напоминают, что до недавнего времени не было самолетов, способных долететь до космоса без посторонней помощи. Так, например, всемирно известный "Буран" в 1988 году совершил два оборота вокруг Земли. Однако он был отправлен в космическое пространство с помощью ракеты-носителя.

В настоящее время специалисты уверяют, что современные аппараты могут добраться до других планет и без носителей. Новый суборбитальный самолет похож на "Буран", но как уверяет его создатель российский инженер Владимир Денисов, он справится при полете в космос без ракеты-носителя. Аппарат уже получил название МГ-19.

Добавим, инженеры намерены вскоре приступить к созданию МГ-19. Об этом сообщается на сайте ok-inform.ru.

Техническая справка

МГ-19 воздушно-космический самолет. МГ-19 разработан на базе разрабатываемого ранее ВКС М-19.

ВКС М-19 был выполнен по аэродинамической схеме «несущий корпус». Корпус аппарата имел треугольную форму в плане с углом стреловидности по передней кромке 75°.

Такая стреловидность была выбрана из условия сохранения высоких несущих свойств аппарата при малом сопротивлении и аэродинамическом нагреве передних кромок на больших скоростях полета. Носовая часть корпуса имела эллиптические поперечные сечения с соотношением полуосей 1/4.


Миделевое сечение располагалось в точке перехода носовой части корпуса в кормовую, на расстоянии 0,67 длины корпуса от носка. Конфигурация ВКС, выполненного по схеме «несущий корпус», обеспечивала достаточно высокий уровень аэродинамических характеристик.

Так, например, аэродинамическое качество на дозвуке составляло величину порядка -7,0, а на гиперзвуке около 3,0, что подтверждалось экспериментальными исследованиями в ЦАГИ.

Проведенные исследования по определению оптимального облика крылатых космических аппаратов, совершающих горизонтальные взлет и посадку «по-самолетному», показали, что наиболее приемлемой формой многорежимного ВКС, летающего на до-, сверх- и гиперзвуковых скоростях в условиях интенсивного нагрева является форма типа «несущий корпус».

Основным проблемным вопросом создания ВКС М-19 было создание комбинированной силовой установки. На ней, как на главной идее, строилась концепция всего проекта. Схема силовой установки носила элементы новизны, и главное, с чем справились разработчики, это то, что был предложен специальный агрегат (теплообменник), благодаря которому радиоактивный контур был полностью изолирован, что исключало радиационное заражение атмосферы при включении двигателя у земли.

Схема маршевого ЯРД / Изображение: www.testpilots.ru

Десять ДТРДФ / Изображение: www.testpilots.ru

Комбинированная двигательная установка включала в себя:

  • маршевый ядерный ракетный двигатель (ЯРД) включая ядерный реактор с радиационной защитой
  • десять двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и с форсажной камерой
  • гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД)
  • два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ
  • распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД. Комбинированная двигательная установка ВКС М-19 предполагала поэтапное включение различных типов двигателей в зависимости от режима полета. Работа комбинированной силовой установки ВКС регламентировалась оптимальными режимами работы на всех фазах полета и предусматривала следующие режимы:
  1. Режим «взлет» и «начальный разгон» до скоростей, соответствующих числам М=2,5-2,7 на высотах 12-15 км. На этом режиме работает ДТРДФ с подогревом воздуха перед турбиной от замкнутого контура с реактором при включенной форсажной камере.
  2. Режим полета «разгон », соответствующий скоростям М=2,7-5,0 на высотах ~ 15 км. На этом режиме работают только ДТРДФ в режиме авторотации с подогревом воздуха на входе в форсажную камеру от замкнутого контура с реактором при включенной форсажной камере. В диапазоне скоростей, соответствующих числам М=3,5-4,5 к ДТРДФ подключаются ГПВРД, которые обеспечивают разгон аппарата до условий полета: высота -50 км, скорость М~16,0.


