Динамическая устойчивость энергосистемы. Статическая и динамическая устойчивость системы электроснабжения

Статическая устойчивость -способность сист. восстанавливать исходный р-м после малого его возмущения. Предельный р-м -р-м,при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Пропускной способностью элемента системы называют наибольшую мощность, кот. можно передать через элемент с учетом всех ограничивающих факторов. Позиционная система -такая система, в кот. пар-ры р-ма зависят от текущего состояния, взаимного положения независимо от того как было достигнуто это состояние. При этом реальные динамич.хар-ки эл-ов сист. заменяются статическими. Статические хар-ки -это связи параметров р-ма системы, представленные аналитически или графически не зависящие от времени. Динамические хар-ки –связи пар-ов,полученных при условии,что они зависят от времени. Запас по напряжению: k u =. Запас по мощности: k р =

Допущения,принимаемые при анализе устойчивости : 1.Скорость вращения роторов синхр.машин при протекании электромеханич. ПП изменяется в небольших пределах(2-3%)синхронной скорости. 2.Напряжение и токи статора и ротора генератора изменяются мгновенно. 3.Нелинейность пар-ов сист.обычно не учитывается. Нелинейность же пар-ов р-ма-учитывается. Когда от такого учета отказываются,это оговаривают и сист.называется линеаризованной. 4.Перейти от одного р-ма эл.сист. к др. можно,изменив собственные и взаимные сопротивл.схемы, ЭДС генераторов и двигателей. 5.Исследование динамич.устойчивости при несимметричных возмущениях производится в схеме прямой послед-ти.

Задачи расчета устойчивости эл.системы: 1.Расчет параметров предельных р-ов(предельной передаваемой мощ-ти по линиям эн.сист.,критического U узловых точек сист.,питающих нагрузку) 2.Определение значений коэф-ов запаса.Наряду с приведенными формулами расчета коэф-ми запаса по напряжению и мощности могут вычисляться коэф-ты запаса по настроечным параметрам АРВ: S k = где kmax и kmin – максим.и мин.значения пар-ов,соответвствующих границе области статической устойчивости. 3.Выбор мероприятий по повышению статической устойчивости энергосист.или обеспечению заданной пропускной способности передачи. 4. Разаработка требований,направленных на улучшение устойчивости сист.Выбирается настройка АРВ,обеспечивающая требуемую точность поддержания напряж.

Статическая устойчивость простейшей системы.

Статическая устойчивость СЭС – это устойчивость при малых возмущениях режима. В установившемся режиме между энергией источника W r , и энергией, расходуемой покрытие потерь, имеется баланс. При изменении параметра режима П на ΔП, этот баланс нарушается. Если в системе энергия W=W H +после возмущения расходуется интенсивнее, чем приобретается от внешнего источника, то новый режим не может быть обеспечен энергией и в системе должен восстановиться прежний установившийся. Такая система устойчива. Из определения устойчивости следует, что условием сохранения устойчивости системы (критерием устойчивости) является соотношениеили в дифференциальной форме. Величинуназывают избыточной энергией. Эта энергия положительна, если дополнительная генерируемая энергия возрастет интенсивнее, чем нагрузка системы с учётом потерь в ней. При этом условии критерий устойчивости запишется в видеДля обеспечения устойчивости системы значение имеет запас её статической устойчивости, харак-ся углами сдвига роторов генераторов и напряжениями в узловых точках системы. Чтобы проверить статическую устойчивость системы, нужно составить диф. уравнения малых колебаний для всех элементов, а затем исследовать корни характеристического уравнения на устойчивость.

Математическое описание СЭС для исследования устойчивости основывается на теории диф. уравнений. Анализ устойчивости режимов реальных СЭС сводится к исследованию устойчивости решений систем диф. уравнений. В общем виде СЭС описываются системами уравнений высокого 60.1. порядка. Для практических расчётов порядок системы уравнений обычно не превышает шести. Для оценки устойчивости применяют линеаризацию систем диф. уравнений и понижение их порядка с целью получения простых универсальных методов и алгоритмов расчёта. В линейных системах уравнений и системах с несущественной нелинейностью устойчивость анализируется методом малых колебаний. Для больших возмущений при анализе устойчивости используется второй метод Ляпунова или численное интегрирование. Понижение порядка систем уравнений, описывающих исследуемые процессы, может быть достигнуто их упрощением: 1) разделением процессов на быстрые и медленные с обособленным их рассмотрением; 2) заменой групп источников или двигателей одним эквивалентным; 3)представлением нагрузки обобщенными характеристиками; 4) линеаризацией характеристик элементов СЭС; 5) разделением сложной системы на простые подсистемы, которые можно рассматривать независимо.

Статическая устойчивость нагрузки (действительный предел мощности, статическая устойчивость двигателей нагрузки). Нагрузка электрической системы оказывает влияние на устойчивость синхронных генераторов. Если мощность приёмной системы соизмерима с мощностью электропередачи, то напряжение на шинах нагрузки изменяется при изменении режима работы электропередачи. В этом случае предел передаваемой мощности (называемый действительным пределом) существенно ниже предела при постоянстве напряжения на шинах нагрузки.

