Аварии на магистральных трубопроводах. Последствия аварий на трубопроводах

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Аварии на трубопроводах

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности




«Аварии на трубопроводах».


Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович


Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:


По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.

Общие сведения о состоянии системы трубопроводов в РФ на 2008


В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

Крупная авария произошла на 326 км магистрального нефтепровода Узень - Атырау - Самара на юго-западе Казахстана. Как сообщает ИТАР-ТАСС, на месте происшествия начаты аварийно-восстановительные работы. Между тем пока ничего неизвестно о масштабах и причине аварии, площади загрязнения нефтью и объеме рекультивационных работ. За последнюю неделю это уже второе крупное происшествие на нефтепроводах Казахстана. 29 января в результате разрыва металла из-за гидроудара на 156 км магистрального трубопровода Каламкас - Каражанбас - Актау на землю вылилось около 200 тонн нефти.

Поэтому полное устранение или существенное уменьшение интенсивности волновых и вибрационных процессов в трубопроводных системах позволяет не только в несколько раз уменьшить количество аварий с разрывами трубопроводов и выходом из строя трубопроводной арматуры и оборудования, повысить надежность их работы, но также значительно увеличить срок их эксплуатации.

В настоящее время для борьбы с пульсациями и колебаниями давления и расхода в трубопроводных системах используют воздушные колпаки, аккумуляторы давления, гасители различных типов, ресиверы, дроссельные шайбы, клапаны сброса и т.п. Они морально устарели, не соответствуют современному развитию науки и техники, малоэффективны, особенно в случае гидроударов и динамики переходных процессов, не отвечают требованиям экологической безопасности, о чем свидетельствует статистика аварийности. На данный момент в России существуют новые технологии, противоаварийной защиты трубопроводов, которые позволяют гасить все внутрисистемные возмущения: гидроудары, колебания давления и вибрации. Принципиально новым высокоэффективным энергонезависимым техническим средством гашения колебаний давления, вибрации и гидроударов - являются стабилизаторы давления (СД).

При этом неизбежно происходят потери нефти, среднестатистический уровень которых оценивается в 0,15-0,2 т/сут. на один порыв. Кроме того, в окружающую среду попадают высокоагрессивные смеси, нанося ей значительный ущерб.

Согласно Государственному докладу «О состоянии промышленной безопасности опасных производственных объектов, рационального использования и охраны недр РФ в 2006 г.» основными причинами аварий на магистральных трубопроводах в течение 2001 –2006 гг. стали:

внешние воздействия – 34,3 %, (их общего количества),

брак при строительстве – 23,2 %,

наружная коррозия – 22,5 %,

брак при изготовлении труб и оборудования на заводах – 14,1 %,

ошибочные действия персонала – 3 %.

Основная причина аварий на внутрипромысловых трубопроводах – разрывы труб, вызванные внутренней коррозией. Износ внутрипромысловых трубопроводов достигает 80%, поэтому частота их разрывов на два порядка выше, чем на магистральных, и составляет 1,5 – 2,0 разрыва на 1 км. Так, на территории Нижневартовского района Ханты-Мансийского АО с начала эксплуатации месторождений построено 21 093 км внутрипромысловых и магистральных нефтегазопроводов, большая часть из которых уже пришла в аварийное состояние, но продолжает эксплуатироваться.

Доминирующей причиной аварий на действующих газопроводах России является коррозия под напряжением. За период с 1991 г. по 2001 г. из общего числа аварий по причине стресс-коррозии было 22,5%. В 2000 г. на ее долю приходится уже 37,4% от всех аварий. К тому же расширяется география проявления коррозии под напряжением.

Основные фонды трубопроводного транспорта, как и вся техносфера стареют, магистрали деградируют с всевозрастающей скоростью. Неизбежно приближаются кризисные явления. Например, износ основных фондов газотранспортной системы ОАО «Газпром» составляет около 65%. Таким образом, продление срока безопасной службы трубопроводных систем является важнейшей задачей транспортников нефти и газа.

В настоящее время внутритрубное обследование проведено в отношении магистральных нефтепроводов, а также 65 тыс. км газопроводов из 153 тыс. км общей протяженности. При этом ремонтируется около 1,5% опасных дефектов от общего количества обнаруженных дефектов. По данным АК «Транснефть» плотность распределения дефектов коррозии составляет 14,6 деф./км. Скорость коррозии на значительной части – 0,2 – 0,5 мм/год, но имеет место и значительно большая скорость - от 0,8 до 1,16 мм/год.

Наиболее уязвимыми на сегодня являются магистральные газопроводы Северного коридора. Северный коридор представляет собой многониточную систему газопроводов, проложенных из районов северных месторождений (Уренгойское, Заполярное, Медвежье и др.) до границ Белоруссии с одной стороны и до границы с Финляндией – с другой. В том же коридоре проходит трасса строящегося магистрального газопровода Ямал – Европа. Общая протяженность действующих газопроводов Северного коридора в однониточном исчислении около 10 тыс. км. Суммарная производительность газопроводов в головной части составляет 150 млрд. м? газа в год. В районах прохождения газопровода Ухта – Торжок (1 – 4-я нитки) производительность газопровода составляет 80 млрд. м2 в год.

В последние годы выделяется высокая доля аварий именно этого участка магистральных трубопроводов по причине стресс-коррозии (71,0%). В 2003 г. 66,7% аварий также имели стресс-коррозионные характер. Возраст газопроводов, потерпевших стресс-коррозионные аварии, непрерывно растет. По коридорам Северного коридора за 2001 – 2003 гг. этот средний возраст составил 24,2 года, максимальный – 28 лет. Примерно 10 лет назад средний возраст газопроводов, потерпевших стресс-коррозионные аварии, составлял 13 – 15 лет.


2. Аварии на нефтепроводах


Аварии на трубопроводе происходят не только по техническим причинам: существует и ряд других, основным из которых является так называемый человеческий фактор. Огромное число катастроф происходит в результате халатности, как работников, так и начальства. Именно это и подчёркивается в ряде дальнейших примеров.

5 июня в Витебской области завершен ремонт более чем 40-километрового участка российского магистрального нефтепродуктопровода "Унеча - Вентспилс". Одновременно был официально объявлен виновник крупнейшей аварии на этой транспортной линии.

Как сообщили БелаПАН в дирекции российского унитарного предприятия "Запад-Транснефтепродукт" (Мозырь), нефтепродукты по трубопроводу "Унеча - Вентспилс" перекачиваются уже сорок лет. При проведении в 2005 году диагностики трубопровода специалисты обнаружили множество дефектов. Их виновником собственник нефтепровода считает предприятие-изготовителя - Челябинский металлургический завод (Россия), на базе которого сейчас действуют четыре предприятия. После двух аварий на нефтепроводе в Бешенковичском районе Витебской области (в марте и мае 2007 года) специалисты "Запад-Транснефтепродукта" провели повторное исследование магистрали и собственными силами приступили к замене потенциально опасных участков. Транспортировка дизельного топлива из России в Латвию через Беларусь была приостановлена на 60 часов. За это время пять белорусских ремонтных бригад "Запад-Транснефтепродукта" из Мозыря и Речицы (Гомельская область), Сенно и Дисны (Витебская область), Кричева (Могилевская область) заменили 14 фрагментов нефтепровода.

Виновником его порывов на территории Бешенковичского района прокуратура определила Челябинский металлургический завод, который изготовил дефектные трубы в 1963 году.

Напомним, 23 марта 2007 года в Бешенковичском районе Витебской области произошел порыв нефтепродуктопровода "Унеча - Вентспилс". В результате аварии дизельное топливо по мелиоративному каналу и реке Улла попало в Западную Двину и добралось до Латвии. "Запад-Транснефтепродукт" компенсировал Министерству по чрезвычайным ситуациям Беларуси убытки по устранению последствий аварии 23 марта. Министерство природных ресурсов и охраны окружающей среды Беларуси подсчитало ущерб, нанесенный экологии от первого разрыва нефтепровода. Предполагается, что до 15 июня сумма ущерба будет согласована с владельцем трубопровода и представлена общественности.

Второй прорыв трубы на нефтепродуктопроводе Унеча-Вентспилс произошел 5 мая. "Прорыв является локальным. Из нефтепровода вытекло небольшое количество нефтепродуктов", - сказал тогда БелаПАН министр по чрезвычайным ситуациям Беларуси Энвер Бариев.

Он заверил, что авария не принесет тяжелых последствий для окружающей среды. "В реки нефтепродукты не попадут", - сказал министр.

Симптоматично, что второй прорыв произошел возле деревни Бабоедово Бешенковичского района, вблизи того места, где в марте произошел первый крупный прорыв трубы.

Как говорится, где тонко, там и рвется.

27 февраля 2007 г. в Оренбургской области, в 22 км от г. Бугуруслан из внутрипромыслового трубопровода НГДУ "Бугурусланнефть" (подразделение входящего в "ТНК-ВР" ОАО "Оренбургнефть") произошла утечка нефти.

