Живое сечение потока жидкости. Гидравлические элементы живого сечения

Потока, смоченный периметр, гидравлический радиус, объемный и весовой расход жидкости, средняя скорость движения потока

Все потоки жидкости подразделяются на два типа:

1) напорные - без свободной поверхности;

2) безнапорные - со свободной поверхностью.

Все потоки имеют общие гидравлические элементы: линии тока, живое сечение, расход, скорость. Приведём краткий словарь этих гидравлических тер­ми­нов.

Свободная поверхность - это граница раздела жидкости и газа, давление на которой обычно равно атмосферному (рис. 7,а). Наличие или отсутствие её определяет тип потока: безнапорный или напорный. Напорные потоки, как правило, наблюдаются в водопроводных трубах (рис. 7,б) - работают полным сечением. Безнапорные - в канали­за­ционных (рис. 7,в), в которых труба заполняется не полностью, поток имеет свободную поверхность и движется самотёком, за счёт уклона трубы.

Линия тока - это элементарная струйка потока, площадь попе­речного сечения которой бесконечно мала. Поток состоит из пучка струек (рис. 7,г).

Площадь живого сечения потока (м2) - это площадь попе­речного сечения потока, перпендикулярная линиям тока (см. рис. 7,г).

Расход потока q (или Q ) - это объём жидкости V , проходящей через живое сечение потока в единицу времени t :

q = V/t.

Единицы измерения расхода в СИ м3/с , а в других системах: м3/ч, м3/сут, л/с.

Средняя скорость потока v (м/с) - это частное от деления ра­с­хода потока на площадь живого сечения:

Скорости потоков воды в сетях водопровода и канализа­ции зданий обы­чно порядка 1 м/с .

Следующие два термина относятся к безнапорным потокам.

Смоченный периметр (м) - это часть периметра живого сече­ния потока, где жидкость соприкасается с твёрдыми стенками. Например, на рис. 7, в величиной является длина дуги окружности, которая об­разует нижнюю часть живого сечения потока и соприкасается со стенками трубы.

Гидравлический радиус R (м) - это отношение вида которое применяется в качестве расчётного параметра в формулах для без­напорных потоков.

Тема 1.3: «Истечение жидкости. Гидравлический расчет простых трубопроводов»

Истечение через малые отверстия в тонкой стенке при постоянном напоре. Истечение при несовершенном сжатии. Истечение под уровень. Истечение через насадки при постоянном напоре. Истечение из-под затвора в горизонтальном лотке.

Малым считается отверстие, высота которого не превышает 0,1 Н , где
Н – превышение свободной поверхности жидкости над центром тяжести отверстия (рис. 1).

Стенку считают тонкой, если ее толщина d < (1,5…3,0) d (см. рис. 1). При выполнении этого условия величина d не влияет на характер истечения жидкости из отверстия, так как вытекающая струя жидкости касается только острой кромки отверстия.


Рис. 1. Истечение жидкости из отверстия
в тонкой стенке

Поскольку частицы жидкости движутся к отверстию по криволинейным траекториям сил инерции струя, вытекающая из отверстия, сжимается. Благодаря действию сил инерции струя продолжает сжиматься и после выхода из отверстия. Наибольшее сжатие струи, как показывают опыты, наблюдается в сечении с-с на расстоянии примерно (0,5…1,0) d от входной кромки отверстия (см. рис.1). Это сечение называют сжатым. Степень сжатия струи в этом сечении оценивают коэффициентом сжатия e:

,

где w с и w соответственно площадь сжатого живого сечения струи и площадь отверстия.

Среднюю скорость струи V c в сжатом сечении с-с при р 0 = р ат вычисляют по формуле, полученной из уравнения Д. Бернулли, составленного для сечений I-I и с-с (см. рис.1):

,

где j – коэффициент скорости отверстия.

На основе использования уравнения траектории струи, вытекающей из отверстия, получено еще одно выражение для коэффициента j:

В формулах(3) и(4) a – коэффициент Кориолиса, z – коэффициент сопротивления отверстия , x i и y i – координаты произвольно взятой точки траектории струи, отсчитываемые от центра отверстия.

Поскольку напор теряется главным образом вблизи отверстия, где скорости достаточно велики, при истечении из отверстия во внимание принимают только местные потери напора .

Расход жидкости Q через отверстие равен:

.

