Виды и принципы генераторов волновой энергии. Волновая электростанция: принцип работы

Технологический демонстратор перспективной бортовой РЛС с активной ФАР «Жук-АМЭ». На 50% большая дальность действия будет реализована благодаря передовой технологии изготовления приёмо-передающих модулей, основанной на низкотемпературной совместно обжигаемой керамической подложке. Благодаря в разы более высокой теплопроводности диэлектрической стеклокерамической подложки появится возможность более эффективного охлаждения ППМ данного радара, что позволит увеличить мощность каждого модуля с 5 до 7-8 Вт

ДЕТАЛИ ЗАПАДНОГО КУРСА ПО ОБНОВЛЕНИЮ БОРТОВЫХ РАДИОЛОКАЦИОННЫХ ПРИЦЕЛЬНЫХ КОМПЛЕКСОВ ДЛЯ ТАКТИЧЕСКОЙ ИСТРЕБИТЕЛЬНОЙ АВИАЦИИ

Неотъемлемой частью комплексной модернизации тактических истребителей 4-го поколения до уровня машин с «двумя плюсами» является интеграция в их бортовое радиоэлектронное оборудование современных бортовых РЛС с пассивными и активными ФАР, что всегда требует внедрения высокотехнологичных цифровых интерфейсов управления и преобразования информации от новых БРЛК. Признанными лидерами в этой области являются российские, американские, европейские, а также китайские аэрокосмические концерны-гиганты, которые сегодня ведут многоуровневую модернизацию истребителей семейств Су-30, МиГ-29, F-15C, F-16C, J-10B, J-15, а также EF-2000 «Typhoon». Начнём с тех корпораций, программы которых уже успели отличиться как наибольшим экспортным успехом, так и востребованностью среди внутренних заказчиков, часть из которых вовлечена в работы над данными контрактами. Как ни крути, но фаворитом на сегодняшний день здесь является штатовская компания «Northrop Grumman», которая поставляет современные бортовые радиолокаторы корпорации «Lockheed Martin» в рамках внешних и внутренних продаж модернизированных F-16C/D и обновления модификаций F-16A/B.

Так, к примеру, 16 января 2017-го года на мощностях тайваньской компании «Aerospace Industrial Development Corporation» в Тайчжуне стартовала амбициозная программа обновления 144 многоцелевых истребителя F-16A/B Block 20, состоящих на вооружении ВВС Тайваня, до уровня F-16V. Контракт на модернизационные работы был заключён между Министерством обороны Тайваня и «Lockheed Martin» 1 октября 2012 года. Он предусматривает расширенное переоснащение F-16A/B на более совершенную цифровую элементную базу, продвинутое индикационное оборудование кабины пилота, а также бортовые комплексы, в числе которых бортовая АФАР-РЛС AN/APG-83 SABR (с режимом синтезированной апертуры), новые широкоформатные ЖК МФИ для вывода тактической информации, современный высокопроизводительный бортовой компьютер и новая интегрированная станция радиоэлектронной борьбы. Успешному подписанию данного контракта способствовала многолетняя военно-политическая напряжённость между Тайбэем и Пекином, установившаяся из-за разногласий по поводу территориальной принадлежности Тайваня. В связи с данной ситуацией силовое ведомство последнего приступило к реализации многочисленных оборонных программ для защиты от возможной «экспансии» КНР.

Вторым заказчиком аналогичного пакета модернизации своих F-16C стало Минобороны Сингапура. Несмотря на более-менее нормальные отношения с КНР, богатейший город-государство Юго-Восточной Азии поддерживает весьма тесные политические и оборонные связи с США, Великобританией и Австралией, являющимися одними из главных участников «антикитайской оси». По этой причине Сингапур уделяет максимум внимания боевому потенциалу своих ВВС, на вооружении которых уже состоит 32 тяжёлых тактических истребителя поколения «4++» F-15SG. Машины оснащаются мощной БРЛС с АФАР AN/APG-63(V)3 с дальностью обнаружения типовых целей 165 км, а по суммарным характеристикам соответствуют катарским и аравийским модификациям F-15QA и F-15SA. Что касается контракта по усовершенствованию сингапурских F-16C/D, в его рамках будет обновлено 32 одноместных F-16C и 43 двухместных F-16D на сумму в 914 млн. долларов. Третьим проверенным заказчиком можно считать ВВС Республики Корея, которые 22 октября 2015-го года заключили с «Локхид Мартин» контракт на модернизацию 134 истребителей F-16 Block 32 до уровня F-16V на сумму 2,7 млрд. долларов. Комплект опций аналогичный тайваньскому контракту. Таким образом, только тайваньский, сингапурский и южнокорейский контракты на обновление 353 «Фальконов» уже оцениваются в 7,1 млрд. долларов, не учитывая возможность начала подобных работ для переоснащения ВВС Польши, Дании, Турции и т.д. Что даёт перспективная БРЛС с АФАР AN/APG-83 SABR многоцелевым истребителям F-16A/B/C/D.

Во-первых, это значительно большая дальность обнаружения воздушных целей: объект с ЭПР 2 м2 может быть обнаружен и взять на сопровождение на удалении 150-160 км и захвачен на дальности около 125 км. Сопровождаются гораздо более малоразмерные цели, нежели обычной бортовой РЛС со щелевой антенной решёткой (ЩАР) AN/APG-66. Современная высокопроизводительная вычислительная база AN/APG-83 SABR позволяет каждому ППМ АФАР (или группам ППМ) работать на собственной частоте, моделируя сложную диаграмму направленности в режиме LPI («низкой возможности перехвата сигнала») для устаревших СПО типа «Берёза». Также АФАР имеет в разы более высокие помехозащищённость и разрешение при сканировании водной/морской поверхности в режиме синтезированной апертуры (SAR). Станция предыдущего поколения AN/APG-68(V)9 хоть и имеет режим SAR, его разрешение весьма посредственное и не позволяет классифицировать малоразмерные наземные цели, исходя из их геометрических особенностей.

Во-вторых, AN/APG-83 имеет гораздо большую пропускную способность (в режиме СНП не менее 20-30 ВЦ), целевую канальность (8 одновременно обстреливаемых целей), а также аппаратную адаптированность для использования части приёмо-передающих модулей АФАР в качестве излучателей радиоэлектронных помех. Последняя опция также нашла применение в БРЛС AN/APG-81 истребителя 5-го поколения F-35A. В-третьих, как и каждая РЛС с активной АФАР, AN/APG-83 обладает в разы большей надёжностью (временем наработки на отказ). И даже после отказа части ППМ, эффективность станции сохраняется на уровне, позволяющем выполнять боевое задание. Все РЛС AN/APG-83 SABR, поступающие на внешний и внутренний рынки вооружения, находятся на уровне начальной боевой готовности EMD, который полностью соответствует крупносерийному производству изделий.

Ведутся аналогичные программы и европейскими группами компаний, специализирующихся на аэрокосмических технологиях. К таким программам относится проектирование и отработка перспективной АФАР-РЛС «Captor-E». В работах задействованы известные европейские компании «Selex Galileo», «Indra Systems» и «EADS Defense Electronics» («Cassidian»), объединённые в консорциум «Euroradar». Станция «Captor-E» разработана специально для замены устаревающих БРЛС с ЩАР ECR-90 «Captor-M» на части многоцелевых тактических истребителях EF-2000 «Typhoon», состоящих на вооружении ВВС европейских стран-участниц НАТО, а также ВВС государств Аравийского полуострова; также она будет устанавливаться на новые модификации машины IPA5/8.

Тактико-технические параметры нового радара, в сравнении с предыдущим «Captor-M», являются уникальными не только в модернизационной линейке «Тайфунов», но и среди американских программ по внедрению AN/APG-63(V)3 и AN/APG-83 SABR в БРЭО «Иглов» и «Фальконов». «Captor-E» обладает редкой для АФАРов технической особенностью: полотно антенной решётки не закреплено на фиксированном модуле, а оснащено специализированным механизмом азимутального доворота, благодаря которому сектор обзора в азимутальной плоскости составляет 200 градусов, что на 80 градусов больше, чем у «рапторовской» РЛС AN/APG-77. Новый «Кэптор» может «заглядывать» в заднюю полусферу, на что сегодня не способна ни одна известная бортовая РЛС с АФАР, кроме РЛС с пассивными ФАР. Более того, цели типа «истребитель» (ЭПР 2-3 м2) будут обнаруживаться РЛС «Captor-E» на расстоянии 220-250 км, что на сегодняшний день является лучшим показателем среди бортовых радаров для лёгких многоцелевых истребителей. В данный момент опытные образцы этой станции проходят тестирование на британских «Тайфунах», и результаты их достаточно успешны, что уже в недалёком будущем сулит «Еврорадару» многомиллиардные контракты на европейском и азиатском рынках.

Не отстают в программах обновления своего «лёгкого авиапарка» фронтовых истребителей и шведы. Компания SAAB, к примеру, в 2008-м году объявила о начале разработки перспективного истребителя поколения «4++» JAS-39E «Gripen-NG». Помимо модулей глубоко усовершенствованной высокоскоростной системы обмена тактической информацией CDL-39, новые истребители получат перспективную бортовую РЛС с АФАР ES-05 «Raven» (на фотографии) от итальянской компании «Selex ES». Станция будет представлена более чем 1000 ППМ, способными реализовать все известные для АФАР режимы работы, включая создание энергетических «провалов» диаграммы направленности в направлении средств радиоэлектронной борьбы противника. Аналогично радару «Captor-E», «Рэйвен» снабдят системой механического доворота антенной решётки, что доведёт зону его обзора до 200 градусов, позволяя «заглядывать» на 10 градусов в заднюю полусферу машины, обеспечивая стрельбу «через плечо». Естественно, дальность обнаружения целей в таком режиме будет в 3-4 раза меньше из-за сильных энергетических потерь площади приёмо-передающей апертуры радиолокационного комплекса. Бортовая РЛС ES-05 «Raven» способна обнаруживать цель с ЭПР 3 м2 на дальности 200 км с одновременным сопровождением 20 воздушных объектов. Станция имеет жидкостную и воздушную системы охлаждения.

За антенным модулем БРЛС «Рэйвен» (на верхней поверхности носовой части фюзеляжа, перед фонарём кабины) можно видеть обтекатель оптико-электронного прицельного комплекса «Skyward-G», разработанного компанией «Leonardo Airborne & Space Systems». Согласно информации из рекламного листа, сенсор биспектральный и работает в 2-х основных инфракрасных диапазонах 3-5 мкм и 8-12 мкм. Первый диапазон более коротковолновой и позволяет отлично селекционировать цели с низкой инфракрасной сигнатурой на фоне окружающих объектов (деревья, сооружения, детали рельефа); дальность работы этого диапазона не такая высокая, как у длинноволнового. Диапазон 8-12 мкм не имеет возможности реализовать высококачественную селекцию малоразмерных целей с малой ИК-сигнатурой, зато дальность его действия значительно большая, чем у первого.

Оптико-электронный прицельный комплекс «Skyward-G/SHU» имеет 4 режима обзора: узкоугольный (8 х 64 град), среднеугольный (16 х 12,8 град), широкоугольный (30 х 24 град), в нём реализована визуализация сопровождаемого объекта, а также общий режим, который охватывает 170 град в азимутальной плоскости и 120 град - в угломестной. Мощность воздушно охлаждаемого ОЛПК «Skyward-G» достигает 400 Вт. Станция сопровождает до 200 целей в режимах «воздух-поверхность» и «воздух-воздух».