К счастью, или к несчастью, но разлив, объем которого по предварительным оценкам МЧС составил около 5 т, попал на лед реки Большая Кинель. К несчастью - труба прохудилась как раз в районе реки. К счастью - вроде бы нефть вылилась не прямо в воду, а на лед толщиной 40 см.

В Махачкале из-за порыва на нефтепроводе произошла утечка нефти. Утечка произошла в Ленинском районе города на участке нефтепровода диаметром 120 миллиметров.

В результате порыва нефтепровода вылилось около 250-300 литров нефти, пятно составляет около десяти квадратных метров. Для ликвидации аварии перекрыли поступление нефти на данном участке.

"Пятно обваловано (загрязнение локализовано)", - сообщили в МЧС. По его словам информации о пострадавших не поступала.

На месте работала оперативная группа МЧС Республики Дагестан. На данный момент ликвидацией аварии занимаются специалисты ОАО Дагнефтегаз.

Нефтепровод Омск -- Ангарск -- наиболее крупный (2 нитки диаметром 700 и 1000 мм) тянется от западной границы области и практически до восточной. Перекачивается сырая нефть. Нефтепровод принадлежит ОАО “Транссибнефть” АК “Транснефть” Министерства топлива и энергетики РФ. По Иркутской области нефтепровод эксплуатирует Иркутское районное нефтепроводное управление (ИРНПУ). В 2001 г. ИРНПУ разработан “План по предупреждению и ликвидации аварийных разливов нефти Иркутского районного нефтепроводного управления ОАО “Транссибнефть” -- находится на согласовании. Количество аварий на нефтепроводе за период с 1993 г по 2001 г.:

1. Март 1993 г. На 840 км магистрального нефтепровода Красноярск -- Иркутск (поврежден трубопровод бульдозером) вылилось на рельеф 8 тыс. тонн нефти. Своевременно принятые меры по локализации места пролива позволили свести к минимуму последствия этой аварии. Пролитая нефть в основном была откачена в хранилища. Загрязненный грунт был собран и вывезен на утилизацию.

2. Март 1993 г. На 643 км магистрального нефтепровода Красноярск -- Иркутск (разрыв нефтепровода из-за дефекта сварного шва, момент аварии не был своевременно зафиксирован) на поверхность излилось более 32,4 тыс. тонн нефти. Принятые срочные меры по ликвидации последствий этой аварии позволили быстро нейтрализовать негативные явления. Однако около 1 тыс. тонн нефти проникло в недра и локализовалось в 150-300 м от действующего Тыретского хозяйственного водозабора подземных вод. Около 40% 2-го и 3-го поясов зоны санитарной охраны водозабора оказались загрязненными нефтью. Еще около 1 тыс. тонн нефти проникло в грунты на участке заболоченной поймы р. Унги и постепенно мигрировала ниже по течению в хозяйственно-ценный водоносный горизонт. Для сохранения Тыретского хозяйственного водозабора подземных вод от загрязнения нефтью был сооружен и задействован специальный защитный водозабор, который уже в течение 9 лет “отсекает” загрязненную нефтью воду от хозяйственного водозабора. Эколого-гидрогеологическая ситуация остается сложной в части загрязнения нефтью извлекаемой воды хозяйственным водозабором. На протяжении всех лет, после аварии осуществлялся государственный природоохранный контроль за ведением эколого-гидрогеологических работ в районе аварии. Каждый год проводятся совместные совещания лиц и служб, заинтересованных в очищении от загрязненных нефтью земель и подземных горизонтов (землепользователей, природоохранных органов, санэпиднадзора, гидрометеослужбы, гидрогеологов, нефтепроводного управления) -- подводятся итоги мониторинга за прошедший год и определяется дальнейшая программа работ. Обслуживание систем мониторинга и контроля геологической среды в районе Тыретского водозабора до 1999 г. проводило по договору ГФГУП “Иркутскгеология”. С 1999 г -- ИРНПУ

3. Март 1995 г. На 464 км магистрального нефтепровода Красноярск -- Иркутск (трещина серповидная на трубопроводе Ду 1000 мм, длина 0,565 м, ширина 0,006 м) на поверхность излилось 1683 м3 нефти. Нефть по руслу ручья (300 м) достигла реки Курзанки и растеклась по льду реки на расстояние 1150 м. При ликвидационных работах 1424 м3 нефти было собрано и откачено в резервный трубопровод Ду 700 мм. Река Курзанка до наступления весеннего паводка была полностью очищена от загрязнения. Безвозвратные потери нефти составили 259 м3, из которых 218.3 м3 было сожжено. Загрязненный нефтью грунт из русла ручья был снят и заскладирован в карьере, где организована его обработка биоприном.

4. Январь 1998 г. На 373 км магистрального нефтепровода Красноярск -- Иркутск (трещина длиною 380 мм на трубопроводе Ду 1000 мм) выход нефти на поверхность около 25 м3, собрано около 20 м3. Вывоз загрязненного снега произведен в нефтеловушки Нижнеудинской НПС.

5. Ноябрь 1999 г. На 565 км магистрального нефтепровода Красноярск -- Иркутск (разгерметизация трубопровода Ду 700, в результате повреждения задвижки во время ремонтных работ, с последующим возгоранием разлившейся нефти). Площадь загрязнения 120 м2, сгорело 48 тонн нефти.

6. Декабрь 2001 г. на 393,4 км магистрального нефтепровода Красноярск -- Иркутск (при опорожнении резервной нитки Ду 700мм, с перекачкой нефти ПНУ в трубопровод Ду 1000 мм), произошла разгерметизация всасывающей нитки насоса. На поверхность вылилось около 134 м3 нефти. Нефть локализовалась в пониженной части рельефа -- естественный овраг, расположенный от места аварии на расстоянии 80 м. После устранения повреждения нефть из оврага -- 115 м3 -- откачана в действующий нефтепровод. Остатки нефти собраны спецмашиной. Объем безвозвратных потерь нефти составил 4 м3. Поверхность земли, загрязненная нефтью, обработана сорбентом “Эконафт” с последующей вывозкой загрязненного грунта на Нижнеудинскую НПС. По Предписанию КПР по Иркутской области организован мониторинг земель и поверхностных вод р. Уды


2. Аварии на газопроводах.


В результате аварии на магистральном газопроводе «Аксай-Гудермес-Грозный» три района Чечни и часть города Грозного остались без газа. Сейчас на месте аварии ведутся ремонтно-восстановительные работы, сообщает информационный портал «Кавказский узел».

«Авария произошла вечером 26 января, между 19 и 20 часами, – сообщили в МЧС Чечни. – Утечка газа на магистральном газопроводе была зафиксирована примерно в полутора километрах от города Гудермес, в районе поселка Белоречье. Здесь по дну реки Белка идет линия газопровода «Аксай-Гудермес-Грозный».

По мнению специалистов, причины разрыва газовой трубы, диаметр которой составляет 50 сантиметров, носят «техногенный характер».

С раннего утра на месте аварии ведутся масштабные ремонтно-восстановительные работы. В ликвидации аварии принимают участие аварийные службы, работники республиканского МЧС и военные.

В результате аварии на магистральном газопроводе без газа остаются три района Чечни: Курчалойский, Шалинский и Грозненский. Нет газа и в северной части чеченской столицы.

На Ставрополье из-за аварии на газопроводе без газа остались три села.

В Таращанском районе Киевской области на границе с Богуславским районом на газопроводе Уренгой-Помары-Ужгород, принадлежащем "Укртрансгазу", произошел взрыв.

Транспортировка природного газа из России в Европу по магистральному газопроводу была приостановлена. В МЧС Украины "Интерфаксу" сообщили, что газ в Европу подается по обводной ветке. Это подтвердили в компании "Нафтогаз Украины" и "Газпроме", а позднее и в ЕС.

Авария, по уточненным данным, произошла около 15:15 по киевскому времени (16:15 мск) около компрессорной станции "Ставище" вблизи села Лука. Взрывной волной 30-метровый кусок трубы диаметром 1420 мм отбросило на 150 м. Газ подавался под давлением 74 атмосферы. Пожар на месте взрыва ликвидирован. На площади 1,5 гектар выгорели зеленые насаждения, включая 100 деревьев, сообщили в МЧС Украины.

Остались без газоснабжения 22 населенных пунктах в Таращанском районе Киевской области, включая и сам райцентр, 4 населенных пункта в Богуславском районе и 6 в Черкасской области.

Жертв и пострадавших нет. На месте происшествия работает руководство главного управления МЧС в Киевской области, а также сотрудники Черкассытрансгаза, милиции, районной прокуратуры. Ведется следствие, уголовное дело пока не заводилось.

Министр транспорта и связи Украины Николай Рудьковский не исключил, что авария могла стать следствием диверсии. "Ситуация, которую мы имели на железной дороге под Киевом с 168-м поездом, и эта сегодняшняя авария - не исключено, могут быть звеном запланированных акций по дестабилизации ситуации в стране", - заявил министр в эфире украинского "5-го канала" в понедельник вечером.