Действительный предел мощности. Рассмотрим электропередачу, в которой приёмная система представлена нагрузкой и местной электростанцией. рис. а - принципиальная схема; б - характеристики мощности при и н = 1.0, 0.9, 0.8, 0.7 (кривые 1-4 соответственно, действительная характеристика мощности - жирная кривая). Мощность последней соизмерима с мощностью передающей станции, поэтому при увеличении передаваемой от электростанции G 1 активной мощности напряжение нашинах нагрузки и н будет уменьшаться. Построив семейство характеристик мощности для различных значений напряжения и н, можно получить действительную характеристику мощности. Для этого необходимо при увеличении угла перемещать рабочую точку с одной характеристики на другую в соответствии с уменьшением напряженияи н. Максимум действительной характеристики мощности, который называют действительным пределом мощности, достигается при угле меньше 90°. Величина максимума ниже предела мощности при условии и н = const . Следовательно, снижение напряжения и н ухудшает статическую устойчивость. Влияние нагрузки на напряжение и н определяется регулирующим эффектом нагрузки, т.е. степенью снижения активной и реактивной мощностей нагрузки с уменьшением напряжения на её шинах. Регулирующий эффект оказывает значительное влияние на действительный предел мощности, и с ним приходится считаться в практических расчётах устойчивости.

Под динамической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при значительных внезапных возмущениях, возникающих в энергосистеме (КЗ, аварийное отключение генераторов, линийу трансформаторов).

Для оценки динамической устойчивости применяется метод площадей. В качестве примера рассмотрим режим работы двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением поврежденной линии и ее успешным АПВ (рис. 10.3,а).

Исходный режим электропередачи характеризуется точкой 1, расположенной на угловой характеристике I, которая соответствует исходной схеме электропередачи (рис. 10.3,б).

Рис. 10.3. Качественный анализ динамической устойчивости при К3 на линии электропередачи: а - схема электропередачи; б - угловые характеристики электропередачи; в - изменение угла во времени

При К3 в точке К1 на линии W2 угловая характеристика электропередачи занимает положение II. Снижение амплитуды характеристики II вызвано значительным увеличением результирующего сопротивления между точками приложения . В момент К3 происходит сброс электрической мощности на величину за счет снижения напряжения на шинах станции (точка 2 на рис. 10.3,б). Сброс электрической мощности зависит от вида К3 и его места. В предельном случае при трехфазном К3 на шинах станции происходит сброс мощности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол увеличивается. Процесс изменения мощности идет по характеристике II. Точка 3 соответствует моменту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропередачи характеризуется точкой 4, расположенной на характеристике , которая соответствует схеме электропередачи с одной отключенной линией. За время изменения угла от до роторы генераторов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией , характеристикой II и ординатами в точках 1 и 3. Эта площадь получила название площадки ускорения . В точке 4 начинается процесс торможения роторов, так как электрическая мощность больше мощности турбин. Но процесс торможения происходит с увеличением угла . Увеличение угла будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную.

Потенциальная энергия пропорциональна площади, ограниченной линией и угловыми характеристиками послеаварийного режима. Эта площадь получила название площадки торможения . В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполагается использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет продолжаться по характеристике (точка 6), соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок . В точке 7 переходный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике , но только с уменьшением, угла. Процесс установится в точке 1 после нескольких колебаний около этой точки. Характер изменения угла 5 во времени показан на рис. 10.3,в.

С целью упрощения анализа мощность турбин во время переходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вращения турбин.

Таким образом, анализ показал, что в условиях данного примера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотренном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.

Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического . При переходе этой границы наблюдается лавинное увеличение угла , т.е. выпадение генераторов из синхронизма.

Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:

При режим устойчив, при происходит нарушение устойчивости.

В случае неуспешного АПВ (включения линии на неустранившееся К3) процесс из точки 5 перейдет на характеристику II. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного К3 и последующего отключения линии не сохраняется.

Под статической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при малых возмущениях и медленных изменениях параметров режима.

На рис. 10.2,а показана схема электрической системы, состоящей из электростанции ЭС, линии электропередачи W и приемной энергосистемы бесконечно большой мощности. Известно, что электрическая мощность Р, вырабатываемая электростанцией и потребляемая нагрузкой энергосистемы, равна

Рис. 10.2. Схема электропередачи (а), векторная диаграмма тока и напряжений (б) и угловая характеристика электропередачи (в)

где - ЭДС генераторов электростанции; - напряжение энергосистемы; Агрез - результирующее сопротивление генераторов электростанции, линии электропередачи и энергосистемы.

Если ЭДС генераторов , напряжение системы и неизменны, то электрическая мощность, передаваемая электростанцией в энергосистему, зависит от угла между векторами (рис. 10.2,б). Эта зависимость имеет синусоидальный характер, она получила название угловой характеристики электропередачи (рис. 10.2,в).