Основные тактико-технические характеристики

Конструкция ОКБ ЭМЗ
Обозначение
М-19
Состояние
проект 1974-80 гг.
Тип
воздушно-космический самолет
Экипаж, чел
3-7
Геометрические и массовые характеристики
Длина (без хвостового обтекателя), м
69
Размах крыла, м
50
Высота, м
15,2
Площадь несущей системы, м²
1000
Грузовой отсек:
длина - 15,2 м;
ширина - 4,0 м;
высота - 4,0 м;
объем - 320,0 м³
База шасси, м 41,2 41,2
Колея шасси, м
20,0
Массовые характеристики, т:
стартовая масса - 500;
максимальная масса выводимой нагрузки - 40;
масса конструкции - 125;
масса топлива (жидкий водород) - 220
Силовая установка
Число двигателей
10
Тип двигателей
комбинированная ВРДУ (ДТРДФ + ГПВРД) + ЖРД (ЯРД)
Тяга ВРДУ, кгс
10 х 25 000
Тяга ЯРД, кгс
1 х 320 000
Летно-технические характеристики
Высота опорной орбиты, км
185,0
Боковая дальность при спуске с орбиты, км
4500
Длина разбега, м
2000
Длина пробега, м
3750
Длина ВПП (потребная), м
4000

Мы продолжаем серию публикаций о новом оружии России , над созданием которого сейчас работают ученые. В первом материале, напомним, речь шла о «рельсотроне Арцимовича ». Сегодня расскажем о еще одной интересной разработке.

Недавно командующий космическими войсками России генерал-лейтенант Олег Остапенко заявил о том, что у нас ведутся работы по созданию нового оружия: беспилотного космического самолета многоразового использования. Это подтвердил главком ВВС генерал-полковник Александр Зелин : «Естественно, ведутся. Мы не можем быть в обозе. Есть разработки, есть понимание, как это делать, есть технические решения».

Нужно сразу подчеркнуть, что эти заявления были сделаны сразу после возвращения на землю американского беспилотного космического корабля X-37B, который провёл на околоземной орбите 225 суток. При этом задачи полета и ход их решения были глубоко засекречены спецслужбами США. Так что трудно сказать, чего больше в высказываниях российских военачальников: блефа или реальной информации?

Вначале была «Спираль»

Тема космического самолета, конечно, засекречена не только у американцев, но и у нас. Но кое-что просачивается в открытую печать и общие контуры проблемы можно вполне очертить.

Однозначно известно, что в советское время в работах по созданию космического самолета мы поначалу были впереди США. В 1965 году все, что связано с «крылатой космонавтикой», было поручено ОКБ-155 А.И.Микояна. Тема по созданию воздушно-орбитального самолета (ВОС) получила индекс «Спираль». Мало кто знает, что одним из руководителей проекта был космонавт № 2 Герман Титов. Впоследствии он рассказал мне в одном из своих последних интервью некоторые подробности.

ВОС состоял из гиперзвукового самолета-разгонщика (ГСР) и военного орбитального самолета (ОС) с ракетным ускорителем. Старт системы предусматривался горизонтальный, с использованием разгонной тележки, отрыв происходил на скорости 380−400 км/ч. После набора с помощью двигателей ГСР необходимых скорости и высоты происходило отделение ОС и дальнейший разгон осуществлялся с помощью ракетных двигателей двухступенчатого ускорителя, работающих на фторо-водородном топливе.

При этом орбитальный самолет был пилотируемым (одноместным). Предусматривалось его использование в вариантах фоторазведчика, радиолокационного разведчика, перехватчика космических целей или ударного самолета с ракетой класса «Космос-Земля». Вес самолета во всех вариантах составлял 8800 кг, включая 500 кг боевой нагрузки в вариантах разведчика и перехватчика и 2000 кг у ударного самолета. Диапазон опорных орбит составлял 130 — 150 км.

— Почему же эта программа не была завершена? — спросил я у Титова. Он ответил так:

— Первый раз «Спираль» зачахла в 1970 году. Потому что военное руководство не поняло тогда перспективы развития этой темы. Потом Артем Иванович Микоян, так сказать, вдохновитель и разработчик этой темы, умер, а вместе с ним — и она. Позже, когда узнали, что американцы работают над системой «Шаттл», руководство возмутилось: почему у них есть, а у нас нет? Срочно начались работы по «Бурану». Вернулись к «Спирали». Использовали эту схему для отработки вопросов аэродинамики, термодинамики. Произвели четыре запуска на орбиту по гагаринской схеме одновиткового полета. «Спираль» показала очень хорошие характеристики. Однако в дальнейшем разработчики пошли по пути «списывания» — перерисовали схему «Шаттла» и «создали» «Буран». В конце концов, и он был загублен из-за недостатка финансирования.

США вырвались вперед

В результате реформ в России (и, в частности, в нашей армии) мы потеряли преимущества в развитии космического самолетостроения. Вперед вырвались США.