МОДЕРНИЗАЦИЯ РОССИЙСКИХ «ТАКТИКОВ» СЕМЕЙСТВА МИГ-29: НАРАБОТКИ ЕСТЬ, НО ВОПЛОЩЕНИЕ «В ЖЕЛЕЗЕ» ЗАДЕРЖИВАЕТСЯ

Как мы видим, у западных корпораций дела продвигаются относительно успешно и с постоянной положительной динамикой; и это не учитывая факта, что новыми радиолокаторами модернизируют не менее 300 единиц F-16C/D, состоящих на вооружении ВВС США, после чего эти истребители будут полностью превосходить наши МиГ-29С/СМТ и Су-27СМ в режиме дальнего воздушного боя. Чем мы можем ответить на подобные амбициозные штатовские программы? Какие асимметричные меры прорабатывает Министерство обороны России для ликвидации опасной тенденции отставания от АФАРизации строевых частей истребительной авиации ВВС США? Вопросы эти очень наболевшие, относящиеся к рангу стратегических.

Как известно, 27 января 2017-го года в подмосковных Луховицах успешно прошла международная презентация наиболее совершенного варианта лёгкого тактического истребителя МиГ-35 «Fulcrum-F». Несмотря на то, что к 5-му поколению машина не относится, было отмечено особое внимание со стороны представителей американских и европейских средств массовой информации. И это абсолютно неудивительно, ведь МиГ-35 является единственным российским многоцелевым истребителем лёгкого класса, способным в дальнем воздушном бою одержать полное превосходство над «Рафалем», «Тайфуном», F-16C Block 60, F-15SE «Silent Eagle», F/A-18E/F и даже любой модификацией F-35 «Лайтнинг-2». Более того, согласно заявлениям главнокомандующего ВКС России Виктора Бондарева и информации других источников, примерно 140 из 170 серийных МиГ-35 получат перспективную бортовую РЛС с активной ФАР семейства «Жук». Такого количества этих машин вполне хватит, чтобы изменить расстановку сил в свою пользу на любом воздушном направлении (ВН) Восточноевропейского ТВД; да и в ближнем воздушном бою МиГ-35 одолеет любой натовский многоцелевой истребитель. В начале нашего предыдущего материала мы уже говорили, что без учёта радиуса действия, боевой потенциал МиГ-35 с перспективными БРЛС на шаг опережает показатели тяжёлого Су-30СМ: скорость «Фалкрума» на 0,25М выше (порядка 2450 против 2150 км/ч), форсажная тяга на 11% выше (2647 против 2381 кгс/м2), а значит и разгонные качества у «МиГа» куда более высокие. Более того, экипаж МиГ-35 сможет более оперативно и достоверно фиксировать внезапно появляющиеся воздушные угрозы, а затем также быстро их устранять, чего не сможет сделать экипаж Су-30СМ.

Всё дело в том, что на нижней поверхности левой мотогондолы и на гаргроте у МиГ-35 находятся оптико-электронные сенсоры высокого разрешения НС-ОАР (для обзора нижней полусферы) и ВС-ОАР (для обзора верхней полусферы), объединённые в общую станцию обнаружения атакующих ракет СОАР, работающую в ТВ-диапазоне, и способную обнаруживать УРВВ противника на удалении 30 км, и сопровождать в 5-7 км. Данная станция будет передавать координаты угрожающих ракет в компьютеризированную СУО истребителя, а затем на ракеты воздушного боя типа Р-73РМД-2 или Р-77 (РВВ-АЕ), способные перехватывать другие ракеты подобного класса. Также, в дополнение к штатному носовому оптико-электронному прицельному комплексу ОЛС-УЭМ, на правой мотогондоле устанавливается накладной контейнер с турелью, в которой установлен вспомогательный комплекс ОЛС-К, предназначенный для наблюдения за надводными и наземными объектами в нижней и задней полусферах. Подобного разнообразия оптико-электронных прицельных визиров на «Сушках» сегодня не встретишь - отсюда и столь высокий интерес. По радиоэлектронной начинке машина близка к 5-му поколению. Но всё ли так хорошо, как на первый взгляд кажется?

Во-первых, 140 МиГ-35 с новыми радарами не является тем количеством, которого хватит для полноценного перекрытия всех возможных ТВД близ наших границ на Евразийском континенте, ведь на одном только дальневосточном оперативном направлении нам может противостоять: 65 современных тактических истребителей поколения «4++» F-2A/B, 42 истребителя 5-го поколения F-35A ВВС Японии, а также несколько истребительных эскадрилий F-22A, развёрнутых на авиабазе «Элмендорф-Ричардсон», и это не считая палубной истребительной авиации ВМС США, которая может быть переброшена в количестве 3-4-х сотен единиц западную часть Тихого океана. Аналогичная ситуация складывается и на северо-западном, а также западном ОН, где будет наблюдаться численное превосходство модернизируемых F-16A/B/C/D и «Тайфунов», состоящих на вооружении европейских стран, а также перспективных F-35A/B, которые будут закуплены Норвегией, Великобританией, Нидерландами и Данией. Получается такая «картина», что технологически МиГ-35 эквивалентен примерно 2-3 F-16C Block 52+ или 2 «Тайфунам», но общее количество наших «МиГов» будет в 3 - 4 раза меньше, чем новых истребителей у американских союзников в АТР и Европе, что не позволит не только достичь господства, но и уровнять соотношение сил. Вопрос требует немедленного разрешения, и действовать необходимо таким же методом, который применяет компания «Локхид Мартин» - обновлением существующего авиапарка.

В данный момент в строевых частях ВКС России находится около 250 многоцелевых фронтовых истребителей МиГ-29С/М2/СМТ и УБТ, а также несколько сотен машин модификации «9-12» и «9-13» на консервации. Самыми совершенными модификациями среди них являются МиГ-29СМТ разных вариантов («Изделия 9-17/19/19Р»), присутствующие в количестве 44 единиц, а также МиГ-29М2. Данные истребители относятся к поколению «4+» и оснащены бортовыми РЛС Н019МП «Топаз» и Н010МП «Жук-МЭ». Станции построены вокруг современной цифровой шины обмена данными в архитектуре БРЭО стандарта MIL-STD-1553B и имеют аппаратную поддержку режима синтезированной апертуры (SAR) с дополнительным режимом обнаружения и сопровождения подвижных надводных/наземных целей GMTI («Ground Moving Target Indicator») на скоростях до 15 км/ч. Функциональность данных РЛС схожая с американскими станциями AN/APG-80 и AN/APG-83 SABR для комплектации «Фальконов», но между ними имеются существенные различия. Если штатовские изделя давно построены на базе активных ФАР с электронным управлением лучом, наши усовершенствованные «Топазы» и «Жуки» представлены щелевыми антенными решётками с механическим управлением, ввиду чего наблюдаются такие недостатки, как:

- низкое разрешение в режиме синтезированной апертуры и сопровождения движущихся наземных целей (GMTI), составляющее 15 метров, в то время как сантиметровые АФАР-РЛС в подобном режиме дают разрешающую способность 1-5 метров, что достигается большим количеством индивидуально управляемых приёмо-передающих модулей, способных формировать сложнейшие пространственные конфигурации диаграммы направленности;

Низкая пропускная способность по количеству трасс сопровождаемых на проходе воздушных целей (БРЛС Н019МП и Н010МП могут сопровождать на проходе не более 10 воздушных объектов), станции с АФАР могут сопровождать от 20 до 30 и более целей;

Низкая целевая канальность, которая у Н019МП «Топаз» составляет всего 2 одновременно обстреливаемые ракетами Р-77 (РВВ-АЕ) цели, а у Н010МП «Жук-МЭ» - не более 4-х целей, в то время как бортовые РЛС с активными и пассивными ФАР способны «захватывать» на точное автосопровождение и обстреливать одновременно от 8 до 16 целей;

Невозможность формирования «провалов» в диаграмме направленности на участка пространства, в которых функционируют средства радиоэлектронного противодействия противника, из-за этого станции со ЩАР имеют крайне низкую помехозащищённость от таких продвинутых самолётов РЭБ, как F/A-18G;

Отсутствие возможности одновременной работы в режимах «воздух-море/земля», а также «воздух-воздух», по причине чего лётчик и оператор систем теряют сиюминутную осведомлённость о тактической обстановке одновременно на наземном и воздушном участках театра военных действий; АФАР и ПФАР обладают такой возможностью.

Примерно такой список тактико-технических недостатков имеется сегодня в «багаже» наших строевых МиГ-29СМТ и МиГ-29М2, количество которых в частях едва превышает 50-60 единиц. Их бортовые радиолокационные комплексы «Топаз» и «Жук-МЭ» имеют единственный плюс - увеличенную импульсную мощность, за счёт чего дальность обнаружения целей с ЭПР 3 м2 возросла с 70 до 115 км, что является отличным приростом для обычной ЩАР; но и этого крайне недостаточно для ведения дальнего боя с европейскими и американскими F-16C, оснащёнными РЛС SABR.


Многофункциональная бортовая РЛС со щелевой антенной решёткой (ЩАР) AN/APG-68(V)9. Данной станцией оснащается большинство истребителей поколения «4+» F-16C Block 52+, состоящих на вооружении ВВС стран Западной и Восточной Европы, а также Ближнего востока. В режиме дальнего воздушного боя параметры AN/APG-68(V)9 на 10-15% превосходят характеристики Н019МП «Топаз» наших самых распространённых ЛФИ МиГ-29С: показатель не столь существенный, учитывая наличие у нас ракет воздушного боя средней дальности Р-77. В то же время, касаемо задач «воздух-земля» F-16C Block 52+ на голову превосходят наш самый многочисленный истребительный актив лёгкой фронтовой авиации: «Топазы» лишены режима работы «по земле», в то время как AN/APG-68(V)9 приспособили к картографированию рельефа местности

Остальные машины модификации МиГ-29С, в количестве чуть более 100 единиц, имеют ещё более устаревшую «начинку», построенную вокруг системы управления вооружением СУВ-29С с интегрированным радиолокационным прицельным комплексом РЛПК-29М. Данный комплекс представлен ранним вариантом БРЛС Н019М «Топаз», который не имеет аппаратной поддержки работы по наземным целям, а также обладает стандартным энергетическим потенциалом, позволяющим обнаруживать цели с ЭПР 3м2 на расстоянии 70 км и «захватывать» лишь 2 воздушные цели. Система управления вооружением СУВ-29С адаптирована для применения ракет воздушного боя Р-77, но из-за низких возможностей радиолокатора Н019М, МиГ-29С может быть противопоставлен лишь тем «блокам» F-16C, которые не прошли программу модернизации и несут на борту «щелевые» РЛС старого образца AN/APG-66 c дальностью обнаружения цели типа «истребитель» порядка 60-65 км. Даже модификация F-16C/D Block 52+, которой располагают ВВС Польши, скорее всего будет не по зубам устаревшему РЛПК Н019М истребителя МиГ-29С, тем более, что поляки уже давно приобрели модификацию УРВВ AMRAAM с увеличенной до 120 км дальностью AIM-120C-7, и таких F-16С у одной только Польши 48 единиц.

Вывод такой: ситуация с совершенством бортового радиоэлектронного оборудования лёгких фронтовых истребителей ВКС России МиГ-29С, и в определённой мере МиГ-29СМТ/М2, действительно критическая. При всём совершенстве планера и силовой установки, позволяющих выиграть ближний воздушный бой у любого западного истребителя 4-го и даже 5-го поколений, наши серийные «МиГи» абсолютно беззащитны перед любой другой угрозой современного сетецентрического театра военных действий. Некоторые могут утверждать, что эту ситуацию целиком и полностью могут исправить такие машины, как Су-27СМ, Су-30СМ, а также Су-35С, но такое мнение не совсем объективно. Тяжёлые тактические истребители, а особенно Су-35С, более предназначены для создания мощного рубежа ПВО и завоевания превосходства в воздухе на дальних подступах к воздушным границам государства, а также для сопровождения самолётов ДРЛОиУ, воздушных командных пунктов, военно-транспортной авиации от истребителей противника 4-го и 5-го поколений. Также они могут успешно выполнять дальние противокорабельные и противорадиолокационные миссии, применяя ракеты Х-31АД и Х-58УШКЭ. Этих машин у нас на вооружении не так много, чтобы можно было закрывать все технологические «бреши», наблюдающиеся в секторе лёгкой фронтовой авиации, а особенно с нынешними темпами производства Т-50 ПАК-ФА.