В компании "Укртрансгаз", которая обслуживает этот газопровод, утверждали, что разрыва трубы нет. О возможных сроках ликвидации последствий взрыва и возобновлении транспортировки газа по трубопроводу в компании не сообщают.

"Газпровод, на котором произошла авария, сейчас перекрыт и пустили газ по другим веткам", - сказали в "Укртрансгазе", добавив при этом, что опасности для окружающих в настоящее время нет. В пресс-службе подчеркнули, что пострадавший участок проходит в болотистой местности, а "болотистая среда негативно влияет на газопровод".

Взрыв не повлияет на транзит российского природного газа по территории Украины в страны Европы, сообщили в пресс-центре НАК "Нафтогаз Украины". "Обязательства Украины по транзиту природного газа европейским потребителям полностью выполняются путем увеличения подачи газа по другим газопроводам, а также за счет отбора газа из подземных хранилищ", -заявил руководитель управления по связям с общественностью "Нафтогаза Украины" Алексей Федоров.

В "Газпроме" заверили, что компания полностью обеспечивает выполнение своих обязательств по поставкам газа европейским потребителям в направлении Украины. Никаких ограничений поставок газа европейским потребителям не произошло, сообщили ПРАЙМ-ТАСС в пресс-службе компании.

Газопровод Уренгой-Помары-Ужгород построен в 1983 году. Длина газопровода - 4451 км. Проектная мощность - 32 млрд кубов в год. Протяженность магистрального газопровода Уренгой-Помары-Ужгород по территории Украины составляет 1160 км, его мощность - 27,9 млрд кубометров газа в год. На трассе газопровода находятся девять компрессорных станций.

24 октября 2007 года в Ставропольском крае восстановлено газоснабжение после аварии в селе Бурлацком Благодарненского района.

Как сообщили ИА «Росбалт-Юг» в пресс-службе Южного регионального центра МЧС РФ, «накануне в 11.20 при вспашке полей произошло повреждение на 75-ом км распределительного щита газопровода местного значения «Каменная Балка - Мирное - Журавское» диаметром 514 мм».

В пресс-службе сообщили, что взрыва и возгорания не произошло, пострадавших нет. Ремонтно-оперативная бригада «Ставрополькрайгаз» 15.00 восстановила газоснабжение населенного пункта, в котором проживают 3,5 тыс. человек, более 1 тыс. из которых - дети.


3. Аварии на водопроводе.


По факту аварии на магистральном водопроводе в Петровском районе Ставропольского края возбуждено уголовное дело по ч. 1 ст. 293 УК РФ (халатность). Как сообщили корреспонденту ИА REGNUM в пресс-службе краевой прокуратуры, расследованием дела занимается прокуратура Петровского района. Проверка, проведенной прокуратурой, установила, что магистральный водопровод длительное время находился в аварийном состоянии, Ремонт и реконструкция магистральных сетей водопровода подответственны Светлоградскому филиалу "Ставрополькрайводоканала". Однако должностные лица не приняли мер к устранению дефектов и нарушений в работе водопровода и не предотвратили замерзания его отдельных участков.

Порыв на магистральном водопроводе и замерзание его участков стали возможными ввиду ненадлежащего исполнения должностными лицами Светлоградского филиала государственного унитарного предприятия Ставропольского края "Ставрополькрайводоканал" своих служебных обязанностей из-за недобросовестного отношения к службе.

23 января 2006 года в 21 час 25 минут в районе села Мартыновка Петровского района Ставропольского края произошел порыв магистрального водопровода, находящегося на балансе Светлоградского филиала государственного унитарного предприятия "Ставрополькрайводоканал". Вследствие аварии в ряде микрорайонов города Светлограда и близлежащих сел с общим количеством жителей свыше 41 тысячи человек была прекращена подача воды, В полном объеме подача воды возобновлена в 16 часов 31 января 2006 года. Сумма ущерба государственного унитарного предприятия "Ставрополькрайводоканал" составила 1 026 тысяч рублей.

Центр Асино в течение 5 дней остается без воды. Причина отключения воды - порыв водопровода на ул. Гончарова. Восстановлением поврежденного участка водопровода занимаются бригады ОАО "Асиновские коммунальные системы". Как сообщили "Авторадио-Томск" в диспетчерской "Асиновских коммунальных систем", на отопление жилых домов и образовательных учреждений эта авария никак не повлияла и в ближайшее время водоснабжение будет восстановлено.

Из-за аварии на водопроводе парализовано движение в районе Земляного Вала в Москве

В столице в районе Земляного Вала из-за аварии на водопроводе затоплена автотрасса, передает РИА «Новости» со ссылкой на столичное управление ГИБДД. Движение автомобилей в связи с затоплением трех полос дороги парализовано.

Авария на водопроводе холодного водоснабжения воды диаметром 100 миллиметров произошла около 17.00. В настоящее время поврежденный участок перекрыт, на месте происшествия работают восстановительные бригады.

Двадцать гаражей затопило сегодня в результате аварии на водопроводе возле четырнадцатой школы в Октябрьском районе Иркутска. Вода била фонтаном из колодца, протекала через школьный стадион и гаражный кооператив, после чего уходила в канализацию. В этом районе проходит много водопроводных веток, и специалистам было сложно определить место аварии. Фонтан бил с двух часов дня и только в пять его удалось ликвидировать. Без воды остались школа и несколько жилых домов.


ООО «Городской центр экспертиз». Руководитель департамента экспертизы промышленной безопасности Зинаида Арсентьева ООО «ГЦЭ-Энерго». Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)


ООО «Городской центр экспертиз». Руководитель департамента анализа риска

Антон Чугунов
ООО «Городской центр экспертиз». Эксперт департамента экспертизы промышленной безопасности


ООО «Городской центр экспертиз». Эксперт департамента анализа рисков

Аннотация

На сегодняшний день общая протяженность линейной части магистральных трубопроводов в Российской Федерации составляет более 242 тыс. км, из которых: магистральные газопроводы - 166 тыс. км; магистральные нефтепроводы - 52,5 тыс. км; магистральные продуктопроводы - 21,836 тыс. км. В настоящее время в системе магистрального трубопроводного транспорта эксплуатируется более 7000 поднадзорных Ростехнадзору объектов. Специфика эксплуатации трубопроводного транспорта напрямую связана с риском каскадного развития аварий. Поэтому обеспечение безопасности магистральных нефтегазопродуктопроводов имеет огромное значение для энергетической безопасности страны.

Одной из важнейших проблем трубопроводного транспорта является сохранение работоспособного состояния линейной части промысловых и магистральных трубопроводов. Многочисленные обследования показывают, что подземные газопроводы, работающие при нормальных режимах, находятся в удовлетворительном состоянии в течение нескольких десятков лет. Этому способствует то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных газопроводов и своевременная ликвидация появляющихся дефектов.

Известно, что основная часть газотранспортной системы России была построена в 70–80-е годы прошлого века. К настоящему времени износ основных фондов по линейной части магистральных газопроводов составляет более половины, а точнее - 5 7,2 %.

Большая часть магистральных газопроводов имеет под земную конструктивную схему прокладки. На подземные трубопроводы воздействуют коррозионно-активные грунты. Под воздействием коррозионного износа металла уменьшается толщина стенки труб, что в свою очередь может привести к возникновению аварийных ситуаций на МГ.

Безопасность объектов трубопроводного транспорта должна быть максимально высокой для обеспечения надежных бесперебойных поставок углеводородного сырья, а угроза возникновения аварий - минимизирована.

Как правило, появляется в результате коррозионных и механических повреждений, определение места и характера которых связано с рядом трудностей и большими материальными затратами. Совершенно очевидно, что вскрытие газопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность объекта. Поэтому в течение последних лет в нашей стране и за рубежом усилия специализированных научно-и сследовательских и проектных организаций направлены на решение проблемы определения состояния подземных и надземных промысловых, магистральных нефтепродуктопроводов без их вскрытия. Эта проблема связана с большими техническими трудностями, однако при использовании современных методов и средств измерительной техники она успешно решается.

Основные сценарии возможных аварий на газопроводах связаны с разрывом труб на полное сечение и истечением газа в атмосферу в критическом режиме (со скоростью звука) из двух концов газопровода (вверх и вниз по потоку). Протяженность разрыва и вероятность загорания газа имеют определенную связь как с технологическими параметрами трубопровода (его энергетическим потенциалом), так и с характеристиками грунта (плотность, наличие каменистых включений). Для трубопроводов большого диаметра (1200–1400 мм) характерны протяженные разрывы (50–70 м и более) и высокая вероятность загорания газа (0,6–0,7).