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости:

Это значение мощности соответствует амплитуде угловой характеристики (точка 3 на рис. 10.2,в).

Устойчивость параллельной работы электростанции относительно приемной энергосистемы определяется соотношением механической мощности, развиваемой турбинами станции, и электрической мощности , отдаваемой генераторами.

Нормальный установившийся режим характеризуется равенством механической мощности, развиваемой турбинами, и электрической мощности, отдаваемой генераторами:

Мощность турбины не зависит от угла 6 и определяется только количеством энергоносителя, поступающего в турбину.

Условию (10.3) соответствуют точки 1 и 2 на рис. 10.2,в. Точка 1 является точкой устойчивого равновесия, а точка 2 - неустойчивого равновесия. Область устойчивой работы определяется диапазоном углов от 0 до 90°. В области углов, больших 90°, устойчивая параллельная работа невозможна.

Работа на предельной мощности, соответствующей углу 90°, не производится, так как малые возмущения, всегда имеющиеся в энергосистеме колебания нагрузки, могут вызвать переход в неустойчивую область и нарушение синхронизма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости.

Запас оценивается коэффициентом запаса статической устойчивости, %:

Запас статической устойчивости для электропередачи в нормальном режиме должен составлять не менее 20%, а в кратковременном послеаварийном режиме (до вмешательства персонала в регулирование режима) - не менее 8 %.

ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ
ЭНЕРГОСИСТЕМ

Если
статическая
устойчивость
характеризует
установивший режим работы системы, то при
анализе динамической устойчивости выявляется
способность системы сохранять синхронный режим
работы при больших его возмущениях. Большие
возмущения возникают при различных коротких
замыканиях, отключениях линий электропередачи,
генераторов, трансформаторов и т.п. К большим
возмущениям относятся также изменения мощности
крупной нагрузки, потеря возбуждения какого-либо
генератора, включение крупных двигателей. Одним
из следствий возникшего возмущения является
отклонение скоростей вращения роторов генераторов
от синхронной – качания роторов генераторов.

ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ

Если после какого-либо возмущения взаимные углы векторов
примут определённые значения (их колебания затухнут около
каких-либо новых значений), то считается, что динамическая
устойчивость сохраняется. Если хотя бы у одного генератора
ротор начинает проворачиваться относительно поля статора, то
это признак нарушения динамической устойчивости. В общем
случае о динамической устойчивости системы можно судить по
зависимостям f t , полученным в результате совместного
решения системы уравнений движения роторов генераторов. Но
существует более простой и наглядный метод, основанный на
энергетическом подходе к анализу динамической устойчивости,
который называется графическим методом или методом
площадей.

Рассмотрим случай, когда электростанция работает
через двухцепную линию на шины бесконечной
мощности (рис.14.1, а). Условие постоянства
напряжения на шинах системы (U const) исключает
качания роторов генераторов приёмной системы и
значительно
упрощает
анализ
динамической
устойчивости. Схема замещения системы показана
на рис.14.1, б. Генератор входит в схему замещения
переходными сопротивлением X d и ЭДС Eq .

Анализ динамической устойчивости простейшей системы графическим методом

Анализ динамической устойчивости простейшей системы графическим методом

Мощность, выдаваемая генератором в систему,
равна мощности турбины и обозначена P0
, угол
ротора генератора – 0 . Характеристику мощности,
соответствующая
нормальному
(доаварийному)
режиму, запишем без учёта второй гармоники, что
вполне
допустимо
в
практических расчётах.
Принимая Eq E , получим выражение характеристики
мощности в следующем виде:
E U
P
sin
X d
где
, (14.1)
X d X d X T 1 X L1 // X L 2 X T 2 .
Зависимость для нормального режима приведена на
рис.14.1, г (кривая 1).

Анализ динамической устойчивости простейшей системы графическим методом

Предположим, что линия L2 внезапно отключается.
Рассмотрим работу генератора после её отключения.
Схема замещения системы после её отключения
показана на рис.14,1, в. Суммарное сопротивление
послеаварийного режима X d (п.а) X d X T 1 X L1 X T 2
увеличится
по
сравнению
с X d (суммарное
сопротивление нормального режима). Это вызовет
уменьшение максимума характеристики мощности
послеаварийного режима (кривая 2, рис.14.1, г).
После внезапного отключения линии происходит
переход
с
характеристики
мощности
1
на
характеристику 2. Из-за инерции ротора угол не
может измениться мгновенно, поэтому рабочая точка
перемещается из точки а в точку b.

Анализ динамической устойчивости простейшей системы графическим методом

На валу, соединяющем турбину и генератор,
возникает избыточный момент, равный разности
мощности турбины, которая не изменилась после
отключения линии, и новой мощности генератора
Р Р0 Р(0) . Под влиянием этой разности ротор
машины начинает ускоряться, перемещаясь в
сторону больших углов
. Это движение
накладывается на вращение ротора с синхронной
скоростью, и результирующая скорость вращения
ротора будет равна 0 , где 0 – синхронная
скорость вращения; – относительная скорость.