Вопрос может быть разрешён с помощью переоснащения всех состоящих на вооружении ВКС МиГ-29 перспективными бортовыми РЛС, разработанными АО «Фазатрон-НИИР», а также его дочерним подразделением - «Концерн «Радиоэлектронные технологии». Среди основных претендентов - многоканальные бортовые РЛС «Жук-АЭ» и «Жук-АМЭ»; в этих изделиях воплощены наиболее передовые наработки российской оборонки в области АФАР, а по сему, они уже опережают всё то, что применено в станциях Н011М «Барс» и Н035 «Ирбис-Э» многоцелевых истребителей Су-30СМ и Су-35С, за исключением дальности действия.

Процедура унификации новых радаров с СУО более современных МиГ-29СМТ и МиГ-29М2 будет проходить по облегчённой схеме, поскольку эти самолёты изначально разрабатывались с использованием мультиплексной шины данных стандарта MIL-STD-1553B, эта же шина с открытой архитектурой формирует основу системы управления вооружением тактического истребителя МиГ-35. Что касается более старых МиГ-29С, то здесь потребуется полная замена электронного «ядра» управления истребителями, построенного вокруг старой БЦВМ Ц101М, которая не предназначен для работы в связке с цифровыми интерфейсами «Жуков» следующего поколения. Имеется реальный шанс радикально модернизировать и «поставить на крыло» несколько сотен строевых и «законсервированных» МиГ-29А/С, что полностью ликвидирует техническое отставание всего авиапарка лёгкой фронтовой авиации от зарубежных истребителей поколения «4++». Каковы особенности и преимущества перспективных бортовых РЛС «Жук-АЭ» и «Жук-АМЭ»?

Первая, «Жук-АЭ» (FGA-29), разрабатывалась с 2006-го года на базе наработок, полученных «Фазатроном» в ходе проектирования не очень удачного раннего образца «Жук-АМЭ» (FGA-01), обладающего непозволительно большой массой в 520 кг. В новом изделии широко применены компактные и лёгкие монолитные интегральные схемы (МИС), которые сегодня можно встретить в любом современном цифровом девайсе. Диаметр апертуры АФАР «Жук-АЭ» был уменьшен до 500 мм (общий диаметр - около 575 м), в сравнении с 700-мм полотном FGA-01; это было сделано для большего соответствия внутреннему диаметру радиопрозрачного обтекателя опытного борта «154» (МиГ-29М2), на котором и проходила испытания новая станция. Полотно FGA-29 представлено 680 приёмо-передающими модулями мощностью по 5 Вт, чего вполне хватает, чтобы в режиме синтезированной апертуры реализовать разрешение 50 см на дальности до 20 км и 3 м на дальности 30 км. Импульсная мощность станции составляет 34 кВт, что позволяет обнаруживать цели с ЭПР 3 м2 на дальности до 148 км в переднюю полусферу и до 60 км - в заднюю полусферу (вдогон). «Жук-АЭ» сопровождает на проходе 30 воздушных целей и захватывает одновременно 6; в режиме ближнего воздушного боя может быть использован так называемый «Поворотный» режим, работающий при синхронизации с нашлемной системой целеуказания лётчика или оператора систем.


Экспериментальная БРЛС «Жук-АЭ» (FGA-29) на борту опытного образца перспективного лёгкого многоцелевого истребителя МиГ-35

Благодаря индивидуальному управлению частотами работы отдельных ППМ (или их групп), а также более чувствительному и помехозащищённому преобразователю отражённых от цели электромагнитных волн, «Жук-АЭ» имеет очень весомое преимущество перед другими бортовыми радарами - незначительно уменьшение дальности обнаружения воздушных объектов на фоне земной поверхности, составляющее всего 8-11%, для РЛС с ПФАР этот показатель составляет около 15-18%, что доказала на испытаниях РЛС «Ирбис-Э», работающая в широком секторе обзора: ВЦ с ЭПР 3м2 обнаруживалась на удалении 200 км (на фоне свободного пространства), и 170 км (на фоне земной поверхности). Даже здесь мы можем увидеть заметный плюс радаров с АФАР.

Высокие характеристики «Жук-АЭ» также отмечаются при работе в режиме «воздух-море/земля»: группа тяжёлой бронетехники, либо артиллерийская батарея САУ может быть обнаружена на дальности 30-35 км, надводный корабль класса «корвет» - 150 км и «эсминец» - более 200 км. Режим «воздух-поверхность» имеет несколько десятков подрежимов, среди которых: синтезированная апертура, возможность «заморозки» карты рельефа местности со всеми обнаруженными поверхностными объектами, обнаружение и сопровождение движущихся юнитов (GMTI), измерение скорости носителя в соответствии со скоростью смещения стационарных объектов в системе координат истребителя, следование рельефу местности на околозвуковых скоростях, использующееся в задачах «прорыва» ПВО противника. Сектор обзора радара стандартный для фиксированных АФАР-апертур и составляет 120 градусов в азимутальной и угломестной плоскостях, что является недостатком с подвижными АФАР-станциями, к примеру, «Captor-E», зато масса РЛК составляет всего 200 кг, что идеально подходит для модернизации лёгких МиГ-29С/СМТ/М2. Суммарные возможности «Жука-АЭ» находятся между американскими БРЛС AN/APG-80 и AN/APG-79, которыми оснащаются F-16C Block 60 и F/A-18E/F «Super Hornet». Модернизация существующих МиГ-29С/СМТ радиолокаторами «Жук-АЭ», а также более совершенными оптико-электронными комплексами ОЛС-УЭМ и современным информационным полем кабины экипажа даст возможность значительно опередить польские F-16C Block 52+ и немецкие «Тайфуны», оснащённые устаревшими РЛС со щелевой антенной решёткой. В то же время, отставание от «Тайфунов» с РЛС «Captor-E», а также от F-35A будет значительное. «МиГам» потребуется ещё более мощная бортовая РЛС с активной фазированной антенной решёткой - «Жук-АМЭ».

Впервые эта станция была представлена на авиакосмической выставке «Airshow China-2016» в китайском Чжухае в 2016-м году. Приёмо-передающие модули «Жук-АМЭ» изготавливаются по совершенно новой технологии, на основе трёхмерных сверхвысокочастотных проводников, генерируемых в процессе низкотемпературной совместно обжигаемой керамики LTCC («Low Temperature Co-Fired Ceramic»). Рождение сверхпрочной кристаллической структуры проводников происходит в результате обжига многокомпонентной смеси из спецстёкол, керамики, а также специальных проводниковых паст на основе золота, серебра или платины, которые в определённых соотношениях добавляются в эту смесь. Данные ППМ имеют множество преимуществ перед стандартными арсенид-галиевыми элементами, использующимися в большинстве известных БРЛС с АФАР (японская J-APG-1, «Captor-E» и т.д.), а в частности:

- отличная механическая стабильность, достигаемая малым коэффициентом теплового расширения и высокой эластичностью в широком диапазоне температур работы, эти качества являются основой большого ресурса работы ППМ;

Устойчивые электропроводные показатели во всех частотных диапазонах волн, вплоть до миллиметрового Ka-диапазона, благодаря чему наблюдается большая стабильность работы АФАР сразу в нескольких режимах, включая РЭБ;

Плотность керамической основы ППМ, изготовленных по технологии LTCC, обеспечивает герметичность проводниковых элементов от негативных воздействий внешней среды, другими словами, «Жук-АМЭ» может продолжить работу даже в случае повреждения радиопрозрачного носового обтекателя БРЛС;

Более высокая теплопроводность LTCC-подложки из керамики, в сравнении с органическими аналогами (4 Вт/мк против 0,1-0,5 Вт/мК соответственно), позволяет более эффективно охлаждать самые высокотемпературные зоны ППМ, особенно при использовании металлических теплостоков;

Процесс создания подобных ППМ не требует высоких температур обжига, достаточно всего 850-900ºС.

В случае с технологией LTCC низкотемпературная совместно обжигаемая керамика является низкопрофильной диэлектрической подложкой для платиновых, золотых или серебряных проводников-излучателей/приёмников РЛ-волны. Она значительно более жаропрочная, чем обычные печатные платы из органических соединений и позволяет работать с повышенным энергетическим потенциалом: приёмо-передающие модули АФАР «Жук-АМЭ» могут иметь мощность порядка 6-8 Вт. Это привело к тому, что перспективная РЛС «Жук» увеличила дальность обнаружения цели с ЭПР 3 м2 примерно до 220-260 км, что сопоставимо со станцией «Captor-E». По заявлениям «фазотроновцев», «Жук-АМЭ» разработан как для установки на истребители поколения «4++» МиГ-35, так и на МиГ-29С/СМТ. Антенный модуль вместе с полотном и шлейфами имеет массу порядка 100 кг, что является невиданным среди западных истребителей показателем. Полотно станции представлено 960 ППМ.


Демонстратор бортовой РЛС «Captor-E»

Высокоэнергетические режимы работы «Жук-АМЭ» с высоким разрешением дают возможность безошибочно классифицировать морские, наземные и воздушные объекты по их форме и радиолокационной сигнатуре благодаря сравнению с загруженной эталонной базой из сотен или даже тысяч юнитов. Более того, может быть произведена и идентификация цели с малого расстояния, когда режим SAR имеет разрешение в 50 см, либо в случае, когда цель радиоизлучающая. Тогда используется база частотных шаблонов многочисленных радиолокационных средств противника, которая может быть интегрирована в обновлённую СПО модернизированного МиГ-29. «Жук» может работать и в режиме LPI, для осложнения работы средствам РЭБ противника, либо в пассивном - для скрытных выхода и атаки на радиоизлучающие цели противника, среди которых могут быть как наземные обзорные или многофункциональные РЛС зенитно-ракетных комплексов, так и станции РТР и РЭБ воздушного базирования.

Продолжение следует…

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

February 16th, 2016

Бортовой радиолокатор - «глаза» и «уши» современного истребителя.

Давайте узнаем популярным языком про устройство и особенности работы авиационной радиолокационной станции.


Из чего состоит бортовая РЛС?

Конструктивно БРЛС состоит из нескольких съемных блоков, расположенных в носовой части самолета: передатчика, антенной системы, приемника, процессора обработки данных, программируемого процессора сигналов, пультов и органов управления и индикации.

Сегодня практически у всех бортовых РЛС антенная система представляет собой плоскую щелевую антенную решетку, антенну Кассегрена, пассивную или активную фазированную антенную решетку.

Современные БРЛС работают в диапазоне различных частот и позволяют обнаруживать воздушные цели с ЭПР (Эффективная площадь рассеяния) в один квадратный метр на дальности в сотни километров, а также обеспечивают сопровождение на проходе десятки целей.
Кроме обнаружения целей, сегодня БРЛС обеспечивают радиокоррекцию, полетное задание и выдачу целеуказания на применение управляемого бортового оружия, осуществляют картографирование земной поверхности с разрешением до одного метра, а также решают вспомогательные задачи: следование рельефу местности, измерение собственной скорости, высоты, угла сноса и другие.


Как работает бортовой радиолокатор?

На современных истребителях используются импульсно-доплеровские РЛС. В самом названии описан принцип действия такой радиолокационной станции.

Радиолокационная станция работает не непрерывно, а периодическими толчками - импульсами. В сегодняшних локаторах посылка импульса длится всего лишь несколько миллионных долей секунды, а паузы между импульсами - несколько сотых или тысячных долей секунды.

Встретив на пути своего распространения какое-либо препятствие, радиоволны рассеиваются во все стороны и отражаются от него обратно к радиолокационной станции. При этом. передатчик радара автоматически выключается, и начинает работать радиоприемник.