Горение газа может протекать в двух основных режимах. Первый из них предстает, как правило, в виде двух независимых (слабо взаимодействующих) настильных струй пламени с ориентацией, близкой к оси газопровода. Это характерно в основном для трубопроводов большого диаметра (режим «струйного» пламени). Ко второму следует отнести результирующий (по расходу газа) столб огня с близкой к вертикальной ориентацией (горение «в котловане»). Данный режим горения газа более характерен для трубопроводов относительно малого диаметра.

Рис. 1. Суммарное распределение причин аварий на магистральных газопроводах по данным Ростехнадзора за 2005–2013 гг.

Количество природного газа, способного участвовать в аварии, зависит от диаметра газопровода, рабочего давления, места разрыва, времени идентификации разрыва, особенностей расстановки и надежности срабатывания линейной арматуры. Согласно статистике, средние потери газа на одну аварию варьируются в диапазоне от двух с половиной до трех миллионов кубометров.


Рис. 2. Распределение аварий на линейной части газопроводов разных диаметров по причинам их возникновения

Для анализа причин и прогнозирования на ближайшую перспективу ожидае мой интенсивности аварий были использованы данные и обобщения, публикуемые в официальных источниках, в том числе в ежегодных отчетах Ростехнадзора. Результаты анализа сведений, содержащихся в ежегодных отчетах о деятельности Федеральной службы по экологическому, технологическому и атомному надзору (http://www.gosnadzor. ru/public/annual_reports/) приведены в табл. 1.


Обобщенные сведения об аварийности и дефектности на газопроводах ОАО «Газпром» за период с 1991 по 2002 г. приведены табл. 2.


Из вышеприведенных данных видно, что наибольшее число аварий на линейной части МГ происходило вследствие наружной и внутренней коррозии (26 %), брака строительно-монтажных работ (25,8 %) и механических повреждений (21 %).

Отдельно можно выделить аварии, происходившие на участках переходов через водные преграды как наиболее сложные в инженерном отношении участки линейной части МГ.


Таблица 3. Изменение интенсивности аварий (кол. аварий / 1000 км в год) на газопроводах РФ различных диаметров, 2000–2010 гг. Таблица 4. Влияние продолжительности эксплуатации на относительные показатели аварийности газопроводов

Необходимо отметить четко прослеживаемую зависимость частоты возникновения аварий на линейной части газопровода от срока его эксплуатации. Данная зависимость представлена в табл. 4. В том числе с разбивкой по различным диаметрам (табл. 5).


Таблица 5. Распределение аварий (в % от общего их числа) для газопроводов разных диаметров в зависимости от срока их эксплуатации

Анализ статистических данных показал, что интенсивность аварий на магистральных трубопроводах имеет выраженный региональный характер, т. е. определяется не только общими показателями научно-т ехнического прогресса в отрасли, но и целым рядом локальных факторов климатического, инженерно-г еологического и геодинамического характера, особенностями сооружения и эксплуатации конкретного участка, развитостью промышленной и транспортной инфраструктуры, общей хозяйственной активностью в регионе. Основную опасность аварийной разгерметизации газопроводов представляют:

  1. Участки газопроводов после компрессорных станций (до 5 км) - вследствие нестационарных динамических нагрузок;
  2. Участки газопроводов на узлах подключения;
  3. Участки подводных переходов;
  4. Участки, проходящие вблизи населенных пунктов и районов с высоким уровнем антропогенной активности (районы строительства, пересечения с автомобильными и железными дорогами).

Важно отметить, что после 1990 года на газопроводах России не было аварий типа лавинного разрушения. Это явилось результатом повышения уровня технических требований к трубам и сварным соединениям. Кроме того, улучшилось качество проектных работ, вырос уровень технического обслуживания газопроводов.

Имеющиеся статистические данные свидетельствуют о том, что соблюдение установленных нормативных расстояний при укладке в одном коридоре различных веток магистральных газопроводов является мерой, достаточной для предотвращения вариантов цепного развития аварий (т.е. происходящих по принципу «домино»).

Проявление аварийности на магистральных газопроводах, представляющих , носит ярко выраженный территориальный характер. Региональное проявление аварийности связано с различием в разных регионах инженерно-геологических особенностей трасс, состоянием сети дорог, общим уровнем промышленного и сельскохозяйственного развития и проч.

Проведенный анализ показал, что скорость коррозии севернее 60-й параллели в естественных почвенных условиях вследствие относительно низких температур в 15–20 раз выше, чем, например, в районах Средней Азии. Вследствие влияния климатических факторов в совокупности с региональными характеристиками коррозионной активности грунтов интенсивность отказов в северной зоне в 1,4 раза, а в южной – в 16 раз превышает значение λср для средней полосы.

Особое значение имеют показатели региональной сельскохозяйственной и промышленной активности, влияющей на механическую и . Региональный характер проявления аварийности, помимо общих технологических причин и антропогенного влияния, определяется сложными геодинамическими процессами в верхнем слое земной коры.

Анализ показал существенные различия (до 40 раз) в интенсивности аварий в разных областях Российской Федерации. Это необходимо учитывать при анализе риска путем соответствующей коррекции λср по данным аварийности конкретного региона (области) или предприятия. В ряде районов, помимо этого, необходимо производить более детальные уточнения с учетом конкретной местной специфики трассы трубопровода. Из-за отсутствия инженерных методик такие уточнения рекомендуется выполнять введением специального коэффициента, определяемого методом экспертных оценок.

Также нередко причинами отказов являются плановые и глубинные деформации русла рек в створе перехода, размывы берегов, механические повреждения судовыми якорями, волокушами, льдом, потеря устойчивости трубопровода, коррозия и брак труб, а также дефекты строительно-монтажных работ.

Результаты выполненного ООО «ВНИИГАЗ» обобщения данных фирмы «Подводгазэнергосервис» и ИЦ «ВНИИСТ-Поиск» по основным причинам повреждений на подводных переходах приведены в табл. 6.


Аварии в русловой части чаще всего происходят в период весеннего паводка. Благодаря созданной в ОАО «Газпром» системе периодического контроля и профилактического ремонта аварии на этой части переходов сейчас довольно редки. По оценкам специалистов, интенсивность аварий в русловой части переходов примерно в 5–7 раз выше аналогичного показателя для смежных «сухопутных» участков.

В пойменной части подводных переходов разрывы трубопроводов возникают в основном в зимнее время. Это объясняется тем, что из-за нарушения изоляционного покрытия отдельных участков газопроводов на них может возникнуть коррозия, связанная с повышенной увлажненностью почв и интенсивными геохимическими процессами. Ослабленные коррозией участки труб могут быть легко разрушены под воздействием интенсивных сжимающих нагрузок со стороны обводненных грунтов при их промерзании.

Следует выделить основные проблемы, решение которых позволит в некоторой степени уменьшить аварийность объектов газового профиля.

Во-первых, основной упор делается на противодействие видимым (актуальным на сегодня) опасностям в ущерб деятельности по профилактике опасностей на стадии проектирования и ранних стадиях жизненного цикла объекта.
Во-вторых, происходит многократное повторение однотипных чрезвычайных ситуаций по причине отсутствия механизмов учета опыта расследования инцидентов, отказов и аварий в профилактике ЧС на стадиях проектирования, строительства, реконструкции и эксплуатации объекта.

Кроме того, можно отметить недостаточную эффективность действующих служб мониторинга. Службы отслеживания фактической обстановки на предприятиях, как правило, ограничиваются фиксацией «физических» явлений и процессов. Они не встроены в системы, обеспечивающие синтез и анализ наблюдений, принятие управленческих решений и корректировку собственной деятельности.

Литература

  1. Материалы ежегодных отчетов о деятельности Федеральной службы по экологическому, технологическому и атомному надзору за 2004-2014 года (http://www.gosnadzor.ru/public/annual_reports/).
  2. Промышленная безопасность и надежность магистральных трубопроводов / Под ред. А.И. Владимирова, В.Я. Кершенбаума. – М.: Национальный институт нефти и газа, 2009. 696 с.
  3. Башкин В.Н., Галиулин Р.В., Галиулина Р.А. Аварийные выбросы природного газа: проблемы и пути их решения // Защита окружающей среды в нефтегазовом комплексе. 2010. № 8. С. 4-11.
  4. Лисанов М.В., Савина А.В., Дегтярев Д.В. и др. Анализ Российских и зарубежных данных по аварийности на объектах трубопроводного транспорта //Безопасность труда в промышленности. 2010. № 7 С. 16-22.
  5. Лисанов М.В., Сумской С.И., Савина А.В. и др. Анализ риска магистральных нефтепроводов при обосновании проектных решений, компенсирующих отступления от действующих требований безопасности // Безопасность труда в промышленности. 2010. №3. С. 58-66.
  6. Мокроусов С.Н. Проблемы обеспечения безопасности магистральных и межпромысловых нефтегазопродуктопроводов. Организационные аспекты предупреждения несанкционированных врезок // Безопасность труда в промышленности. 2006. № 9. С. 16-19.
  7. Ревазов А.М. Анализ чрезвычайных и аварийных ситуаций на объектах магистрального газопроводного транспорта и меры по предупреждению их возникновения и снижению последствий // Управление качеством в нефтегазовом комплексе. 2010. № 1. С. 68-70.
  8. Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)

Интенсивное освоение природных ресурсов при разработке месторождений углеводородного сырья на территории РФ выявило значительно взаимовлияние природной среды и инженерного сооружения, которое во многом определяет надежность и безопасность функционирования магистральных трубопроводов.