Анализ динамической устойчивости простейшей системы графическим методом

В результате ускорения ротора рабочая точка
перемещается по характеристике 2. Мощность
генератора возрастает, а избыточный (ускоряющий)
момент (пропорциональный разности Р Р0 Р(0)) –
убывает. Относительная скорость возрастает до
точки с. В точке с избыточный момент становится
равным нулю, а скорость – максимальной.
Вращение ротора со скоростью не прекращается в
точке с, ротор по инерции проходит эту точку и
продолжает движение. Но избыточный момент при
этом меняет знак и начинает тормозить ротор.

Анализ динамической устойчивости простейшей системы графическим методом

Относительная скорость уменьшается и в точке d
становится равной нулю.
Угол в этой точке достигает своего максимального
значения. Но в точке d относительное движение
ротора не прекращается, так как на валу ротора
генератора действует тормозной избыточный момент,
поэтому
ротор
начинает
движение
в
противоположную сторону, т.е. в сторону точки с.
Точку с ротор проходит по инерции, около точки b
угол становится минимальным, и начинается новый
цикл относительного движения ротор. Затухание
колебаний ротора обусловлено потерями энергии при
относительном движении ротора.

Анализ динамической устойчивости простейшей системы графическим методом

Избыточный момент связан с избытком мощности
выражением
М
где
Р
,
– результирующая скорость вращения ротора.
Изменение скорости при качаниях пренебрежимо
мало по сравнению со скоростью 0 , поэтому с
достаточной для практики погрешностью можно
принять 0 , и тогда получаем (выражая М, Р и 0
в относительных единицах) М * Р
0
0 1 .
, поскольку

Анализ динамической устойчивости простейшей системы графическим методом

Рассматривая
только
относительное
движение ротора и работу, совершаемую при
этом движении, при перемещении ротора на
бесконечно малый угол d избыточный
момент выполняет элементарную работу
М d . При отсутствии потерь вся работа
идёт на изменение кинетической энергии
ротора в его относительном движении.

Анализ динамической устойчивости простейшей системы графическим методом

В тот период движения, когда избыточный
момент
ускоряет
вращение
ротора,
кинетическая энергия, запасённая ротором в
период его ускорения, будет определяться по
формуле
0
Fуск Рd f abc
0
,
где f abc – заштрихованная площадь abc на
рис.11.1, г.

Анализ динамической устойчивости простейшей системы графическим методом

Изменение кинетической энергии
торможения вычисляется как
ротора
в
его
m
Fторм Рd f cde
0
.
Площади f abc
и
f cde , пропорциональные
кинетической энергии ускорения и торможения,
называются площадями ускорения и торможения.
В период торможения кинетическая энергия
ротора переходит в потенциальную энергию, которая
возрастает с уменьшением скорости.

Анализ динамической устойчивости простейшей системы графическим методом

В точке d кинетическая энергия равна нулю, и для
определения максимального угла отклонения ротора
достаточно выполнить условие
max
Fуск Fторм
,
таким образом, при максимальном угле отклонения
площадь ускорения равна площади торможения.
Максимальная возможная площадь торможения
определяется углом кр. Если максимальный угол
превысит значение кр, то на валу ротора генератора
появится ускоряющий избыточный момент (P0 PG) и
генератор выпадет из синхронизма.

Анализ динамической устойчивости простейшей системы графическим методом

На рис.14.1, г площадь cdm – максимальная
возможная площадь ускорения. Определив
её, можно оценить запас динамической
устойчивости.
Коэффициент
запаса
определяется по формуле
Fcdm Fabc
Кз
100%
Fabc
.

Наиболее распространённым видом возмущений, при которых
необходим анализ динамической устойчивости в системе,
является короткое замыкание. Рассмотрим общий случай
несимметричного короткого замыкания в начале линии на
рис.14.2, а. Схема замещения системы для режима КЗ показана
(n)
на рис.14.2, б. Дополнительный реактанс X , включаемый в
точку КЗ, зависит от вида короткого замыкания, и определяется
так же, как и п.2.: Х (2) Х 2 , Х (1) Х 2 Х,0 Х (1,1) Х 2 // Х 0 , где Х 2
и Х 0 – суммарные сопротивления обратной и нулевой
последовательности соответственно. После возникновения КЗ
мощность, передаваемая от генератора в систему, изменится,
как и суммарное сопротивление прямой последовательности,
связывающее генератор с системой.

Динамическая устойчивость при коротких замыканиях в системе

Динамическая устойчивость при коротких замыканиях в системе

В момент КЗ из-за изменения параметров схемы
происходит переход с одной характеристики
мощности на другую (рис.14.3). Так как ротор
обладает
механической
инерцией,
то
угол
мгновенно измениться не может и отдаваемая
генератором мощность уменьшается до значения Р(0) .
Мощность турбины при этом не изменяется в виду
запаздывания её регуляторов. На роторе генератора
появляется
некоторый
избыточный
момент,
определяемый избытком мощности (Р Р0 Р(0)). Под
действием этого момента ротор генератора начинает
ускоряться, угол увеличивается.