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов. Например, для бортовых РЛС проблема в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолета. Эти помехи устраняют, используя эффект Доплера, согласно которому частота волны, отраженной от приближающегося объекта, увеличивается, а от уходящего объекта - уменьшается.

Что такое ФАР?

Очевидно, для того чтобы принимать и излучать сигналы, любому радару нужна антенна. Чтобы уместить ее в самолет, придумали специальные плоские антенные системы, а приемник и передатчик находятся за антенной. Чтобы увидеть разные цели радаром, антенну нужно двигать. Так как антенна радара достаточно массивная, двигается она медленно.
При этом, становится проблематична одновременная атака нескольких целей, ведь радар с обычной антенной держит в «поле зрения» только одну цель.

Современная электроника позволила отказаться от такого механического сканирования в БРЛС. Устроено это следующим образом: плоская (прямоугольная или круглая) антенна разделена на ячейки. В каждой такой ячейке находится специальный прибор - фазовращатель, который может на заданный угол изменять фазу электромагнитной волны, которая попадает в ячейку. Обработанные сигналы из ячеек поступают на приемник. Именно так можно описать работу фазированной антенной решетки (ФАР).

А если точнее, подобная антенная решетка со множеством элементов-фазовращателей, но с одним приемником и одним передатчиком называется пассивной ФАР. Кстати, первый в мире истребитель, оснащенный радиолокатором с пассивной ФАР, - наш российский МиГ-31. На нем была установлена РЛС «Заслон» разработки НИИ приборостроения им. Тихомирова.


Для чего нужна АФАР?

Активная фазированная антенная решетка (АФАР) является следующим этапом в развитии пассивной. В такой антенне каждая ячейка решетки содержит свой приемопередатчик. Их количество может превысить одну тысячу. То есть, если традиционный локатор - это отдельные антенна, приемник, передатчик, то в АФАР приемник с передатчиком и антенна «рассыпаются» на модули, каждый из которых содержит щель антенны, фазовращатель, передатчик и приемник.

Раньше, если, например, вышел из строя передатчик, самолет становился «слепым». Если в АФАР будут поражены одна-две ячейки, даже десяток, остальные продолжают работать. В этом и есть ключевое преимущество АФАР. Благодаря тысячам приемникам и передатчикам повышается надежность и чувствительность антенны, а также появляется возможность работать на нескольких частотах сразу.

Но главное, что структура АФАР позволяет РЛС параллельно решать несколько задач. Например, не только обслуживать десятки целей, но и параллельно с обзором пространства очень эффективно защищаться от помех, ставить помехи радарам противника и картографировать поверхность, получая карты высокого разрешения.
Кстати, первую в России бортовую радиолокационную станцию с АФАР создали на предприятии КРЭТ, в корпорации «Фазотрон-НИИР».

Какая РЛС будет на истребителе пятого поколения ПАК ФА?

Среди перспективных разработок КРЭТ - конформные АФАР, которые смогут вписываться в фюзеляж летательного аппарата, а также так называемая «умная» обшивка планера. В истребителях следующего поколения, в том числе и ПАК ФА, она станет как бы единым приемо-передающим локатором, предоставляющим пилоту полную информацию о происходящем вокруг самолета.

Радиолокационная система ПАК ФА состоит из перспективной АФАР X-диапазона в носовом отсеке, двух радаров бокового обзора, а также АФАР L-диапазона вдоль закрылков.

Сегодня КРЭТ также работает над созданием радиофотонного радара для ПАК ФА. Концерн намерен создать натурный образец радиолокационной станции будущего до 2018 года.


Фотонные технологии позволят расширить возможности радара - снизить массу более чем вдвое, а разрешающую способность увеличить в десятки раз. Такие БРЛС с радиооптическими фазированными антенными решетками способны делать своеобразный «рентгеновский снимок» самолетов.

«К примеру, локатор на основе радиофотоники засек самолет на расстоянии в 500 километров. Чтобы рассмотреть объект, фотонный радар сможет расширить свой частотный диапазон, послать то количество энергии и в том диапазоне, которые нужны. При этом он сможет задействовать еще несколько соседних радаров. В результате оператор будет видеть картинку самолета, словно он находится рядом», — сказал Михеев . Эта технология позволяет заглянуть внутрь объекта, узнать, какую технику он несет, сколько людей в нем находится, и даже разглядеть их лица.

По его словам, используя очень широкий диапазон частот, метровый, сантиметровый или миллиметровый диапазоны волн, радар сможет «проникать» даже внутрь объектов.

«Мы сможем этим сигналом пройти любые, даже метровые свинцовые стены и посмотреть, что в этом объекте находится. Если это самолет, то радар даст как бы его разрез, рентгеновский снимок. Можно будет даже посмотреть, кто в каком кресле сидит», — сказал Михеев.

По его словам, фотонные технологии несут новый технологический скачок, делая реальностью, например, передачу энергии на большие расстояния практически без потерь.

КРЭТ по заказу Фонда перспективных исследований разрабатывает активную фазированную антенную решетку на основе радиофотоники для авиационных радаров. На программу выделено 683,8 млн руб. до 2019 года.

Эли Брукнер

Постоянно вращаюшаяся антенна радиолокатора, направляющая высокочастотные сигналы к линии горизонта с целью обнаружения удаленных объектов, является неотъемлемым элементом панорамы современного аэродрома. Однако во многих наиболее известных областях применения радиолокации, таких, как авиация, противовоздушная оборона и разведка, механически управляемое зеркало антенны начинает заменяться устройством нового типа. Расположенный в одной плоскости набор небольших идентичных антенн, каждая из которых способна передавать и принимать сигналы, заменяет вогнутый рефлектор. Луч, создаваемый этим набором антенн, перемещается, обозревая воздушное пространство, а сама антенная система остается неподвижной. Направление электромагнитного излучения, генерируемого радиолокатором, задается специальным электронным устройством, причем в основе управления лучом лежит использование явления интерференции электромагнитных волн. Это техническое новшество, используемое в радиолокационных системах, получило название фазированных антенных решеток. Основные принципы построения радиолокационных станций при этом остаются прежними.

В основе работы всех радиолокационных станций лежит направленное излучение радиосигналов. Как правило, частота излучения лежит в микроволновом диапазоне, от 3 108 до 1010 Гц, хотя некоторые типы радиолокационных станций с очень большой дальностью действия работают в диапазоне высоких частот (ВЧ) и сверхвысоких частот (СВЧ), или соответственно в диапазонах от 3 106 до 3 107 Гц и от 3 107 до 3 108 Гц. В зависимости от формы антенна излучает узкий остронаправленный луч, пригодный для точного слежения за целью, или же широкий веерообразный луч, наиболее подходящий для обзора широких областей воздушного пространства.

Когда посланный антенной сигнал достигает объекта, он отражается. Если мощность передаваемого импульса, чувствительность антенны и отражающая способность объекта достаточно велики, попадающий на антенну отраженный сигнал может быть зафиксирован радиолокационной станцией. В зависимости от типа радиолокатора и вида излучаемого импульса отраженный сигнал несет различную информацию о цели.

Направление, с которого приходит отраженный сигнал, определяет местоположение объекта, и если радиолокационная станция излучает импульсы энергии, а не непрерывный сигнал, то по времени запаздывания между посылкой импульса и приемом отраженного сигнала можно судить и о расстоянии до объекта. В некоторых радиолокационных станциях предусмотрено измерение доплеров-ского смещения частоты отраженного сигнала (т.е. разности частот прямого и отраженного сигналов), которое имеет место, когда источник излучения (в данном случае цель) и приемник (радиолокатор) движутся относительно друг друга. По величине доплеровского смещения вычисляется скорость объекта в направлении к антенне или от нее.

Для заданного расстояния до объекта интенсивность отраженного сигнала дает некоторое представление о размерах объекта. Слово «представление» используется здесь преднамеренно: два объекта одних и тех же размеров, если они имеют различную форму или же сделаны из различных материалов, будут посылать отраженные сигналы, существенно различающиеся по интенсивности. Чтобы получить более точную информацию о размерах объектов, некоторые радиолокационные станции передают такие короткие импульсы, что они физически короче целей, которые они могут встретить на пути своего распространения. Если радиолокационная станция излучает энергию только в течение нескольких миллиардных долей секунды, то к тому времени, когда передача импульса закончится, его фронт пройдет расстояние в пространстве порядка одного или нескольких метров. Такой импульс в пространстве имеет меньшую протяженность, чем, например, самолет. Радиосигналы отражаются как от дальних, так и от ближних поверхностей цели, и в случае чрезвычайно короткого импульса образуются два отраженных сигнала. Временной интервал между этими двумя отраженными сигналами соответствует длине цели.

Поскольку радиолокатор обычного типа обозревает широкие области воздушного пространства, то он может собирать информацию о большом количестве объектов. Однако между последовательными моментами, когда одна и та же цель оказывается в поле зрения радиолокатора, неизбежно существует некоторый (иногда значительный) временной интервал. Скорость обновления информации о цели, т.е. частота, с которой одна и та же цель фиксируется радиолокатором, для большинства станций с вращающейся антенной не превышает скорости поворота зеркала антенны вокруг своей оси. В радиолокационных станциях систем управления воздушным движением, например, зеленая линия радиальной развертки, которая движется по экрану, оставляя на нем отметки, характеризующие новое местоположение самолета и несущие другую информацию о нем, поворачивается с той же скоростью, с какой вращается само зеркало антенны. Обновление информации о наблюдаемом объекте в таких радиолокационных станциях производится обычно через каждые шесть секунд, и даже в самых совершенных станциях военного назначения обновление информации редко производится чаще двух раз за одну секунду.

Существуют обстоятельства, при которых новую информацию о положении и перемещении целей требуется получать более часто. Один радиолокатор с механически управляемой антенной может обеспечить непрерывное получение данных об одном или нескольких близко расположенных друг от друга объектах путем постоянного слежения за ними с помощью поворота антенной системы. Однако для решения многих боевых задач и задач разведки, как, например, слежение с военного корабля за несколькими ракетами, движущимися к нему с различных направлений, или внимательное наблюдение за полетом нескольких компонентов разделившейся боеголовки при проведении испытаний межконтинентальных баллистических ракет, каждая из большого количества целей должна наблюдаться непрерывно. До недавнего времени в таких случаях прибегали к использованию нескольких радиолокационных станций, каждая из которых предназначалась для слежения за одной или несколькими целями. С появлением радиолокационных станций с фазированной антенной решеткой необходимость использовать в подобных случаях несколько радиолокаторов с механически управляемыми антеннами отпала. Теперь их может заменить всего одна станция, оснащенная новой антенной системой. В качестве примера можно привести радиолокационную станцию с кодовым названием COBRA DANE, имеющую фазированную антенную решетку; она установлена на берегу Берингова моря и может следить одновременно за сотнями целей, рассредоточенных в пространстве, ограниченном 120° по азимуту и примерно 80° по углу места. В действительности радиолокационная станция наблюдает за этими целями одновременно путем автоматического перебрасывания своего луча с одной цели на другую за время, измеряемое микросекундами.

Электронное управление лучом, благодаря которому достигаются такие замечательные возможности, основано на использовании простого физического явления. Когда расположенные рядом источники излучают энергию одновременно на одной и той же частоте, то исходящие из этих источников волны складываются. Это явление называется интерференцией. Характер взаимодействия двух волн от двух разнесенных в пространстве источников зависит от сдвига фаз между этими волнами. Если гребни и впадины одной волны соответственно совпадают с гребнями и впадинами другой волны (сдвиг фаз равен 0), то результирующее колебание будет иметь суммарную амплитуду. Если волны находятся не в фазе и их гребни и впадины не совпадают, то результирующий сигнал будет ослабленным или (при сдвиге фаз 180°) равным 0.