Для доставки добываемой нефти и газа возникает необходимость строительства трубопроводов часто в неблагоприятных природных условиях. Решение данной задачи требует особого внимания к обеспечению промышленной и экологической безопасности проектирования, строительства и эксплуатация систем магистральных трубопроводов.

Авария на магистральном трубопроводе - авария на трассе трубопровода, связанная с выбросом и выливом под давлением опасных химических или пожаровзрывоопасных веществ, приводящая к возникновению техногенной чрезвычайной ситуации.

Протяженность магистральных трубопроводов России составляет около 220 тыс. км, в т.ч. более 150 тыс.км.газопроводных магистралей, около 50 тыс. км. нефтепроводных, около 20 тыс.км. нефтепродуктопроводных.

Вопросы безопасности при авариях на химически опасных объектах (ХОО)

Характерной особенностью значительной части объектов экономики является их химическая опасность. Из общего числа ОЭ более 75% являются химически опасными объектами.

ХОО - объект хранения, переработки, использования или транспортировки опасных химических веществ (ОХВ), при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение природной среды. Число таких объектов в РФ превышает 3 тыс.

Опасное химическое вещество (ОХВ) - химическое вещество, прямое или опосредованное воздействие которого на человека может вызвать острые и хронические заболевания людей или их гибель.

Аварийно химически опасное вещество (АХОВ) - опасное хи­мическое вещество, выброс которого при химической аварии приводит к химическому заражению окружающей среды в поражающих жи­вые организмы количествах (концентрациях, токсодозах).

В настоящее время различные перечни вредных веществ насчитывают сотни и тысячи различных химических соединений. Естественно, что многие вредные вещества могут представлять значительную угрозу персоналу ОЭ и населению в случае аварийных выбросов (проливов) в силу своих токсических и физико-химических свойств.

К наиболее распространенным ОХВ относят: хлор (С1 2), аммиак (NH 3), водород цианистый (HCN), водород мышьяковистый (AsH 3), акролеин (СН 2 =СНСНО), ацетонитрил (CH 3 CN), фосген (СОС1 2), формальдегид (СН 2 0), хлорциан (C1CN), треххлористый фосфор (РС1 3), сероуглерод (CS 2), диоксид серы (S0 2), оксид этилена (СН 2 0) и др.

Перечень ОХВ сведен к 34 наименованиям, но в этом перечне выделено 21 наименование, которое названо АХОВ.

В количественном отношении хлор и аммиак по праву занимают первые два места. Значительные их запасы сосредоточены на объектах пищевой, мясомолочной промышленности, холодильниках торговых баз, в жилищно-коммунальном хозяйстве. Так, на овощебазах содержится до 150 т аммиака, используемого в качестве хладагента, а на станциях водоподготовки - от 100 до 400 т хлора. Статистика показывает, что наиболее опасными (не с точки зрения токсичности) по числу случаев гибели людей являются хлор и аммиак

Поражающим фактором ОХВ является токсическое воздействие на людей и животных жидкой фазы, первичного и вторичного облака паров ОХВ и зараженных ими объектов.

Выброс ОХВ (АХОВ) - не предусмотренный регламентом их выход из технологических установок (емкостей для хранения или транспортирования) при их разгерметизации.

Пролив опасных химических веществ - выброс жидкой фазы ОХВ.

На ХОО могут создаваться запасы ОХВ на 3-15 суток работы и составлять тысячи тонн. Они находятся в резервуарах складов, технологической аппаратуре и транспортных средствах (трубопроводах, цистернах).

Наземные резервуары могут располагаться группами, имея один резервный резервуар, или стоять отдельно. Для каждой группы резервуаров или отдельных больших хранилищ по периметру оборудуется замкнутое обвалование или ограждающая стенка (система заградительных сооружений (защитных дамб), или земляных валов, предупреждает растекание). Они позволяют при аварии удержать разлившиеся ОХВ на меньшем участке местности, т.е. сократить площадь испарения. Около 60% общего числа хранилищ защищается обваловкой из грунта.

В обычных условиях ХОВ могут быть в твердом, жидком или газообразном состоянии. Газ (пар) занимает большой объем, поэтому при производстве, использовании, хранении и перевозках газообразные ХОВ могут переводиться в сжиженное состояние или находиться под давлением. Это может значительно увеличить количество ХОВ, выбрасываемых при аварии в атмосферу, и повлиять на состав образующегося при этом облака.

Оценка степени потенциальной опасности химических производств может быть определена по следующим пяти показателям:

– степени токсической опасности ОХВ (ПОЗ), используемых на объекте (определяется классом опасности ОХВ)

– риску возникновения аварии на объекте

– характеру развития возможной химической аварии

– масштабам возможных последствий химической аварии (ПО,);

– пожаровзрывоопасности объекта (П0 5).

Каждый из этих показателей имеет 4 степени опасности. Категория опасности ХОО определяется по обобщенному показателю опасности (ОПО), равному сумме вышерассмотренных частных показателей.

Критерием для определения химической опасности объекта является количество населения, попадающего в зону возможного химического загрязнения (ЗВХЗ), которая представляет собой круг радиусом, равным наибольшей глубине распространения облака загрязненного воздуха с пороговой концентрацией.

Существует четыре степени химической опасности:

I - в ЗВХЗ попадает более 7 тыс. человек,

II - от 40 до 75 тыс. человек, I

II- менее 40 тыс. человек,

IV - ЗВХЗ не выходит за пределы территории объекта или его санитарно-защитной зоны.

По путям воздействия на организм человека ОХВ подразделяют на 3 группы:

– ингаляционного действия (ИД) - действующие через органы дыхания;

– кожно-резорбтивного действия (КРД) - действующие через кожные покровы;

– перорального действия (ПД) - действующие через желудочно-кишечный тракт.

Через дыхательные пути химические вещества поступают в организм в виде газов, паров и аэрозолей, парогазовых или парогазо-аэрозольных комплексов. Этот путь имеет первостепенное значение, поскольку всасывание веществ происходит с очень большой поверхности легочных альвеол (100-120 м 2), намного превышающей площадь всасывающей поверхности пищеварительного канала и кожи. Проникновение газов и паров из альвеолярного воздуха в кровь подчиняется закону простой диффузии, в соответствии с которым процесс перехода веществ из газообразной среды в жидкую происходит вследствие разности парциального давления и продолжается до наступления равновесия концентраций в обеих фазах.

По виду воздействия (клинике поражения) ОХВ условно делят на группы:

– вещества с преимущественно удушающим действием (хлор, фосген, хлорпикрин, треххлористый фосфор, хлорид серы, оксихлорид серы);

– вещества преимущественно общеядовитого действия (оксид углерода, цианистый водород, динитрофенол, динитроортокрезол, этиленхлоргидрин, этиленфторгидрин);

– вещества, обладающие удушающим и общеядовитым действием (акрилонитрил, азотная кислота и оксиды азота, диоксид серы, фтористый водород);

– вещества, действующие на генерацию, проведение и передачу нервных импульсов - нейротропные яды (сероуглерод, тетраэтилсвинец, фосфорорганические соединения);

– вещества, обладающие удушающим и нейротропным действием (аммиак, несимметричный диметилгидразин, гидразин);

– метаболические яды, нарушающие обмен веществ в живых организмах (оксид этилена, дихлорэтан, диоксин, полихлорированные бензофураны).

Важнейшей характеристикой ОХВ является их токсичность - способность оказывать поражающее действие на организм, измеряется его абсолютным количеством (дозой), вызывающим определенный биологический эффект, т.е. определенные патологические изменения в организме. В промышленной токсикологии из общего числа промышленных ядов к ОХВ отнесены те вещества, смертельные дозы которых для человека не превышают 100 мг/кг, т.е. первого и второго класса опасности. Для более точной характеристики ОХВ используют понятия «токсическая доза» и «предельно допустимая концентрация» (ПДК).

Токсическая доза (Д) ОХВ - количество вещества (доза), вы­зывающее определенный токсический эффект.

Для характеристики токсичности ОХВ при воздействии на человека приняты следующие токсические дозы:

ингаляционно: среднесмертельная LD 50 , средневыводящая из строя ID 50 , среднепороговая PD 50 ,

кожно-резорбтивно: среднесмертельная LD 50 (количество вредного вещества, вызывающего гибель 50% людей при однократном нанесении на кожу),

перорально - среднесмертельная LD 50 (количество вредного вещества, вызывающего гибель 50% людей при однократном введении в желудок).