Динамическая устойчивость при коротких замыканиях в системе

Качественно процесс протекает так же, как и в
предыдущем случае внезапного отключения линии.
Поскольку линия L2 , как и любой другой элемент
энергосистемы, имеет защиту, через определённое
время она отключится выключателями В1 и В2. Это
время рассчитывается как
tоткл tсз tвыкл
,
где tсз
– собственно время срабатывания защиты;
tвыкл – время срабатывания выключателей В1 и В2.

Динамическая устойчивость при коротких замыканиях в системе

Времени tоткл соответствует угол отключения КЗ откл.
Отключение КЗ вызывает переход с характеристики
мощности аварийного режима 2 на характеристику
послеаварийного режима 3. При этом меняется знак
избыточного
момента;
он
превращается
из
ускоряющего в тормозящий. Ротор, затормаживаясь,
продолжает движение в сторону увеличения угла изза накопленной в процессе ускорения кинетической
энергии. Это движение будет продолжаться до тех
пор, пока площадь торможения f dcfg не сравняется с
площадью ускорения f abcd .

Динамическая устойчивость при коротких замыканиях в системе

Но движение ротора не прекращается, так как на него
действует
тормозной
избыточный
момент,
определяемый избытком мощности Рторм Р f Р0. Ротор,
ускоряясь, начинает движение в обратную сторону.
Его скорость максимальна в точке n. После точки n
относительная скорость начинает уменьшаться и
становится равной нулю в точке z. Эта точка
определяется из равенства площадок f nefgd и f xnz .
Вследствие потерь энергии колебания ротора будут
затухать около нового положения равновесия
послеаварийного режима – точки n.

Динамическая устойчивость при коротких замыканиях в системе

При трёхфазном коротком замыкании в начале линии
взаимное
сопротивление
схемы
становится
бесконечно большим, так как сопротивление
реактанса Х (3) 0 . При этом характеристика мощности
аварийного режима совпадает с осью абсцисс
(рис.14.4).
Ротор
генератора
начинает
своё
относительное движение под действием избыточного
момента, равного механическому моменту турбины.
Дифференциальное уравнение движения ротора при
этом имеет вид
Tj
d 2
dt
2
Р0
.
(14.4)

Анализ трёхфазного КЗ графическим методом

Это уравнение является линейным
аналитическое решение. Перепишем
(14.4) в следующем виде
d Р0
2
dt T j
dt
и имеет
уравнение
d 2
,
откуда взяв интеграл от левой и правой частей,
получим
Р0
t c1
Tj
.
(14.5)

Анализ трёхфазного КЗ графическим методом

При t 0 относительная скорость ротора 0 и,
следовательно, c1 0 . Проинтегрировав ещё раз
(14.5), получим
Р0 t 2
c2
Tj 2
.
Постоянная интегрирования c2 определяется из
условий: 0, c2 0при t 0. Окончательно зависимость
угла от времени имеет вид
2
Р0 t
0
Tj 2
.(14.6)

Анализ трёхфазного КЗ графическим методом

Предельный угол отключения трёхфазного КЗ может
быть определён из выражения (14.3), упрощённого
условием Рmax 2 0:
cos откл.пр
Р0 кр 0 Рmax 3 cos кр
Рmax 3
.

Анализ трёхфазного КЗ графическим методом

Предельное время отключения при трёхфазном КЗ
определится из выражения (14.7):
tоткл.пр
2T j откл.пр 0
Р0
.

Уравнение движения ротора нелинейно и не может
быть решено аналитически. Исключением является
полный сброс мощности в аварийном режиме, т.е.
Рав. max 0 , рассмотренный выше. Уравнение
(14.4)
решается
методами
численного
интегрирования. Одним из них является метод
последовательных интервалов, иллюстрирующий
физическую картину протекания процесса.
В соответствии с этим методом весь процесс качания
ротора генератора разбивается на ряд интервалов
времени t и для каждого из них последовательно
вычисляются приращение угла.

Решение уравнения движения ротора методом последовательных интервалов

В момент КЗ, отдаваемая генератором мощность
падает и возникает некоторый избыток мощности Р(0) .
Для малого интервала времени t можно допустить,
что избыток мощности в течение этого интервала
остаётся неизменным. Интегрируя выражение (14.4),
в конце получим в конце первого интервала
d
t 2
V(1) (0) t c1 , (1) (0)
c2 .
dt
2

Решение уравнения движения ротора методом последовательных интервалов

Относительная скорость ротора в момент КЗ равна
нулю (c1 0), и поэтому относительная скорость
ротора в конце первого интервала равна V(1) . При
t 0 угол 0 , поэтому c2 0 . Ускорение 0 может
быть вычислено из (9.1):
0
Р(0)
Тj
,
отсюда следует
(1)
Р(0) t 2
Тj 2
.