В 1999 году NASA совместно с компанией Boeing начали программу создания космического самолета X-37B. Стоимость разработки экспериментального космолета составила 173 миллионов долларов. Космолет создан с такими характеристиками: взлетный вес 4 989 кг, масса полезного груза 900 кг, время пребывания в космосе до 270 дней. Первый тестовый полёт — испытание путём сбрасывания, был совершён 7 апреля 2006 года. А 22 апреля 2010 года X-37B ушел в первый боевой полет. Боевой — в данном случае не метафора. Некоторые эксперты высказывают предположение, что за 225 суток, проведенные в космосе, космолет провел реальные пуски боевого оружия. Именно в это время был сбит российский военный спутник, что официально объяснили возможным попаданием в него метеорита. С X-37B даже связывают предполагаемое испытание над Россией нового климатического оружия — небывалая жара и засуха лета 2010 года.

До сих пор руководство ВВС США не публикует никаких подробностей о целях и задачах полета X-37B. Принимая во внимание достаточный объем грузового отсека космического аппарата, можно предположить, что X-37B способен нести любую разведывательную аппаратуру и, безусловно, некоторые системы вооружения. Наблюдения, сделанные с помощью оптической аппаратуры, подтверждают высокую маневренность аппарата: за все время его нахождения на орбите было произведено четыре резких изменения траектории движении. Таким образом, аппарат может использоваться для перехвата и захвата вражеских спутников. Несмотря на столь явную боевую ориентацию аппарата X-37B, американские военные продолжают настаивать на том, что он является всего лишь летающей в космосе лабораторией.

3 декабря 2010 года Х-37 В вернулся на Землю после семи месяцев полета. Посадка в автоматическом режиме была осуществлена на взлетно-посадочную полосу базы ВВС США Ванденберг, расположенную северо-западнее Лос-Анджелеса (штат Калифорния). В ходе пребывания на орбите X-37B получил семь повреждений обшивки, по официальной версии, в результате столкновения с космическим мусором.

4 марта 2011 года космолет США вновь отправился на боевую службу в космос. Программа полета и стоимость проекта опять засекречены. В печати зато появилось сообщение о том, что ВВС США дали компании Boeing заказ на изготовление второго образца X-37B, который будет готов в 2011 году и, вероятно, тут же полетит на орбиту.

Российский ответ

Что может противопоставить Россия, если не считать словесных «страшилок» командующего космическими войсками и главкома ВВС РФ?

Недавно в прессе появилось сообщение о том, что в Центральном аэрогидродинамическом институте (ЦАГИ) состоялись исследования аэрокосмического комплекса, предназначенного для межконтинентальных перелетов со скоростью, близкой к первой космической — около 20 тысяч км/ч. Как сообщает пресс-служба ЦАГИ, система состоит из дозвукового самолета-носителя и воздушно-космического самолета (ВКС) с жидкостным ракетным двигателем. При дальности 16—17 тыс. км время полет воздушно-космического самолета проходит в три стадии — активное выведение на орбиту, космический полет с околоорбитальной скоростью и планирование в атмосфере. Причем этот перелет не займет больше чем 50 минут.

В качестве самолета-носителя могут использоваться Ил-76МФ и Ил-96−400Т. Именно транспортный самолет должен поднять основной разгоняемый модуль на большую высоту. После этого воздушно-космический самолет самостоятельно выберется на орбиту, наберет скорость до 20 тысяч километров в час, а потом спланирует в атмосфере к нужной цели.

Ранее ЦАГИ провел системный анализ различных вариантов многоразовой ракетно-космической системы (МРКС 1). МРКС-1 представляет собой частично многоразовую ракету-носитель вертикального старта на основе крылатой многоразовой первой ступени, выполненной по самолетной схеме и возвращаемой в район старта для горизонтальной посадки на аэродром 1-го класса, и на основе одноразовых вторых ступеней и разгонных блоков. Крылатый многоразовый блок первой ступени оснащается маршевыми жидкостными ракетными двигателями многоразового использования.

Зарубежные аналитики высоко оценивают возможности российского ВПК в этом отношении: технических причин, которые не позволяли бы России вслед за Америкой создать беспилотный орбитальный самолет, не существует.

«Основным российским технологиям, необходимым для этого, уже полстолетия, — считает американский эксперт по космосу Джим Оберг. — Русские экспериментировали с крылатыми космическими кораблями с 1960-х годов и даже вывели прототип на орбиту, но сегодня они ослаблены реформами. Поэтому все зависит от политической воли руководства страны и вооруженными силами». А эта проблема, пожалуй, посложней технической, но будем надеяться, что и она преодолима.