Предельно допустимая концентрация (ПДК) - это концентрация, которая при ежедневном воздействии на человека в течение длительного времени не вызывает патологических изменений и заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами диагностики.

Пороговая концентрация - минимальная концентрация ОХВ, вызывающая начальные симптомы поражения.

К основным характеристикам ОХВ также принято относить агрессивность и стойкость.

Агрессивность - это способность ОХВ оказывать вредное воздействие на элементы объектов экономики и окружающую природную среду.

Стойкость - это продолжительность сохранения поражающей способности ОХВ.

По токсичности все химические вещества делят на 6 групп:

1.чрезвычайно токсичные - ICt 50 меньше 1 мг-мин/л (производные мышьяка, ртути, цианистые соединения и т.п.);

2.высокотоксичные - ICt 50 от 1 до 5 мг мин/л (хлор, хлориды, фосген и др.);

3.сильнотоксичные - ICt 50 от 6 до 20 мг мин/л (аммиак, сер­ная, соляная, азотная кислоты);

4.умеренно токсичные - ICt 50 от 21 до 80 мг-мин/л;

5. малотоксичные - ICt 50 от 81 до 160 мг мин/л;

6. практически нетоксичные - ICt 50 больше 160 мг мин/л.

Все ОХВ по степени воздействия на организм человека подразделяются на четыре класса опасности:

1-й - чрезвычайно опасные;

2-й - высокоопасные; 3-й - умеренно опасные;

4-й - малоопасные.

При оценке потенциальной опасности химических веществ необходимо принимать во внимание не только токсические, но и физико-химические свойства, характеризующие их поведение в атмосфере, на местности и в воде. В частности, важнейшим физическим параметром, определяющим потенциальную опасность токсичных веществ ингаляционного действия при выбросах (проливах), является их способность образовывать газовое облако с высокими поражающими концентрациями паров в воздухе (летучесть).

К основным характеристикам ОХВ также принято относить агрессивность и стойкость. Агрессивность – способность ОХВ оказывать вредное воздействие на элементы объектов экономики и природной среды.

Стойкость – это продолжительность сохранения поражающей способности ОХВ.

В зависимости от физико-химических свойств аварийно химически опасных веществ, условий их хранения и транспортировки при авариях на химически опасных объектах могут возникнуть чрезвычайные ситуации с химической обстановкой четырех основных типов .

Чрезвычайные ситуации с химической обстановкой первого типа возникают в случае разгерметизации (взрыва) емкостей или технологического оборудования, содержащих газообразные (под давлением) АХОВ. При этом образуется первичное парогазовое или аэрозольное облако с высокой концентрацией АХОВ, распространяющееся по ветру.

Основным поражающим фактором при чрезвычайных ситуациях с химической обстановкой первого типа является ингаляционное воздействие на людей и животных высоких (смертельных) концентраций паров АХОВ. Масштабы поражения при этом зависят:

· от количества выброшенных АХОВ,

· концентрации ядовитого вещества,

· плотности паров АХОВ (легче или тяжелее воздуха),

· размеров облака,

· скорости ветра,

· состояния приземного слоя атмосферы (инверсия, конвекция, изотермия),

· характера местности (открытая местность или городская застройка),

· плотности населения.

Существенное влияние на поведение ОХВ оказывают скорость ветра, степень вертикальной устойчивости воздуха и топографические особенности местности. Глубина распространения облака ОХВ практически прямо пропорциональна начальной концентрации ОХВ и скорости ветра. При конвекции глубина распространения первичного облака будет в 3 раза меньше, а при инверсии - в 3 раза больше, чем при изотермии. Если на пути облака паров встречается лесной массив или возвышенность, то глубина его распространения резко уменьшается.

Город существенно повышает температуру воздуха, что приводит к возникновению внутри города так называемого острова тепла. Остров тепла оказывает значительное влияние на степень вертикальной устойчивости воздуха, вызывая подъем воздушных масс, на смену которым от окраин будут двигаться более холодные массы воздуха, в том числе и зараженного ОХВ. Застройка и планировка городов, особенно больших с высотными зданиями, также влияют на аэродинамику воздушных потоков и поведение облака зараженного воздуха.

Пары ОХВ, особенно тех, плотность которых больше плотности воздуха (формальдегид, хлор), быстро заполняют дворы, тупики, подвалы и держатся там дольше, чем на открытой местности.

В отличие от ОХВ, которые тяжелее воздуха, аммиак, синильная кислота, плотность которых меньше плотности воздуха, способны проникать в более высокие слои атмосферы, включая даже верхние этажи высотных домов.

Типовые варианты ЧС могут быть осложнены взрывами и пожарами, что станет причиной возникновения дополнительных поражающих факторов, таких как ударная волна, обрушение зданий и сооружений с образованием завалов, прямое воздействие огня, тепловое излучение, задымление, образование токсичных продуктов горения и др.

Метеорологические условия среды оказывают влияние на терморегуляцию организма, что в свою очередь влечет за собой изменение восприимчивости орга­низма к вредным веществам. Так, увеличение температуры воздуха ведет к усиленному потоотделению, ускорению многих биохимических процессов и изменению веществ. Учащение дыхания и усиление кровообращения ведут к увеличению поступления вредных веществ в организм через органы дыхания. Расширение сосудов кожи и слизистых оболочек повышает скорость всасывания токсических веществ через кожу и дыхательные пути. Высокая температура увеличивает летучесть многих веществ и повышает их концентрации в воздухе. Усиление токсического действия при повышенных температурах отмечено, например, в отношении таких веществ: паров бензина, оксидов азота, паров ртути, хлорофоса и др.

Влажность воздуха также может увеличивать опасность отравления, в особенности раздражающими газами. Это объясняется усилением процессов гидролиза. Растворение газов и образование тумана кислот и щелочей ведет к усилению раздражающего действия на слизистую оболочку. Кроме того, эти вещества задерживаются в органах дыхания.

Чрезвычайные ситуации с химической обстановкой второго типа возникают при аварийных выбросах или проливах, используемых в производстве, хранящихся или транспортируемых сжиженных ядовитых газов (аммиак, хлор и др.), перегретых летучих токсических жидкостей с температурой кипения ниже температуры окружающей среды (окись этилена, фосген, окислы азота, сернистый ангидрид, синильная кислота и др.). При этом часть АХОВ (не более 10%) мгновенно испаряется, образуя первичное облако паров смертельной концентрации; другая часть выливается в поддон или на подстилающую поверхность, постепенно испаряется, образуя вторичное облако с поражающими концентрациями.

Поражающие факторы в чрезвычайных ситуациях с химической обстановкой второго типа проявляются в ингаляционном воздействии на людей и животных смертельных концентраций первичного облака (кратковременное) и в продолжительном воздействии (часы, сутки) вторичного облака с поражающими концентрациями паров.

Чрезвычайные ситуации с химической обстановкой третьего типа возникают при проливе сжиженных или жидких АХОВ с температурой кипения ниже или близкой к температуре окружающей среды (фосген, четырехокись азота и др.), а также при горении большого количества удобрений (например, нитрофоски). При этом образуется вторичное облако паров АХОВ с поражающими концентрациями, которое может распространяться на большие расстояния. При чрезвычайных ситуациях с химической обстановкой третьего типа образуется вторичное облако паров АХОВ с поражающими концентрациями, которое может распространяться на большие расстояния.

Чрезвычайные ситуации с химической обстановкой четвертого типа возникают при проливе жидких с температурой кипения значительно выше температуры окружающей среды или твердых - несимметричный диметилгидразин, фенол, сероуглерод, диоксин, соли синильной кислоты. При этом происходит заражение местности (грунта, растительности, воды) в опасных концентрациях. Основными поражающими факторами при чрезвычайных ситуациях с химической обстановкой четвертого типа являются опасные последствия заражения людей и животных при длительном нахождении их на зараженной местности в результате перорального и резорбтивного воздействия АХОВ на организм.

В результате аварии на химически опасном объекте может произойти нарушение технологических процессов на производстве, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросу АХОВ в атмосферу в количествах, в которых они могут вызывать массовое поражение людей, животных, а также химическое заражение воды, почвы и т.п.


Похожая информация.


Cтраница 1


Аварии газопроводов могут привести к тяжелым последствиям как для людей, так и для окружающей природы. Кроме того, при авариях теряется газ на участке между двумя кранами. Большой материальный урон несут потребители газа, которые вынуждены остановить свое производство или применить другие виды топлива. Расходы в результате аварии газопровода могут более чем в 30 раз превышать затраты, необходимые на ремонтные работы. При аварии нефтепровода происходит утечка нефти на участке между двумя задвижками. Это приводит к большим потерям нефти и засорению окружающей среды, а в некоторых случаях к остановке нефтепромысла или нефтеперерабатывающего завода.  

Аварией газопровода считается частичный или полный разрыв трубопровода с выходом газа в окружающую среду.  