Решение уравнения движения ротора методом последовательных интервалов

Здесь угол и время выражены в радианах. В
практических расчётах угол выражается в градусах, а
время – в секундах:
(град)
t(c)
360 f
0
t(рад)
(0)
(рад)
, (14.8)
. (14.9)

Решение уравнения движения ротора методом последовательных интервалов

Используя (14.8) и (14.9) и учитывая, что
Т j (c)
Т j (рад)
0
,
получаем
(1)
P(0)
360 f t P(0)
0
0 K
Tj
2
2
2
,
где
360 f t 2
K
Tj
.
(14.10)

Решение уравнения движения ротора методом последовательных интервалов

Ускорение, создаваемое во втором интервале,
пропорционально избытку мощности в конце первого
интервала Р(1) . При вычислении приращения угла в
течение второго интервала необходимо учесть то,
что кроме действующего в этом интервале ускорения
(1) ротор уже имеет в начале интервала скорость V(1) :
(2) V(1) t
где
(1) t 2
2
V(1) t K
P(1)
, (14.11)
2
Р(1) P0 Pmax sin 1
.

Ускорение (0)
изменяется в течение первого
интервала
времени,
поэтому
для
снижения
погрешности вычисления значения скорости V1
необходимо предположить, что на первом интервале
действует среднее ускорение
(0)ср
(0) (1)
2
.

Тогда относительная
формулой
скорость
V(1) (0)ср t
(0) (1)
2
будет
выражена
t .
Подставляя это выражение в (14.11), получаем
(2)
или
(0) (1)
2
t
2 (1) t 2
2
(0) t 2
2
(2) (1) К Р(1)
(1) t 2 ,
.

Приращение угла на последующих
рассчитываются аналогично:
интервалах
(n) (n 1) К Р(n 1) .
Если в начале некоторого К – интервала происходит
отключение КЗ, то избыток мощности внезапно
изменяется от некоторой величины Р(К 1) (рис.14.6)
Р(К 1)
до
, что соответствует переходу с
характеристики 1 на 2.

К определению избытка мощности при переходе от одного режима (1)
к другому (2)

Приращение угла на первом
отключения КЗ определится как
(К) (К 1) К
интервале
после
Р(К 1) Р(К 1)
2
. (14.12)
Расчёт методом последовательных интервалов
ведётся до тех пор, пока угол
не начнёт
уменьшаться, либо станет видно, что угол
неограниченно растёт, т.е. устойчивость машины
нарушается.

Расчёт
динамической
устойчивости
сложных
выполняется в следующей последовательности.
систем
1. Расчёт нормального режима работы электрической системы
до возникновения КЗ. Результатом расчёта являются значения
ЭДС электростанций (Еi) и углы между ними.
2. Составление схем замещения обратной и нулевой
последовательностей и определение их результирующих
сопротивлений относительно точки КЗ и точки нулевого
потенциала схемы. Вычисление дополнительных реактансов
X (n) , соответствующих рассматриваемым КЗ.
3. Расчёт собственных и взаимных проводимостей для всех
электростанций системы в аварийном и послеаварийном
режимах.

Динамическая устойчивость сложных систем

4. Расчёт угловых перемещений роторов машин с помощью
метода последовательных интервалов. Определение значений
отдаваемых машинами мощностей в начале первого интервала:
Р1 Е12Y11 sin 11 E1E2Y12 sin 12 12 ...
Р2 E2 E1Y21 sin 21 21 Е22Y22 sin 22 ...
…………………………………………………..
5. Определение
интервала:
избытков
P1(0) Р10 Р1
P2(0) Р20 Р2
мощности
в
начале
первого
,
,
………………….
где Р, Р
и т.д. – мощности, вырабатываемые машинами в
20
10
момент, предшествующий КЗ.

Динамическая устойчивость сложных систем

6. Вычисление угловых перемещений роторов генераторов в
течение первого интервала t:
1(1) К1
2(1) К 2
Р1(0)
2
Р2(0)
,
,
2
……………………
Во втором и последующих интервалах выражения для угловых
перемещений имеют вид:
1(n) 1(n 1) К1 Р1(n 1)
,
2(n) 2(n 1) К 2 Р2(n 1)
,
………………………………..
Коэффициенты К рассчитываются в соответствии с выражением
(14.10).

Динамическая устойчивость сложных систем

7. Определение значений углов в конце первого –
начале второго интервалов
1(n) 1(n 1) 1(n)
,
2(n) 2(n 1) 2(n)
,
…………………………
где 1(n 1) , 2(n 1) и т.д. – значения углов в конце
предшествующего интервала.

Динамическая устойчивость сложных систем

8. Нахождение новых значений взаимных углов
расхождения роторов:
12 1 2
,
13 1 3
,
…………….
Определив эти значения, переходят к расчёту
следующего интервала, т.е. вычисляется мощность в
начале этого интервала, а затем повторяется расчёт,
начиная с п.5.