Фазированная антенная решетка обычно собирается из расположенных в одной плоскости и на одинаковом расстоянии друг от друга излучающих элементов, к которым подводятся равные по амплитуде и совпадающие по фазе сигналы микроволнового диапазона. Задающий генератор генерирует сигнал, а транзисторы и специальные лампы, предназначенные для работы в микроволновом диапазоне, такие, как лампы бегущей волны, усиливают его. Если сигналы излучаются в фазе со всех элементов решетки, то их амплитуды складываются в определенных точках пространства вдоль линии, перпендикулярной к плоскости решетки. Следовательно, излучаемый сигнал будет сильным, а сигнал, отраженный от объектов, лежащих на пути его распространения вдоль оси, перпендикулярной плоскости антенной решетки и в пределах малого угла в стороны от нее, будет иметь достаточную для его обнаружения интенсивность.

При больших углах отклонения от перпендикулярной оси антенной решетки сигналы от различных излучающих элементов должны проходить до цели неодинаковые расстояния. В результате соотношение их фаз меняется и они интерферируют, ослабляя или полностью уничтожая друг друга. Таким образом, за пределами узкого конуса, ось которого совпадает с перпендикулярной осью антенной решетки и в котором имеет место интерференция с усилением амплитуды результирующей волны, отраженные от объектов сигналы имеют малую интенсивность и обнаружить их не удается. Физические принципы, лежащие в основе формирования интерфе ренционных картин, позволяют определить ширину этого конуса. Она прямо пропорциональна рабочей длине волны излучения и обратно пропорциональна размеру антенной решетки. Если каждый элемент антенной решетки излучает сигналы в фазе с другими, то луч радиолокатора распространяется в направлении, строго перпендикулярном к плоскости решетки.

Теперь предположим, что сигналы каждого излучающего элемента задерживаются на время, которое равномерно увеличивается от элемента к элементу вдоль плоскости решетки. При этом сигнал, излучаемый каждым элементом, будет отставать на часть длины волны от сигнала соседнего элемента. В результате все сигналы будут сдвинуты по фазе относительно друг друга. Теперь зона, в которой отдельные сигналы совпадают по фазе и, складываясь, дают сигнал суммарной амплитуды, с помощью которого можно обнаруживать цели, расположена не вдоль перпендикулярной оси решетки, а смещена в направлении увеличения задержки сигнала. Угол отклонения луча зависит от сдвига фаз сигналов, излучаемых соседними элементами антенной решетки, размера последней и длины волны. И в этом случае луч принимает форму узкого конуса, окруженного областями ослабляющей интерференции. Таким образом луч радиолокатора оказывается отклоненным без изменения положения антенны.

Когда отраженный сигнал возвращается от цели, которая находится в этом новом направлении, определяемом нарастающим сдвигом фаз, цепь, обеспечивающая временную задержку передаваемого сигнала, вводит новую серию задержек отдельных сигналов, приходящих на каждый из излучающих элементов. Поскольку фронт возвращающейся волны достигает антенной решетки под углом к ее плоскости, элементы антенны, которые излучали сигнал последними (они расположены ближе к цели), принимают отраженный импульс первыми. Поэтому та же серия задержек, за счет которой создается заданная направленность излучения, обеспечивает поступление всех составляющих отраженного сигнала в приемное устройство в одной фазе, что дает возможность производить их обработку для получения информации о цели.

Управление задержкой по фазе дает возможность отклонять луч антенной решетки обычного типа на угол до 60° от перпендикулярной оси, что обеспечивает поле обзора 120° по азимуту, т.е., сохраняя антенну неподвижной, радиолокатор обозревает третью часть круговой линии горизонта, а если плоскость решетки имеет достаточный наклон, то и от горизонта к зениту и далеко за него. Поскольку управление лучом при этом не связано ни с какими механическими перестройками, перемещение луча в пределах всей зоны обзора занимает всего несколько микросекунд. При использовании ЭВМ для расчета нужных сдвигов по фазе с целью отклонения луча на желаемый угол и для управления схемой задержки сигналов радиолокационная станция с фазированной антенной решеткой, такая, как COBRA DANE, может одновременно осуществлять слежение за несколькими сотнями целей.

Электронное устройство, которое обеспечивает управление лучом радиолокатора и создает требуемую задержку микроволнового сигнала при подаче на каждый элемент антенной решетки, называется фазо- сдвигающим устройством. Оно состоит из отрезков кабеля или волновода очень точных размеров. Увеличение длины кабеля, по которому сигнал от генератора или усилителя подводится к излучающему элементу, приводит к задержке времени прохождения сигнала. На практике невозможно сделать так, чтобы длина всех кабелей, по которым сигналы подаются к излучающим элементам фазированной антенной решетки, менялась плавно, обеспечивая непрерывное изменение задержек по фазе. Поэтому сдвиг фазы производится скачками. Каждый элемент антенной решетки соединен с несколькими кабелями различной длины. Для получения фазовых сдвигов, обеспечивающих заданное отклонение луча, в каждую цепь включается определенная комбинация кабелей.

В применяемой для разведывательных целей радиолокационной станции COBRA DANE, например, используются трехэлементные фазо-сдвигающие устройства. Каждое такое устройство имеет три полосковые линии различной длины, своего рода волноводы, которые обеспечивают передачу колебаний микроволнового диапазона вдоль узкой медной полоски, расположенной между двумя заземленными медными пластинами. Одна из полосковых линий увеличивает длину пути прохождения сигнала на величину, равную половине длины волны, около 15 см, так как рабочая частота радиолокационной станции COBRA DANE составляет примерно 1 ГГц. Это обеспечивает сдвиг фазы сигнала на 180° по отношению к незадержанному сигналу. Другая полос-ковая линия обеспечивает задержку сигнала на четверть длины волны, т.е. обеспечивает сдвиг фазы на 90°. Длина третьей полосковой линии такова, что в ней создается задержка, равная одной восьмой длины волны, что соответствует фазовому сдвигу 45°. В различных комбинациях эти три полосковые линии могут изменять фазу сигнала на любое число градусов, кратное 45, от 0 до 315°.

Ступенчатое изменение величины фазовой задержки должно, вероятно, приводить к появлению мертвых зон. Каким же образом, используя восемь различных величин запаздывания по фазе с интервалом 45 °, можно обеспечить непрерывное перемещение луча радиолокатора? Ответ на этот вопрос заключается в свойствах картин интерференции. Всякий раз, когда разность фаз между сигналами, излучаемыми с противоположных сторон антенной решетки, достигает 360°, или одной длины волны, область интерференции, где формируется луч с суммарной амплитудой, будет сдвигаться в пространстве на расстояние, приблизительно равное собственной ее ширине. Поэтому, чтобы сместить луч, перпендикулярный плоскости антенной решетки (такое направление он имеет, когда все сигналы излучаются в фазе), в соседнее положение без образования между этими двумя положениями мертвой зоны, суммарный фазовый сдвиг вдоль плоскости антенной решетки должен составлять примерно 360°.

Увеличиваются ли при этом фазовые сдвиги вдоль плоскости решетки непрерывно или ступенчато (через 45°) - не имеет значения. Ступенчатое изменение фазовых сдвигов приводит лишь к небольшому снижению мощности излучения и некоторой потере чувствительности антенной системы. Чтобы обеспечить более плавное перемещение луча антенной решетки с трехэлементными фазосдви-гающими устройствами, можно задать меньшую суммарную величину сдвига фазы, например, 180°, т.е. четыре раза по 45°.

Если луч нужно отклонить от перпендикулярного направления на величину, большую, чем его ширина, суммарное изменение фазы вдоль плоскости антенной решетки должно превысить 360°. Из-за периодического характера электромагнитных колебаний фазовый сдвиг на кратное число длин волн эквивалентен 360°. Для суммарного изменения фазы более чем на 360° линейное увеличение задержки фазы от нуля до 360° должно повторяться несколько раз на всей плоскости антенной решетки. Первая серия задержек обеспечивает суммарный сдвиг фазы на одну длину волны, вторая серия увеличивает его до двух длин волн и т.д. Графически изменение величины фазовой задержки вдоль плоскости антенной решетки представляется в виде зубьев пилы: чем круче их скосы и чем больше их количество, тем резче отклоняется луч.

Из простых геометрических правил следует, что с увеличением отклонения луча от перпендикулярного направления эффективная площадь антенны уменьшается. В результате чувствительность фазированной антенной решетки к отраженным от цели сигналам быстро падает при углах отклонения луча от перпендикулярной оси более чем на 60°. Поэтому одна фазированная антенная решетка не может обеспечить такую же возможность обзора во всех направлениях, как механически поворачиваемые антенны. Одним из решений этой проблемы является использование нескольких антенных решеток, обращенных своими плоскостями в разные стороны. Другим способом расширения зоны обзора фазированной антенной решетки является расположение ее в горизонтальной плоскости под куполообразной линзой, которая отражает излучение, и за счет этого угол отклонения луча радиолокационной станции увеличивается. Когда антенная решетка формирует луч под углом 60° к зениту, использование линзы может обеспечить еще большее его отклонение, вплоть до 90° к зениту, т.е. в направлении на горизонт. Таким образом линза позволяет осматривать с помощью антенной решетки всю полусферу воздушного пространства. Линза может быть выполнена из специальной керамики или пластмассы, которая отражает излучение микроволнового диапазона. Она может также выполнять роль фазосдвигающих устройств второй ступени, чтобы дополнительно задерживать фазу сигнала, излучаемого антенной решеткой.

Когда управление фазой используется для посылки короткого импульса под большим углом к перпендикулярной оси антенной решетки, излучаемый импульс неизбежно будет искажаться - растягиваться во времени и пространстве. Предположим, что антенна излучает импульс длительностью 5 не. Если излучение радиолокационной станции направлено строго перпендикулярно к плоскости антенной решетки, то импульс имеет в пространстве прямоугольное продольное сечение; его ширина равна ширине антенной решетки, а длина - расстоянию, которое электромагнитная волна проходит за 5 не, т.е. 1,5 м. Если, с другой стороны, за счет сдвига фаз луч значительно отклоняется от перпендикулярной оси, то продольное сечение импульса будет иметь форму параллелограмма. По отношению к цели длина импульса окажется больше 1,5 м, поскольку сигналы, излучаемые отдельными элементами антенной решетки, достигают цели не одновременно, а последовательно. Отраженный импульс, который возвращается к антенной решетке, также будет растянутым.

Для обнаружения целей и слежения за ними обычно используются импульсы намного большей длительности, например 1000 нc, и искажение в пределах нескольких наносекунд имеет малое значение. Растягивание импульса в свою очередь мало влияет на способность радиолокационной станции определять по характеру отраженного сигнала местоположение и скорость цели. Для раздельного наблюдения целей, движущихся в тесном строю, однако, требуется излучать короткие импульсы. Они же необходимы для определения размеров цели по сигналам, отраженным от ее передней и задней поверхностей. Если передаваемый короткий импульс растягивается, то отраженные сигналы уже не приходят раздельно, а сливаются, что затрудняет получение требуемой информации.

Метод, подобный тому, который используется для управления лучом с помощью сдвига фаз сигналов, помогает и в этом случае; он позволяет сохранять форму импульса. Для обеспечения требуемого сдвига фаз необходимо производить задержки сигналовтолько на время, соответствующее частям длины волны. Задержки же, которые необходимы, чтобы избежать растягивания импульса, эквивалентны целому числу длин волн. При этом излучение сигналов отдельными элементами антенной решетки производится последовательно, причем опережение в излучении каждого сигнала по отношению к следующему пропорционально расстоянию, которое сигнал должен пройти до цели. В результате достигается тот же эффект, как если бы антенная решетка поворачивалась, удерживая цель в направлении перпендикулярной оси. Этот метод известен как управление лучом с помощью временных задержек. Подобно методу, в котором используется увеличение фазовых задержек, он дает возможность посылать в заданном направлении сигнал когерентного и поэтому мощного излучения.