При аварии газопровода с выходом газа на поверхность земли необходимо немедленно отключить газ и принять срочные меры по ликвидации аварии.  

Причинами, вызывающими аварии газопровода, могут быть некачественная сварка, перенапряжения в металле из-за неправильной укладки газопровода в траншею, оползни, размывы, корродирующее воздействие грунта, образование в зимнее время гидратиых пробок и другие.  


Одним из основных условий предупреждения аварий газопроводов, связанных с коррозией, эрозией и усталостью металла, яв-шется систематический и своевременный контроль их состояния.  

В полевых условиях при ликвидации аварий газопроводов, производстве ремонтов рабочее место электросварщика обязательно оборудуется деревянным лежаком. Основным рабочим инструментом электросварщика является держатель электродов, от которого в значительной мере зависит удобство работы. Держатель должен прочно удерживать электрод, обеспечивать надежный контакт и допускать быструю и удобную смену электродов без прикосновения к токоведущим и нагретым металлическим частям держателя. Держатель должен иметь минимальный вес и удобный захват. Наиболее существенной частью конструкции держателя электродов является устройство для зажатия электрода. По способу крепления электродов держатели подразделяются на вилочные, пружинные, зажимные и винтовые.  

Институт мерзлотоведения, изучивший причины аварий газопроводов, установил, что не прокладка трубопровода в зоне промерзания грунта явилась причиной этих аварий, а недоброкачественная сварка стыков.  

Значения физико-механических характеристик грунта основания и засыпки.  

По данным экспертизы, проведенной на месте аварии газопровода Уренгой-Центр П (февраль 1995 г.), одной из причин послужило защемление в грунте трубы, примыкающей к карстовой полости.  

Оц за 1 ч; т - 3 - - среднее время восстановления аварии газопровода диаметром Оц ч; LJ - длина г - й секции, км.  

В данной главе приведены результаты многолетних металлографических исследований разных групп трубных сталей, разрушенных при авариях газопроводов.  

Кроме отмеченных документов, эксплуатационные организации хранят также техническую приемочную документацию; журналы сварочных работ, сертификаты на материалы, журналы изоляции, журналы испытаний и др. К этой документации обращаются при анализе причин и [ выявлении виновников аварий газопроводов. В процессе текущего обслуживания этими документами не пользуются.  

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подземные магистральные газопроводы

1. Технологическая схема магистрального газопровода

Магистральные газопроводы - это стальные трубопроводы, по которым транспортируется природный или искусственный газ от мест добычи или производства к местам его потребления. Диаметр газопровода, в основном, варьируется от 700 мм до 1400 мм. Глубина прокладки газопровода от 0,8 до 1 м.

В зависимости от рабочего давления газопроводы подразделяют на два класса:

1 класс - свыше 2,5 до 10 МПа включительно;

2 класс - свыше 1,2 до 2,5 МПа включительно.

В состав магистрального газопровода входят (Рисунок 1.1): собственно газопровод и его ответвления, головные сооружения, компрессорная станция, пункты контрольно-измерительной аппаратуры, ремонтно-эксплуатационная служба, газораспределительная станция, подземные хранилища газа, линии связи и электропередачи, установки электрозащиты газопровода от коррозии, вспомогательные сооружения (водоснабжения и канализации, усадьбы линейных обходчиков, административные и хозяйственно-бытовые объекты).

Рисунок 1.1 - Состав магистрального газопровода, где ГСС - газосборные сети, ГКС - головная компрессорная станция, КС - промежуточная компрессорная станция, ГХ - подземное хранилище газа

Головные сооружения служат для очистки газа от вредных примесей (удаления влаги, отделения серы и других ценных компонентов) и подготовки его к транспортировке.

Компрессорные станции (КС) - это комплекс сооружений, предназначенный для сжатия транспортируемого газа до такого давления, которое обеспечило бы бесперебойную подачу его от месторождения до потребителей.

В состав КС входят: компрессорный цех с установками для сжатия газа (его пластовое давление на промысле невелико), пылеулавливатели, установки для очистки газа и другие объекты.

При подходе магистрального газопровода к местам потребления газа (городам, поселкам, предприятиям) давление в нем должно быть снижено до уровня, необходимого потребителям (0,3-1,2 МПа). Для этого предназначены газораспределительные станции (ГРС), в которых размещается аппаратура по снижению давления, дополнительной очистке и осушке газа.

Для регулирования неравномерности потребления газа устраивают подземные газохранилища. Сооружают их в водонасыщенных пористых пластах, отработанных нефтяных и газовых месторождениях.

При эксплуатации магистральных газопроводов контролю подлежат следующие основные показатели:

а) давление газа в начале и в конце участка, на выходе с промысла и на отводах на газораспределительные станции;

б) количество транспортируемого газа, температура его на входе и выходе компрессорной станции, средняя по участку, на входе в газораспределительную станцию;

в) наличие конденсата, влаги, сероводорода, тяжелых углеводородов и загрязнений в газе, давление на входе и выходе компрессорной станции, количество работающих агрегатов и режим их работы;

г) исправность оборудования на компрессорных и газораспределительных станциях, герметичность газопровода;

д) режим закачки газа в подземные хранилища, режим отбора газа постоянными и буферными потребителями и другие показатели, характеризующие состояние газопровода, его сооружений и оборудования.

Для компримирования больших потоков газа, транспортируемых по магистральным газопроводам, суммарная мощность перекачивающих компрессорных установок достигает 50-60 тыс. кВт на одной станции. При сжатии газа на компрессорной станции ему сообщается значительное количество теплоты. Применение для газопроводов труб большого диаметра вызывает уменьшение удельной теплообменной поверхности труб на единицу количества транспортируемого газа. Поэтому по пути следования к следующей станции газ не может охладиться до необходимой температуры за счет теплоотдачи в окружающую среду, т.е. его температура после каждой станции будет повышаться. Максимальная температура транспортируемого газа ограничивается обеспечением устойчивости газопровода, прочностными характеристиками изоляции, климатическими и геологическими условиями на трассе газопровода. Поэтому возникает необходимость охлаждения газа после сжатия.

В зависимости от перечисленных факторов температура транспортируемого газа должна составлять 40-70°С.

Рисунок 1.2 - Общий вид транспортировки газа

2. Виды аварий на магистральном газопроводе

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

3. Поражающие факторы

Поражающие факторы при аварии на магистральном газопроводе:

а) барического воздействия волн сжатия, образующихся за счет расширения в атмосфере природного газа, выброшенного под давлением из разрушенного участка трубопровода («первичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

б) барического воздействия воздушных волн сжатия, образующихся при воспламенении газового облака и расширении продуктов его сгорания («вторичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

в) термического воздействия огненного шара при воспламенении переобогащенного топливом газового облака, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50С, разрушение трубопровода 350С);

г) термического воздействия воспламенившихся струй газа, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50 ?С, разрушение трубопровода 350 ?С).

д) воздействие осколков (или фрагментов) трубы, измеряется как кг.

Объекты поражения: Человек, Газопровода, Рядом находящиеся эксплуатационные объекты, Атмосфера.

Анализ поражающих факторов при аварии в местах пересечения магистральных газопроводов показывает, что при воздействии ударной волны на верхний газопровод в результате расширения газа, выбрасываемого из нижнего газопровода, давление во фронте ударной волны составляет от 6,4 МПа, а значение импульса составляет 88,3 кПа·с. При аварийных разрывах, как показывает анализ статистических данных, возможно образование осколков магистральных газопроводов массой более трех тысяч килограмм. Некоторые фрагменты могут достигать 10 тонн. При этом выброс осколков из траншеи в 75% случаях размером примерно 25 метров на 4,5 происходит на расстояние от 16 до 400 метров. Следует отметить, что при вязком разрушении расстояние выброса может достигать 180 метров, а при хрупком - до 700 метров.

По расчетным методикам получается так, что сквозные пробития верхнего газопровода могут возникнуть когда масса осколков будет превышать 1300 килограмм при прямом ударе и 2800 - при косом. При скорости осколка, равной скорости метания грунта при угле раскрытия нижнего магистрального газопровода равном 30 градусам, верхний газопровод разрушается под воздействием осколочных фрагментов более 240 килограмм. Если угол раскрытия равен 60 градусам, газопровод разрушается от осколка массой 1300 кг.

При тепловом воздействии на смежный аварийному верхний газопровод, получается интересная картина: длина факела может достигнуть нескольких сотен метров, распространение пожара в котловане - до 80 метров, температура в зоне горения достигает 1500 ?С, тепловой поток вырастает до 200 кВт/м?. При воздействии на газопровод теплового потока горящего газа температура разрушения газопровода составляет 330 ?С, а время прошедшее от начала теплового воздействия, до разрушения составляет от трех до пяти минут.