Динамическая устойчивость сложных систем

В момент отключения повреждения все собственные
и взаимные проводимости ветвей меняются. Угловые
перемещения роторов в первом интервале времени
после отключения подсчитываются для каждой
машины по выражению (14.12).
Расчёт динамической устойчивости сложных систем
выполняется
для
определённого
времени
отключения КЗ и продолжается не только до момента
отключения КЗ, а до тех пор, пока не будет
установлен факт нарушения устойчивости или её
сохранения. Об этом судят по характеру изменения
относительных углов.

Динамическая устойчивость сложных систем

Если хотя бы один угол неограниченно растёт
(например, угол 12 на рис.14.7), то система считается
динамически неустойчивой. Если все взаимные углы
имеют тенденцию к затуханию около каких-либо
новых значений, то система устойчива.
Если по характеру изменения относительных углов
установлено нарушение устойчивости системы при
принятом в начале расчёта времени отключения КЗ,
то для определения предельного времени КЗ следует
повторить расчёт, уменьшая время отключения КЗ до
тех пор, пока не будет обеспечена устойчивая работа
энергосистемы.

Многие принципиальные вопросы электромеханических переходных процессов рассматриваются с использованием простых схем электроэнергетических систем. Эти схемы называются моделями энергосистем, причем слово «модель» часто опускается, по обязательно подразумевается, поскольку любая схема энергосистемы по существу является моделью этой энергосистемы.

Наиболее распространены одномашинная, двухмашинная и трехмашинная модели энергосистем. Простейшей из них является одномашинная модель энергосистемы, которая имеет еще название модель «машина-шины».

Простейшая (одномашинная) модель энергосистемы представляется одной удаленной электростанцией (эквивалентным генератором), работающей через трансформаторные связи и линию электропередачи параллельно с генераторами мощной концентрированной энергосистемы, настолько мощной, что ее приемные шины обозначают как шины бесконечной мощности (ШБМ). Отличительными признаками ШБМ являются неизменное по модулю напряжение (U = const) и неизменная частота (о 0 = const этого напряжения. При использовании ШБМ соответствующие им энергосистемы в электрических схемах, как правило, не изображаются. В схемах замещения шины бесконечной мощности используются как элемент, изображающий мощную систему.

Рассмотрим процессы в одномашинной энергосистеме (рис. 1.2, а), в которой от удаленного нерегулируемого генератора Г через трансформаторы Т| и Т 2 и одноцепную линию электропередачи Л передастся активная мощность Р при токе /в энергосистему С. Мощность поступает на приемные шины энергосистемы, принимаемые за шины бесконечной мощности. Определим основные соотношения между параметрами режима одномашинной энергосистемы, необходимые для анализа процессов.

Примем, в порядке упрощения, что активные сопротивления и полные проводимости всех элементов системы равны нулю (r = 0;g = 0; b = 0), и составим схему замещения. При этих допущениях схема замещения имеет вид цепочки из индуктивных сопротивлений (рис. 1.2, б), включенной между двумя источниками электродвижущих сил (ЭДС). Источником Е моделируется синхронная ЭДС генератора, источником U - напряжение на ШБМ.

Рис. 1.2. Одномашинная модель энергосистемы

Эквивалентное индуктивное сопротивление х в эквивалентной схеме замещения (см. рис. 1.2, в) определено как сумма индуктивных сопротивлений:

Взаимосвязь между мощностью Р, модулями Е, U векторов E q , U и углом 5 между ними определим с помощью векторной диаграммы напряжений, ЭДС и токов (рис. 1.3), действующих в эквивалентной схеме замещения.

На диаграмме выделены активная и реактивная /р составляющие тока / и, соответственно, показаны продольная Ljx и поперечная I^jx составляющие падения напряжения / jx на эквивалентном сопротивлении х. ЭДС E q ф и напряжение (Уф представлены фазными величинами.

Из диаграммы следует, что модуль поперечной составляющей / jx определится соотношением

Умножив обе части этого равенства на 3?/ф/х, получим где Е, U - модули соответствующих линейных величин.


Рис. 1.3.

энергосистемы

Учитывая, что трехфазная мощность определяется как Р = 3?/ф/ а, представим последнее равенство в виде зависимости

При E q - const, U = const зависимость (1.22) представляет собой

синусоидальную функцию активной мощности генератора от угла. Гра- фическое изображение этой функции называется угловой характеристикой активной мощности генератора. Это название сохраняется для графических изображений зависимостей Р{Ъ) и в более сложных случаях, например при изменяющихся параметрах E (/ ,U или при работе генератора в составе сложной энергосистемы.

Для рассмотрения понятия о статической устойчивости требуется графическое представление отрезка функции Р(б) в пределах положительного полупериода синусоиды (рис. 1.4).

Угловая характеристика является геометрическим местом точек, соответствующих всем возможным значениям мощности, передаваемой от генератора. В установившемся режиме от генератора передается только одна конкретная величина мощности, которой соответствует конкретное значение угла. Эта мощность Р 0 равна мощности турбины Р т, вследствие чего турбина, вал и ротор генератора сохраняют равномерное вращательное движение.