Такие большие задержки, эквивалентные расстоянию в несколько метров, которое проходит сигнал, требуют включения отрезков кабеля соответствующей длины в цепь прохождения сигнала от генератора или усилителя до излучающего элемента. Большая фазированная антенная решетка может включать в себя много тысяч излучающих элементов, и если бы каждый имел свою цепь временной задержки, то радиолокационная установка была бы чрезвычайно сложной и дорогой. Поэтому конструкторы радиолокационных станций стремятся изыскать компромиссное решение, при котором одновременно достигались бы и нужная форма импульса, даже при больших углах отклонения направления излучения от перпендикулярной оси антенной решетки, и конструктивная простота. В результате в современных радиолокаторах с фазированными антенными решетками управление лучом осуществляется как с помощью сдвига фаз, так и с помощью временных задержек.

В радиолокационной станции COBRA DANE, например, каждый из 15 360 излучающих элементов связан с отдельным трехэлементным фазосдвигающим устройством, поэтому сдвиг фазы каждого сигнала производится отдельно. В режиме обнаружения целей радиолокационная станция излучает импульсы длительностью 1000 нc, и луч управляется только посредством введения фазовых задержек. Поскольку назначение радиолокационной станции состоит в слежении за баллистическими ракетами, она должна обеспечивать получение информации об их размерах после обнаружения. С этой целью антенная решетка разделена на 96 участков, каждый из которых включает 160 излучающих элементов. После того как цель обнаружена, станция начинает излучать импульсы очень малой длительности, и сигналы, подводимые к каждому участку антенной решетки, предварительно проходят по цепи временной задержки. Эти цепи аналогичны фазосдвигающим устройствам, но значительно больше по размеру. Они состоят из набора коаксиальных кабелей различной длины, и любая их комбинация может быть включена в цепь для создания временных задержек, соответствующих прохождению сигнала на расстояние от одной до 64 длин волн, или около 19,2 м, так как рабочая частота радиолокационной станции COBRA DANE равна примерно 1 ГГц.

Поскольку поперечный размер отдельных участков антенной решетки составляет около 2,7 м, что мало по сравнению с ее диаметром, равным 29 м, то искажения, которые возникают в каждом участке решетки при больших углах отклонения луча от перпендикулярной оси, лежат в допустимых пределах. Каждый участок антенной решетки излучает сигнал, занимающий в пространстве объем, продольное сечение которого имеет форму параллелограмма. За счет временных задержек эти сигналы суммируются так, что искажения отдельных сигналов не складываются. В результате форма импульса сохраняется достаточно хорошо, а устройств, обеспечивающих временные задержки сигналов, при этом используется только 96, а не 15 360. Что касается расхода материалов, то обеспечение управления лучом радиолокационной станции COBRA DANE путем введения временных задержек потребовало дополнительного использования кабелей общей длиной чуть больше 1500 м. Если бы не применялось разделение антенной решетки на отдельные участки, то дополнительно потребовалось бы 165 км кабеля.

Замена подвижной антенны набором неподвижных излучающих элементов помимо возможности электронного управления лучом может дать и другие преимущества. Одним из этих преимуществ является обеспечение высокой надежности в работе. Работа неподвижной антенной решетки не зависит от состояния таких изнашиваемых механических компонентов, как подшипники и двигатели. Кроме того, в большинстве радиолокационных станций с механическим управлением антенной используется одна или несколько очень больших электронных ламп для усиления сигналов микроволнового диапазона.

В качестве примера можно привести радиолокационную станцию Marconi Martello, изготовленную в Великобритании и предназначенную для использования в системе противовоздушной обороны. Основным схемным элементом в этой станции является электронная лампа с выходной мощностью около 3 МВт. В случае ее отказа вся система выходит из строя. Правда, в таких радиолокационных станциях, предназначенных для работы в системах разведки и противовоздушной обороны, всегда предусматривается возможность быстрого переключения на вспомогательные источники энергии микроволнового излучения.

В противоположность этому в радиолокационной станции COBRA DANE излучаемая энергия генерируется 96 лампами, каждая мощностью 160 кВт. Выходной сигнал с каждой лампы поступает на делитель, а затем на 160 излучающих элементов, составляющих один участок антенной решетки. Отказ одной лампы в данном случае приводит к выходу из строя только одной из 96 частей антенной решетки, и радиолокационная станция в целом остается работоспособной, хотя качество ее работы несколько ухудшается. Более того, лампы меньшего размера в случае отказа заменять легче, чем одну большую лампу, используемую в радиолокационной станции Martello.

Радиолокаторы с фазированными антенными решетками со схемой на полупроводниковых элементах имеют еще более высокий уровень надежности и легкости в эксплуатации. Транзисторные схемы генераторов и усилителей используются, например, в радиолокационных станциях с кодовым названием PAVE PAWS, предназначенных для обнаружения баллистических ракет, запускаемых с кораблей и подводных лодок (такие станции уже установлены на п-ве Кэйп-Код и в штате Калифорния, и их размещение планируется в штатах Джорджия и Техас). В отдельных модулях смонтировано по четыре параллельно включенных транзистора мощностью по 100 Вт. Каждый модуль обеспечивает возбуждение одного излучающего элемента. Таким образом, сигналы, подводимые к каждой из двух поверхностей сдвоенной антенны, усиливаются одновременно 1792 модулями в цепи антенных элементов, а не 96 лампами, так что отказ в работе одного элемента еще меньше влияет на характеристики радиолокационной станции в целом. К тому же среднее время между двумя отказами для одного полупроводникового модуля значительно больше, чем для лампы, используемой в радиолокационной станции COBRA DANE. В первом случае этот показатель равен 100 000 ч, во втором - 20 000 ч. При отказе модулей, имеющих длину 30 см и работающих от источника напряжения 28 В, заменять их намного легче, чем лампы в радиолокационной станции COBRA DANE, имеющие длину 1,5 м и работающие под напряжением 40 000 В.

В радиолокационной станции PAVE PAWS, как и во многих других, построенных на полупроводниковых элементах, усиление сигналов производится после того, как они будут распределены по антенным элементам и сдвинуты по фазе. Поэтому потери мощности, которые имеют место при прохождении усиленного сигнала через делитель и цепи фазосдви-гающего устройства, исключаются. Однако наряду с этим выигрышем в эффективности и всеми другими преимуществами полупроводниковая технология имеет и недостаток. Она в общем обеспечивает меньшие значения пиковых мощностей по сравнению с теми, какие можно получить с помощью электронных ламп.

Оограничения, связанные с возможностью получения в радиолокаторах на полупроводниковых элементах сигналов большой мощности, повысили важность так называемого метода кодирования и сжатия импульсов, с помощью которого можно имитировать короткие импульсы большой мощности при излучении менее мощных и больших по длительности сигналов. Этот прием не утрачивает своей важности и в случае использования мощных радиолокационных станций на электронных лампах как с механически управляемыми антеннами, так и с фазированными антенными решетками, когда требуется получить определенную информацию об удаленных объектах.

Дальность, на которой радиолокационная станция с заданной чувстри-тельностью приемного тракта может обнаруживать объекты определенного размера и с определенной отражательной способностью, зависит от общей энергии импульса. Чем короче импульс, тем выше должна быть пиковая мощность излучения при заданной дальности действия. Радиолокационная станция COBRA DANE может обнаруживать металлические объекты величиной с грейпфрут на расстоянии около 2000 км. Для этого при длительности импульса 5 нc пиковая мощность излучения должна быть не меньше 3 1012 Вт, что более чем достаточно для разрушения всех цепей радиолокационной станции.

И все же определить размеры объекта или же раздельно наблюдать ряд объектов, летящих на близком расстоянии друг от друга, можно только с помощью импульсов малой длительности. То, что дальность действия радиолокационной станции определяется не пиковой мощностью, а общей энергией импульса, помогает найти решение. Оно заключается в следующем. Когда радиолокатор работает в режиме передачи, излучаемый импульс растягивается и соответственно снижается пиковая мощность. Этот прием называется кодированием импульса. В режиме приема производится сжатие отраженного сигнала с целью извлечения из него всей информации, которая могла бы быть получена при передаче действительно короткого импульса. В радиолокационной станции COBRA DANE, например, импульс длительностью 5 нc перед тем, как он усиливается и излучается, растягивается в 200 тысяч раз и его длительность становится равной 1 мс. Требуемая пиковая мощность снижается в такое же число раз - с 3 1012 Вт до 15 МВт, фактической мощности излучения COBRA DANE.

При обычной технике кодирования импульс длительностью 5 нс, включающий в себя спектр частот, проходит через дисперсионную линию задержки, которая вызывает различное запаздывание отдельных составляющих этого спектра: чем выше частота составляющей, тем больше задержка; составляющая сигнала с самой низкой частотой излучается без задержки, в то время как составляющая с самой высокой частотой получает максимальную задержку, равную 1 мс. После этого импульс, имеющий уже длительность 1 мс, усиливается и излучается; принимаемый отраженный сигнал имеет ту же длительность.

Принятый сигнал пропускается через цепь сжатия, которая вводит ряд дополнительных задержек. На этот раз длительность задержек связана с частотой обратным образом. Составляющая спектра импульса с самой низкой частотой получает задержку, равную 1 мс, а составляющая с самой высокой частотой не получает никакой задержки. Таким образом, в процессе выполнения операции кодирования и сжатия импульса каждая из составляющих спектра сигнала получает одну и ту же суммарную задержку. В результате отраженный сигнал получается неискаженным, имеющим длительность 5 нc.

Если излученный импульс длительностью 1 мс, который в пространстве имеет длину, равную 300 км, при рас пространении встречает объект, который значительно короче его, то импульс возвращается обратно в виде двух, перекрывающих друг друга отраженных сигналов. Обычным способом такие отраженные сигналы разделить нельзя и по их относительному положению определить размеры объекта невозможно. Однако когда кодированные, перекрывающие друг друга отраженные сигналы сжимаются, на выходе получаются два различных сигнала длительностью 5 нc.

Кодирование и сжатие импульсов выполняют ту же роль и в радиолокационных станциях, построенных на полупроводниковых элементах. Даже когда нет необходимости определять размер объекта, от которого отражается сигнал, точное определение расстояния до объекта требует применения довольно коротких импульсов. Если не использовать сжатие, то с помощью импульсов длительностью 1 мс можно определить расстояние до объекта с точностью только до 150 км. Кроме того, при излучении длинных импульсов сказывается воздействие местных помех, обусловленных отражением от выпадающих осадков и от земли. В то же время полупроводниковая техника не может обеспечить получение таких мощностей, которые необходимы при работе короткими импульсами, чтобы дальность действия радиолокатора была такой же, как и при излучении импульсов большой длительности. Поэтому, чтобы при низкой мощности излучения получить большую дальность действия и высокую разрешающую способность, в радиолокаторах на полупроводниковых элементах необходимо применять кодирование и сжатие импульсов.

Первые радиолокационные станции с фазированными антенными решетками, которые начали использоваться в 60-70-е годы, были предназначены для военных и разведывательных целей. Существуют обстоятельства, при которых гражданские отрасли экономики диктуют потребности, стимулирующие развитие военной техники. В частности, гражданская авиация нуждается в получении данных о быстро перемещающихся объектах в зоне аэродрома, где прибывающие самолеты выравнивают свой курс для захода на посадку. Радиолокационные станции, контролирующие подход самолетов к полосе, направляют их на посадку, одновременно следя за дальностью самолетов и их положением относительно взлетно-посадочной полосы. Возрастающая интенсивность воздушного движения создает все большую потребность в оснащении гражданской авиации радиолокаторами с фазированными антенными решетками.

С уменьшением количества излучающих элементов стоимость фазированной антенной решетки снижается. В большинстве областей применения радиолокационной техники антенные системы должны иметь большое количество излучающих элементов. Маленькая антенная решетка имеет менее сфокусированный и, следовательно, более широкий луч. Это снижает ее разрешающую способность по угловым координатам, а малая площадь не может обеспечить высокую чувствительность к отраженным сигналам. Когда не требуется обозревать большую область воздушного пространства, оба этих недостатка антенной решетки малого размера могут быть преодолены путем объединения ее с большим рефлектором.