4. Безопасность магистральных газопроводов

Чтобы иметь возможность отключать отдельные участки газопровода для ремонтных работ, а также для сохранения газа во время аварийных разрывов газопровода, на магистральных газопроводах не реже чем через 20-25 км устанавливают запорную отключающую арматуру. Кроме того, запорная арматура устанавливается во всех ответвлениях к потребителям газа, на шлейфах компрессорных станций, на берегах рек и др. Чтобы иметь возможность сбрасывать газ при необходимости опорожнения газопровода, запорную арматуру устанавливают также и на свечах.

Запорная арматура группируется в линейные отключающие устройства. В неё входит:

ь Запорная арматура с байпасом (например, кран);

ь Продувочные свечи (расположены от крана 5 - 15 м);

ь Свечи предназначены для сбрасывания газа в атмосферу.

В качестве запорной арматуры применяются краны, задвижки и вентили.

Кранами называется такая запорная арматура, которая закрывает или открывает проход жидкости или газа путем поворота пробки.

По конструкции краны делятся на простые поворотные краны с выдвижной пробкой и краны с принудительной смазкой, по способу присоединения к трубопроводу - на фланцевые, муфтовые и с концами под приварку, по роду управления - с ручным управлением, с пневмоприводом и с пневмогидравлическим приводом. Последние имеют дублирующий ручной привод.

На магистральных газопроводах применяются краны с принудительной смазкой на давление до 64 кГ/см? типа 11с320бк и 11с321бк, а также краны со сферическим затвором.

Задвижки

Запорная арматура, в которой проход открывается путем подъема плоского диска перпендикулярно движению среды, называется задвижкой.

На магистральных газопроводах применяют только стальные задвижки на давление до 64 кГ/см? с условным проходом от 50 до 600 мм. Для задвижек, устанавливаемых на подземных участках газопровода, строятся специальные колодцы, дающие возможность обслуживать арматуру (набивать и подтягивать сальники, смазывать, красить и т. д.). Присоединительные концы задвижек делаются как под приварку, так и для фланцевого соединения.

На магистральных газопроводах вентили применяются главным образом как запорная арматура на контрольно-измерительных приборах, конденсатосборниках, узлах запорных устройств, редуцирующих установках и др.

Линейные отключающие узлы с задвижками монтируют в специальных бетонных или кирпичных колодцах с раскрывающимися на две половины крышками, промежуточным полом (из съемных щитов) и металлической лестницей для спуска в колодец. Подземная часть колодца тщательно изолируется от попадания влаги. В сменках колодца, через который проходит газопровод, устанавливаются патроны; зазоры между ними и трубой уплотняются с помощью сальникового устройства. Трубы и арматура в колодцах должны быть тщательно вычищены и покрыты водостойкими красками.

На рисунке показаны схемы различных конструкций линейных отключающих узлов, оборудованных кранами. Как видно из рисунка, линейные отключающие узлы, предназначенные для перекрытия основной магистрали газопровода, имеют свечи по обе стороны отключающего крана для сбрасывания газа на любом из двух участков газопровода. На отключающем кране отвода от магистрального газопровода устанавливается только одна свеча за краном по направлению газа. На двухниточных переходах продувочные свечи устанавливаются на основной и резервной нитках между отключающими узлами и на основной нитке до узлов.

Коррозия металлов трубопровода

Коррозия металлов - химический или электрохимический процесс разрушения их под воздействием окружающей среды. Процессы разрушения протекают относительно медленно и самопроизвольно.

На эксплуатационное состояние подземных трубопроводов оказывает воздействие электрохимическая коррозия. Электрохимическая коррозия - коррозия металлов в электролитах, сопровождающаяся образованием электрического тока. Процесс разрушения подземных трубопроводов происходит под воздействием окружающей среды (почвенного электролита). При взаимодействии металла трубы с окружающей средой поверхность трубопровода разделяется на положительные (анодные) и отрицательные (катодные) участки. Между этими участками от анода к катоду протекает электрический ток (ток коррозии), который разрушает трубопровод в местах анодных зон.

Основными факторами, определяющими коррозионную активность грунтов, являются электропроводимость, кислотность, влажность, солевой и щелочной состав, температура и воздухопроницаемость.

Разрушение подземных трубопроводов может происходить также и под воздействием блуждающих токов (электрокоррозия). Коррозия металла в этом случае связана с проникновением на трубу токов утечки с рельсов электрифицированного транспорта или других промышленных установок постоянного тока.

Способы защиты магистральных газопроводов от электрохимической коррозии пассивный и активный.

Пассивная защита включает покрытие поверхности газопровода противокоррозионной изоляцией.

К активным способам защиты газопроводов от коррозии относится электрическая, которая включает катодную, протекторную и дренажную защиты. Электрозащита дополняет пассивную защиту, чем обеспечивается предохранение газопроводов от почвенной коррозии.

Сущность катодной защиты заключается в катодной поляризации посторонним источником постоянного тока металлической поверхности трубы газопровода, соприкасающегося с землей. Поляризация осуществляется током, входящим из грунта в трубу. Труба при этом является катодом по отношению к грунту.

Сценарий событий

Возможные сценарии событий на магистральных трубопроводах:

Сценарий №1, Весенняя подвижка грунтов > Дополнительные напряжения в трубопроводе > Разрыв газопровода > Утечка газа > рассеивание утечки.

Сценарий №2, Образование трещины по продольному сварному шву > утечка газа > проникновение газа по грунту в кирпичный колодец линейного сооружения > образование газовоздушной смеси > Образование искры > Взрыв газовоздушной смеси.

Сценарий №3, Нарушение изоляции трубопровода > коррозия трубопровода > утончение стенки трубы > разрушение газопровода > утечка газа > рассеивание утечки.

Сценарий №4, Нарушение целостности газопровода внешним воздействием > утечка газа > факельное горение.

Сценарий №5, Температурные нагрузки на газопровод > усталостное разрушение труб > разрыв газопровода > утечка газа > факельное горение

Дерево событий

Ниже представлено дерево отказов, головным событием которого является аварийная разгерметизация газопровода.

Минимальные пропускные сочетания - это набор исходных событий-предпосылок, обязательного (одновременного) возникновения, которых достаточно для появления головного события (аварий).

Минимальные базовые сочетания - уравнения для головного события.

Уравнение головного события для данного дерева отказа будет:

TOP = 1.2 + 3 + 4.5 + 6 + 7

магистральный газопровод авария коррозия

Тогда расчет вероятности реализации событий для головного события, следующий:

Qtop = 1.2 + 3 + 4.5 + 6 + 7 = 0.0065525 или в процентах 0.65525%

Или вероятность событий:

Произойдет событие БРАК СМР = 0.05525%

Произойдет событие Заводской дефект труб = 0.6%.

Размещено на Allbest.ru

Подобные документы

    Использование в России трубопроводного транспорта как одного из эффективных и экономичных средств газообразных веществ. Причины коррозии на трубопроводе, аварий на нефтепроводах, газопроводе, водопроводе. Спасение пострадавших при пожарах и взрывах.

    реферат , добавлен 24.12.2015

    Состояние системы подземных трубопроводов в РФ на 2008 год. Применение новых технологий. Аварии на нефтепроводах; газопроводе; водопроводе. Последствия аварий на трубопроводах. Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах.

    реферат , добавлен 30.04.2008

    Технические характеристики аварий. Факторы радиационной опасности. Возможные пути облучения при нахождении личного состава в районе аварийной АЭС. Оценка радиационной обстановки при аварии. Лечебно-профилактические работы в очагах, их основные этапы.

    презентация , добавлен 23.08.2015

    Признаки аварии на магистральном трубопроводном транспорте. Вид ответственности должностных и юридических лиц за невыполнение требований правил по предупреждению и ликвидации чрезвычайных ситуаций. Аварии на хранилищах сжатого газа и их устранение.

    контрольная работа , добавлен 14.02.2012

    Основное понятие об авариях, примерный их перечень. Человеческий фактор как одна из причин аварий. Анализ аварий на шахте "Западная-Капитальная" (Ростовская обл., г. Новошахтинск), шахтах "Ак Булак комур", "Комсомольская", "Юбилейная", "Ульяновская".

    реферат , добавлен 06.04.2010

    Виды аварий на радиационно-опасных объектах. Особенности аварий атомной энергетики. Основные фазы протекания аварий, принципы организации и проведения защитных мероприятий. Расчет уровня шума в жилой застройке. Расчет общего производственного освещения.

    реферат , добавлен 12.04.2014

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Виды безопасностей. Классификация чрезвычайных ситуаций. Основные поражающие факторы при радиационной аварии. Принципы защиты от ионизирующего излучения. Вредные, опасные факторы производственной среды. Воздействие на организм тока, ультразвука.

    шпаргалка , добавлен 03.02.2011

    Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция , добавлен 16.03.2007

    Классификация чрезвычайных ситуаций. Краткая характеристика аварий и катастроф, характерных для Республики Беларусь. Аварии на химически опасных, пожаро- и взрывоопасных объектах. Обзор стихийных бедствий. Возможные чрезвычайные ситуации для г. Минска.