Рис. 1.4.

Таким образом, в установившемся режиме на вал энергоагрегата действуют два одинаковых по абсолютной величине, но противоположных по направлению вращающих момента: ускоряющий механический момент турбины и тормозящий электромагнитный момент генератора. Аналогами этих моментов, используемыми в электроэнергетике, являются механическая мощность турбины Р Т и электрическая мощность генератора Р 0 (см. рис. 1.4). Отклонение любой из этих мощностей (моментов) от установившегося значения отражается в виде появления небаланса мощностей (моментов) АР = Р Т - Р на валу, под действием которого ротор генератора будет ускорять либо замедлять свое вращательное движение. Соответственно, величина угла 5 будет увеличиваться или уменьшаться.

Как видно на рис. 1.4, есть две точки пересечения и Ь) характеристики турбины Р т и угловой характеристики Р{ 5) генератора. Возникает вопрос о возможности устойчивой работы в каждой из этих точек.

Допустим, что установившийся режим генератора характеризуется точкой а. При случайном увеличении мощности генератора на величину АР а и соответствующем увеличении угла на величину Д8 ((нарушится равенство моментов, действующих на вал, причем тормозящий электромагнитный момент генератора окажется больше ускоряющего момента турбины. Под действием избыточного тормозящего момента начнется замедление движения ротора, сопровождаемое уменьшением угла и отдаваемой в сеть активной мощности генератора. Процесс будет продолжаться до тех пор, пока нс восстановится равенство ускоряющего и тормозящего моментов, то есть пока система не возвратится к исходному режиму, характеризуемому точкой а.

Таким образом, при работе в точке а режим энергосистемы статически устойчив, так как система способна возвращаться в исходное состояние при действии малых возмущений.

При работе в точке b незначительное увеличение угла сопровождается уменьшением отдаваемой в сеть активной мощности. При случайном переходе в точку Ь" мощность турбины окажется больше мощности генератора на величину AP h . Соответственно, ускоряющий механический момент турбины окажется больше тормозящего электромагнитного момента генератора, вследствие чего ротор генератора будет ускоряться. Это приведет к увеличению угла 8 и, как следствие, к увеличению небаланса мощностей (моментов) АР. Дальнейшее развитие процесса имеет лавинообразный характер и завершается выпадением удаленного генератора из синхронизма с генераторами приемной энергосистемы.

Таким образом, состояние энергосистемы, соответствующее точке Ь, является неустойчивым, хотя в этой точке, как и в точке а, имеет место равенство тормозящего и ускоряющего моментов, действующих на вал ротора генератора.

При практических расчетах широко используются критерии (условия), при выполнении которых сохраняется статическая устойчивость энергосистемы. Один из таких критериев легко устанавливается при более глубоком анализе устойчивых и неустойчивых режимов. Продолжая рассуждения, ?замечаем, что устойчивым режимам рассматриваемой энергосистемы соответствуют все точки угловой характеристики, расположенные на ее восходящей ветви. Экстремальная точка разфаничиваег восходящую и нисходящую ветви характеристики и, следовательно, является граничной. Общепринято относить эту точку к области устойчивых режимов.

В любой точке восходящей ветви угловой характеристики случайно возникающий небаланс мощности АР и соответствующее ему приращение угла Д5 имеют одинаковые знаки, их отношение положительно и может рассматриваться как формальный признак устойчивости

При переходе к бесконечно малым приращениям и учете экстремальной точки угловой характеристики, где dP/d8 = 0, этот признак записывается в виде

и используется как практический критерий статической устойчивости одномашинной энергосистемы.

Производная dP/d8 называется синхронизирующей мощностью . Ее можно вычислить но формуле

Предельному по условиям статической устойчивости режиму энергосистемы соответствует равенство

В этом режиме предельный угол 5 пр =90°, а предельная, то есть максимально возможная, передаваемая мощность Р м определяется как

Очевидно, что в условиях эксплуатации генератор не следует загружать до предельной мощности Р м, так как любое незначительное отклонение параметров режима может привести к потере синхронизма и переходу генератора в асинхронный режим. На случай появления непредвиденных возмущений предусматривается запас по загрузке генератора, характеризуемый коэффициентом запаса статической устойчивости

Руководящими указаниями по устойчивости энергосистем предписано, что в нормальных режимах должен обеспечиваться запас, соответствующий коэффициенту К ст > 20 %. В наиболее тяжелых режимах, при которых увеличение перетоков мощности по линиям позволяет уменьшить офаничения потребителей или потери гидроресурсов, допускается снижение запаса по устойчивости до К сг > 8 %. В кратковременных послеаварийных режимах также должен обеспечиваться запас К ст > 8 %. При этом иод кратковременными понимаются нослеаварий- ные режимы длительностью до 40 минут, в течение которых диспетчер должен восстановить нормальный запас по статической устойчивости.