Поле обзора радиолокационной станции управления заходом на посадку самолетов не должно быть большим. Обычно такая радиолокационная станция должна просматривать пространство в пределах около 10° по азимуту и от 7 до 14° по углу места. Поэтому для этих целей можно использовать гибридную систему, состоящую из фазированной антенной решетки и традиционного рефлектора. В одной из конструкций радиолокатора используется антенная решетка с 443 излучающими элементами, которая работает совместно с отражателем, имеющим размеры 3,96x4,57 м. Решетка располагается вблизи фокуса рефлектора, который отражает луч при любом угле излучения антенной решетки. В данном случае рефлектор действует как линза, фокусируя луч и снижая его боковое рассеяние. Отраженные лучи становятся уже и вписываются в более узкий угол в пространстве. В результате улучшается способность решетки разрешать две цели в пределах малого угла и определять точный азимут одиночной цели. Рефлектор также увеличивает чувствительность к отраженному сигналу. В будущем в радиолокации найдут применение новые достижения в области схемотехники. Использование в радиолокационной технике элементной базы, подобной цифровым интегральным микросхемам, применяемым в вычислительной технике, значительно снизит количество и размер компонентов, необходимых для генерирования, приема и обработки сигналов. Новые элементы на арсенид-галлиевых кристаллах, известные как монолитные микроволновые интегральные микросхемы, объединяют в себе фазосдвигающие устройства, переключатели и транзисторные усилители. Приемопередающий модуль, содержащий все цепи, необходимые для создания одного излучающего элемента фазированной антенной решетки, уже сейчас может быть полностью собран только на 11 таких микросхемах. А пока для построения приемо-передающих модулей на полупроводниковых элементах требуются сотни деталей.

Развитие электроники со временем позволит вкл

Семь вопросов и ответов о работе бортовой радиолокационной станции

БРЛС с АФАР («Жук-АЭ») Источник: Авиапанорама

Сегодня авиация немыслима без радаров. Бортовая радиолокационная станция (БРЛС) является одним из самых важных элементов радиоэлектронного оборудования современного летательного аппарата. По мнению экспертов, в скором будущем БРЛС останутся основным средством обнаружения, сопровождения целей и наведения на них управляемого оружия.

Мы попытаемся ответить на самые распространенные вопросы о работе РЛС на борту и рассказать, как создавались первые радары и чем смогут удивить перспективные радиолокационные станции.

1. Когда появились первые радары на борту?

К идее использования радиолокационных средств на самолетах пришли несколько лет спустя после того, как появились первые наземные РЛС. У нас в стране прототипом первой БРЛС стала наземная станция «Редут».

Одной из основных проблем стало размещение аппаратуры на самолете - комплект станции с источниками питания и кабелями весил примерно 500 кг. На одноместном истребителе того времени установить такую аппаратуру было нереально, поэтому станцию было решено разместить на двухместном Пе-2.

Первая отечественная бортовая радиолокационная станция под названием «Гнейс-2» была принята на вооружение в 1942 году. В течение двух лет было выпущено более 230 станций «Гнейс-2». А в победном 1945 году «Фазотрон-НИИР», ныне входящий в КРЭТ, начал серийный выпуск самолетной радиолокационной станции «Гнейс-5с». Дальность обнаружения цели достигала 7 км.

За рубежом первая авиационная РЛС «AI Mark I» — британская — была передана на вооружение немного раньше, в 1939 году. Из-за большого веса ее устанавливали на тяжелые истребители-перехватчики Bristol Beaufighter. В 1940 году на вооружение поступила новая модель — «AI Mark IV». Она обеспечивала обнаружение целей на дальности до 5,5 км.

2. Из чего состоит бортовая РЛС?

Конструктивно БРЛС состоит из нескольких съемных блоков, расположенных в носовой части самолета: передатчика, антенной системы, приемника, процессора обработки данных, программируемого процессора сигналов, пультов и органов управления и индикации.

Сегодня практически у всех бортовых РЛС антенная система представляет собой плоскую щелевую антенную решетку, антенну Кассегрена, пассивную или активную фазированную антенную решетку.

Современные БРЛС работают в диапазоне различных частот и позволяют обнаруживать воздушные цели с ЭПР (Эффективная площадь рассеяния) в один квадратный метр на дальности в сотни километров, а также обеспечивают сопровождение на проходе десятки целей.

Кроме обнаружения целей, сегодня БРЛС обеспечивают радиокоррекцию, полетное задание и выдачу целеуказания на применение управляемого бортового оружия, осуществляют картографирование земной поверхности с разрешением до одного метра, а также решают вспомогательные задачи: следование рельефу местности, измерение собственной скорости, высоты, угла сноса и другие.

3. Как работает бортовой радиолокатор?

Сегодня на современных истребителях используются импульсно-доплеровские РЛС. В самом названии описан принцип действия такой радиолокационной станции.

Радиолокационная станция работает не непрерывно, а периодическими толчками — импульсами. В сегодняшних локаторах посылка импульса длится всего лишь несколько миллионных долей секунды, а паузы между импульсами — несколько сотых или тысячных долей секунды.

Встретив на пути своего распространения какое-либо препятствие, радиоволны рассеиваются во все стороны и отражаются от него обратно к радиолокационной станции. При этом, передатчик радара автоматически выключается, и начинает работать радиоприемник.

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов. Например, для бортовых РЛС проблема в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолета. Эти помехи устраняют, используя эффект Доплера, согласно которому частота волны, отраженной от приближающегося объекта, увеличивается, а от уходящего объекта — уменьшается.

4. Что означают Х, К, Ка и Кu диапазоны в характеристиках РЛС?

Сегодня диапазон длин волн, в котором работают бортовые радиолокационные станции чрезвычайно широк. В характеристиках РЛС диапазон станции указывается латинскими буквами, к примеру, Х, К, Ка или Кu.

Например, РЛС «Ирбис» с пассивной фазированной антенной решеткой, установленная на истребителе Су-35, работает в X-диапазоне. При этом дальность обнаружения воздушных целей «Ирбиса» достигает 400 км.

Бортовая РЛС с фазированной антенной решеткой Ирбис-Э

X-диапазон широко используется в радиолокации. Он простирается от 8 до 12 ГГц электромагнитного спектра, то есть это длины волн от 3,75 до 2,5 см. Почему он назван именно так? Есть версия, что во время Второй Мировой войны диапазон был засекречен и поэтому получил название X-диапазона.

Все названия диапазонов с латинской буквой К в названии имеют менее загадочное происхождение — от немецкого слова kurz («короткий»). Этот диапазон соответствует длинам волн от 1,67 до 1,13 см. В сочетании с английскими словами above и under, свои названия получили диапазоны Ka и Ku, соответственно находящиеся «над» и «под» K-диапазоном.

Радары Ka-диапазона способны работать на коротких расстояниях и производить измерения сверхвысокого разрешения. Такие радиолокаторы часто применяются для управления воздушным движением в аэропортах, где с помощью очень коротких импульсов — длиной в несколько наносекунд — определяется дистанция до самолета.

Часто Ка-диапазон используется в вертолетных радарах. Как известно, для размещения на вертолете антенна БРЛС должна иметь небольшие размеры. Учитывая этот факт, а также необходимость приемлемой разрешающей способности, применяется миллиметровый диапазон длин волн. К примеру, на боевом вертолете Ка-52 «Аллигатор» установлен радиолокационный комплекс «Арбалет», работающий в восьмимиллиметровом Ка-диапазоне. Этот радиолокатор разработки КРЭТ обеспечивает «Аллигатору» огромные возможности.

Таким образом, каждый диапазон имеет свои преимущества и в зависимости от условий размещения и задач, БРЛС работает в различных диапазонах частот. Например, получение высокой разрешающей способности в переднем секторе обзора реализует Ка-диапазон, а увеличение дальности действия БРЛС делает возможным Х-диапазон.

5. Что такое ФАР?

Очевидно, для того чтобы принимать и излучать сигналы, любому радару нужна антенна. Чтобы уместить ее в самолет, придумали специальные плоские антенные системы, а приемник и передатчик находятся за антенной. Чтобы увидеть разные цели радаром, антенну нужно двигать. Так как антенна радара достаточно массивная, двигается она медленно. При этом, становится проблематична одновременная атака нескольких целей, ведь радар с обычной антенной держит в «поле зрения» только одну цель.

Современная электроника позволила отказаться от такого механического сканирования в БРЛС. Устроено это следующим образом: плоская (прямоугольная или круглая) антенна разделена на ячейки. В каждой такой ячейке находится специальный прибор — фазовращатель, который может на заданный угол изменять фазу электромагнитной волны, которая попадает в ячейку. Обработанные сигналы из ячеек поступают на приемник. Именно так можно описать работу фазированной антенной решетки (ФАР).

А если точнее, подобная антенная решетка со множеством элементов-фазовращателей, но с одним приемником и одним передатчиком называется пассивной ФАР. Кстати, первый в мире истребитель, оснащенный радиолокатором с пассивной ФАР, — наш российский МиГ-31. На нем была установлена РЛС «Заслон» разработки НИИ приборостроения им. Тихомирова.

6. Для чего нужна АФАР?

Активная фазированная антенная решетка (АФАР) является следующим этапом в развитии пассивной. В такой антенне каждая ячейка решетки содержит свой приемопередатчик. Их количество может превысить одну тысячу. То есть, если традиционный локатор — это отдельные антенна, приемник, передатчик, то в АФАР приемник с передатчиком и антенна «рассыпаются» на модули, каждый из которых содержит щель антенны, фазовращатель, передатчик и приемник.

Раньше, если, например, вышел из строя передатчик, самолет становился «слепым». Если в АФАР будут поражены одна-две ячейки, даже десяток, остальные продолжают работать. В этом и есть ключевое преимущество АФАР. Благодаря тысячам приемникам и передатчикам повышается надежность и чувствительность антенны, а также появляется возможность работать на нескольких частотах сразу.

Но главное, что структура АФАР позволяет РЛС параллельно решать несколько задач. Например, не только обслуживать десятки целей, но и параллельно с обзором пространства очень эффективно защищаться от помех, ставить помехи радарам противника и картографировать поверхность, получая карты высокого разрешения.

Кстати, первую в России бортовую радиолокационную станцию с АФАР создали на предприятии КРЭТ, в корпорации «Фазотрон-НИИР».

7. Какая РЛС будет на истребителе пятого поколения ПАК ФА?

Среди перспективных разработок КРЭТ — конформные АФАР, которые смогут вписываться в фюзеляж летательного аппарата, а также так называемая «умная» обшивка планера. В истребителях следующего поколения, в том числе и ПАК ФА, она станет как бы единым приемо-передающим локатором, предоставляющим пилоту полную информацию о происходящем вокруг самолета.

Радиолокационная система ПАК ФА состоит из перспективной АФАР X-диапазона в носовом отсеке, двух радаров бокового обзора, а также АФАР L-диапазона вдоль закрылков.

Сегодня КРЭТ также работает над созданием радиофотонного радара для ПАК ФА. Концерн намерен создать натурный образец радиолокационной станции будущего до 2018 года.

Фотонные технологии позволят расширить возможности радара — снизить массу более чем вдвое, а разрешающую способность увеличить в десятки раз. Такие БРЛС с радиооптическими фазированными антенными решетками способны делать своеобразный «рентгеновский снимок» самолетов, находящихся на удалении более 500 километров, и давать их детализированное, объемное изображение. Эта технология позволяет заглянуть внутрь объекта, узнать, какую технику он несет, сколько людей в нем находится, и даже разглядеть их лица.

Материал из Википедии - свободной энциклопедии


Активная фазированная антенная решётка (АФАР ) - фазированная антенная решётка , в которой направление излучения и (или) форма диаграммы направленности регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на индивидуальных активных излучающих элементах .

Конструкция

Активная фазированная антенная решётка конструктивно состоит из модулей, которые объединяют излучающий элемент (или группу излучающих элементов) и активные устройства (усилительные, генераторные или преобразовательные). Эти устройства могут в простейшем случае усиливать передаваемый или принимаемый излучающим элементом сигнал, а также осуществлять преобразование частоты сигнала, генерировать (формировать) сигнал, преобразовывать сигнал из аналоговой в цифровую форму и (или) из цифровой в аналоговую. Для совместной согласованной работы все модули АФАР должны быть объединены цепью распределения сигнала возбудителя (в режиме приёма - цепью сбора сигнала в приёмное устройство), или работа модулей должна быть синхронизирована от единого источника.

Сравнение с пассивной решёткой

Недостатки

Технология АФАР имеет две ключевые проблемы: рассеивание мощности и стоимость.

Рассеивание мощности

Из-за недостатков микроволновых транзисторных усилителей и монолитных интегральных схем (СВЧ МИС) эффективность передатчика модуля обычно меньше 45%. В результате AФАР выделяет большое количество теплоты, которую необходимо рассеивать, чтобы предохранить чипы передатчика от расплавления - надёжность арсенид-галлиевых СВЧ МИС повышается при низкой рабочей температуре. Традиционное охлаждение воздухом, используемое в обычных ЭВМ и авионике , плохо подходит при высокой плотности компоновки, поэтому современные AФАР охлаждаются жидкостью (американские проекты используют полиальфаолефиновый хладагент, подобный синтетической гидравлической жидкости). Типичная жидкостная система охлаждения использует насосы, вводящие хладагент через каналы в антенне и выводящие затем его к теплообменнику - им может быть как воздушный охладитель (радиатор), так и теплообменник в топливном баке (со вторым контуром, чтобы уменьшить нагрев содержимого топливного бака).

По сравнению с обычным радаром истребителя с воздушным охлаждением, радар с AФАР более надёжен, однако потребляет больше электроэнергии и требует более интенсивного охлаждения. Но AФАР может обеспечить намного большую передаваемую мощность, что необходимо для большей дальности обнаружения цели (увеличение передающей мощности, однако, имеет побочный эффект - увеличение следа, по которому радиоразведка или СПО противника могут обнаружить радар).

Стоимость

Для радара истребителя, требующего обычно от 1000 до 1800 модулей, стоимость AФАР становится неприемлемой, если модули стоят больше чем сто долларов каждый. Ранние модули стоили приблизительно 2 тыс. долларов, что не допускало массового использования AФАР. Однако стоимость таких модулей с развитием технологий постоянно уменьшается, поскольку себестоимость разработки и производства СВЧ МИС постоянно снижается.

Несмотря на недостатки, активные фазированные решётки превосходят обычные радарные антенны почти во всех отношениях, обеспечивая более высокую следящую способность и надёжность, пусть и при некотором увеличении в сложности и, возможно, стоимости.

Приёмо-передающий модуль

Приёмо-передающий модуль - это основа пространственного канала обработки сигнала в АФАР.

В его состав входит активный элемент - усилитель, который делает это устройство электродинамически невзаимным. Поэтому для обеспечения возможности работы устройства как на приём, так и на передачу в нём разделяют передающий и приёмный каналы. Разделение осуществляется либо коммутатором , либо циркулятором .

Приёмный канал

В состав приёмного канала входят следующие устройства:

  • Устройство защиты приёмника - обычно либо разрядник , либо другое пороговое устройство, предотвращающее перегрузку приёмного канала.
  • Малошумящий усилитель - два или более каскадов активного усиления сигнала.
  • Фазовращатель - устройство фазовой задержки сигнала в канале для задания фазового распределения по всему раскрыву решётки.
  • Аттенюатор - устройство задания (понижения, ослабления) амплитуды сигнала для задания амплитудного распределения по раскрыву решётки.

Передающий канал

Состав передающего канала схож с составом приёмного канала. Отличие заключается в отсутствии устройства защиты и меньших требованиях к усилителю по шумам. Тем не менее, передающий усилитель должен обладать большей выходной мощностью, чем приёмный.

Производимые БРЛС с АФАР

  • Н036 Белка (на стадии разработки) (ПАК ФА)
  • Northrop Grumman SABR (General Dynamics F-16 Fighting Falcon)
  • EL/M-2052 (F-15 , МиГ-29 , Mirage 2000)
  • AMSAR (Eurofighter Typhoon , Rafale)

См. также

Напишите отзыв о статье "Активная фазированная антенная решётка"

Примечания

Ссылки

Отрывок, характеризующий Активная фазированная антенная решётка

– Батюшка, я не хотел быть судьей, – сказал князь Андрей желчным и жестким тоном, – но вы вызвали меня, и я сказал и всегда скажу, что княжна Марья ни виновата, а виноваты… виновата эта француженка…
– А присудил!.. присудил!.. – сказал старик тихим голосом и, как показалось князю Андрею, с смущением, но потом вдруг он вскочил и закричал: – Вон, вон! Чтоб духу твоего тут не было!..

Князь Андрей хотел тотчас же уехать, но княжна Марья упросила остаться еще день. В этот день князь Андрей не виделся с отцом, который не выходил и никого не пускал к себе, кроме m lle Bourienne и Тихона, и спрашивал несколько раз о том, уехал ли его сын. На другой день, перед отъездом, князь Андрей пошел на половину сына. Здоровый, по матери кудрявый мальчик сел ему на колени. Князь Андрей начал сказывать ему сказку о Синей Бороде, но, не досказав, задумался. Он думал не об этом хорошеньком мальчике сыне в то время, как он его держал на коленях, а думал о себе. Он с ужасом искал и не находил в себе ни раскаяния в том, что он раздражил отца, ни сожаления о том, что он (в ссоре в первый раз в жизни) уезжает от него. Главнее всего ему было то, что он искал и не находил той прежней нежности к сыну, которую он надеялся возбудить в себе, приласкав мальчика и посадив его к себе на колени.
– Ну, рассказывай же, – говорил сын. Князь Андрей, не отвечая ему, снял его с колон и пошел из комнаты.
Как только князь Андрей оставил свои ежедневные занятия, в особенности как только он вступил в прежние условия жизни, в которых он был еще тогда, когда он был счастлив, тоска жизни охватила его с прежней силой, и он спешил поскорее уйти от этих воспоминаний и найти поскорее какое нибудь дело.
– Ты решительно едешь, Andre? – сказала ему сестра.
– Слава богу, что могу ехать, – сказал князь Андрей, – очень жалею, что ты не можешь.
– Зачем ты это говоришь! – сказала княжна Марья. – Зачем ты это говоришь теперь, когда ты едешь на эту страшную войну и он так стар! M lle Bourienne говорила, что он спрашивал про тебя… – Как только она начала говорить об этом, губы ее задрожали и слезы закапали. Князь Андрей отвернулся от нее и стал ходить по комнате.
– Ах, боже мой! Боже мой! – сказал он. – И как подумаешь, что и кто – какое ничтожество может быть причиной несчастья людей! – сказал он со злобою, испугавшею княжну Марью.
Она поняла, что, говоря про людей, которых он называл ничтожеством, он разумел не только m lle Bourienne, делавшую его несчастие, но и того человека, который погубил его счастие.
– Andre, об одном я прошу, я умоляю тебя, – сказала она, дотрогиваясь до его локтя и сияющими сквозь слезы глазами глядя на него. – Я понимаю тебя (княжна Марья опустила глаза). Не думай, что горе сделали люди. Люди – орудие его. – Она взглянула немного повыше головы князя Андрея тем уверенным, привычным взглядом, с которым смотрят на знакомое место портрета. – Горе послано им, а не людьми. Люди – его орудия, они не виноваты. Ежели тебе кажется, что кто нибудь виноват перед тобой, забудь это и прости. Мы не имеем права наказывать. И ты поймешь счастье прощать.
– Ежели бы я был женщина, я бы это делал, Marie. Это добродетель женщины. Но мужчина не должен и не может забывать и прощать, – сказал он, и, хотя он до этой минуты не думал о Курагине, вся невымещенная злоба вдруг поднялась в его сердце. «Ежели княжна Марья уже уговаривает меня простить, то, значит, давно мне надо было наказать», – подумал он. И, не отвечая более княжне Марье, он стал думать теперь о той радостной, злобной минуте, когда он встретит Курагина, который (он знал) находится в армии.
Княжна Марья умоляла брата подождать еще день, говорила о том, что она знает, как будет несчастлив отец, ежели Андрей уедет, не помирившись с ним; но князь Андрей отвечал, что он, вероятно, скоро приедет опять из армии, что непременно напишет отцу и что теперь чем дольше оставаться, тем больше растравится этот раздор.
– Adieu, Andre! Rappelez vous que les malheurs viennent de Dieu, et que les hommes ne sont jamais coupables, [Прощай, Андрей! Помни, что несчастия происходят от бога и что люди никогда не бывают виноваты.] – были последние слова, которые он слышал от сестры, когда прощался с нею.
«Так это должно быть! – думал князь Андрей, выезжая из аллеи лысогорского дома. – Она, жалкое невинное существо, остается на съедение выжившему из ума старику. Старик чувствует, что виноват, но не может изменить себя. Мальчик мой растет и радуется жизни, в которой он будет таким же, как и все, обманутым или обманывающим. Я еду в армию, зачем? – сам не знаю, и желаю встретить того человека, которого презираю, для того чтобы дать ему случай убить меня и посмеяться надо мной!И прежде были все те же условия жизни, но прежде они все вязались между собой, а теперь все рассыпалось. Одни бессмысленные явления, без всякой связи, одно за другим представлялись князю Андрею.

Князь Андрей приехал в главную квартиру армии в конце июня. Войска первой армии, той, при которой находился государь, были расположены в укрепленном лагере у Дриссы; войска второй армии отступали, стремясь соединиться с первой армией, от которой – как говорили – они были отрезаны большими силами французов. Все были недовольны общим ходом военных дел в русской армии; но об опасности нашествия в русские губернии никто и не думал, никто и не предполагал, чтобы война могла быть перенесена далее западных польских губерний.
Князь Андрей нашел Барклая де Толли, к которому он был назначен, на берегу Дриссы. Так как не было ни одного большого села или местечка в окрестностях лагеря, то все огромное количество генералов и придворных, бывших при армии, располагалось в окружности десяти верст по лучшим домам деревень, по сю и по ту сторону реки. Барклай де Толли стоял в четырех верстах от государя. Он сухо и холодно принял Болконского и сказал своим немецким выговором, что он доложит о нем государю для определения ему назначения, а покамест просит его состоять при его штабе. Анатоля Курагина, которого князь Андрей надеялся найти в армии, не было здесь: он был в Петербурге, и это известие было приятно Болконскому. Интерес центра производящейся огромной войны занял князя Андрея, и он рад был на некоторое время освободиться от раздражения, которое производила в нем мысль о Курагине. В продолжение первых четырех дней, во время которых он не был никуда требуем, князь Андрей объездил весь укрепленный лагерь и с помощью своих знаний и разговоров с сведущими людьми старался составить себе о нем определенное понятие. Но вопрос о том, выгоден или невыгоден этот лагерь, остался нерешенным для князя Андрея. Он уже успел вывести из своего военного опыта то убеждение, что в военном деле ничего не значат самые глубокомысленно обдуманные планы (как он видел это в Аустерлицком походе), что все зависит от того, как отвечают на неожиданные и не могущие быть предвиденными действия неприятеля, что все зависит от того, как и кем ведется все дело. Для того чтобы уяснить себе этот последний вопрос, князь Андрей, пользуясь своим положением и знакомствами, старался вникнуть в характер управления армией, лиц и партий, участвовавших в оном, и вывел для себя следующее понятие о положении дел.