Здесь m – коэффициент расхода отверстия, учитывающий влияние гидравлического сопротивления и сжатия струи на расход жидкости. С учетом выражения для m формула (1.25) принимает вид:

Величины коэффициентов e, z, j, m для отверстий определяют опытным путем. Установлено, что они зависят от формы отверстия и числа Рейнольдса. Однако при больших числах Рейнольдса (Re ³ 10 5) указанные коэффициенты от Re не зависят и для круглых и квадратных отверстий при совершенном сжатии струи равны: e = 0,62…0,64, z = 0,06, j = 0,97…0,98, m = 0,60…0,62.

Насадкой называют патрубок длиной 2,5d £ L н £ 5d (рис. 2), присоединенный к малому отверстию в тонкой стенке с целью изменения гидравлических характеристик истечения (скорости, расхода жидкости, траектории струи).

Рис. 2. Истечение через расходящийся
и сходящийся насадки

Насадки бывают цилиндрические (внешние и внутренние), конические (сходящиеся и расходящиеся) и коноидальные, т. е. очерченные по форме струи, вытекающей из отверстия.

Использование насадки любого типа вызывает увеличение расхода жидкости Q благодаря вакууму, возникающему внутри насадка в области сжатого сечения с-с (см. рис.2) и обуславливающему повышение напора истечения.

Среднюю скорость истечения жидкости из насадки V и расход Q определяют по формулам, полученным из уравнения Д. Бернулли, записываемого для сечений 1–1 (в напорном баке) и в-в (на выходе из насадка, рис. 2).

Здесь - коэффициент скорости насадки,

z н – коэффициент сопротивления насадки.

Для выходного сечения в-в коэффициент сжатия струи e = 1 (насадка в этой области работает полным сечением), поэтому коэффициент расхода насадки m н = j н.

Расход жидкости вытекающий из насадки, вычисляется по форму, аналогичной формуле (7),

При изучении потоков жидкостей вводят ряд понятий, характеризующих потоки с гидравлической и геометрической точек зрения: площадь живого сечения, периметр смачивания, гидравлический радиус.

Площадью живого сечения , или живым сечением потока, называют площадь сечения потока, расположенную перпендикулярно направлению движения жидкости, т. е. скорость движения элементарных струек направлена перпендикулярно сечению потока. Площадь живого сечения обозначается через ω (в м 2).

В реальных условиях поверхности живых сечений являются криволинейными, для расчетов в целях упрощения принимают живые сечения плоскими. В практике под живым сечением понимается поперечное сечение канала, канавы, трубы. Форма живого сечения бывает в виде трапеции, треугольника, прямоугольника.

Живое сечение может быть ограничено твердыми стенками полностью или частично, например, водопропускные трубы, боковые водоотводные канавы, нагорные канавы. Условия движения потока жидкости зависят от глубины и ширины живого сечения: если стенки ограничивают поток полностью, движение жидкости осуществляется в напорном режиме, в случае частичного ограничения режима движения режим движения безнапорный.

Смоченным периметром А . называется линия, по которой поток в поперечном сечении соприкасается с твердыми стенками русла.

Рисунок 6.5 Схема к определению периметра смачивания

Для случая напорного движения смоченный периметр в круглой трубе совпадает с его геометрическим периметром и будет равен

λ=πD . (6.4)

Так, для бетонного канала, изображенного на рис. 6.5, периметр смачивания

λ=b + 2h (6.5)

Гидравлическим радиусом называется отношение площади живого сечения потока к смоченному периметру, т. е.

R = ω/λ (6.6)

Основные размеры поперечного сечения канав, лотков в зависимости от геометрической формы определяются по схемам, приведенным в табл. 6.1.

Таблица 6.1 Геометрическая форма поперечного сечения

Геометрическая форма поперечного сечения Площадь живого сечения, ω Смоченный периметр, λ Ширина свободной поверхности, В Заложение откоса

Расход потока и его средняя скорость в гидродинамике являются важными характеристиками.

Расходом потока называют количество жидкости, протекающей через данное сечение потока в единицу времени.

В дорожном строительстве приходится иметь дело главным образом с объемным расходом жидкости. Расход жидкости равен произведению средней скорости течения в поперечном сечении на его площадь, т. е.

Q= V ω (6.7)

Если рассматривать поток жидкости как совокупность большого числа элементарных струек, то общий расход жидкости Q для всего потока в целом можно определить как сумму элементарных расходов. Скорости движения этих элементарных струек жидкости в различных точках разные. Законы распределения скоростей будут неодинаковы, с приближением к берегам скорости уменьшаются. Поэтому делают предположение, что частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью, которая называется средней скоростью. Средняя скорость в рассматриваемом сечении условно придается всем частицам жидкости, при этом расход потока соответствует действительному расходу.

В гидравлических расчётах для характеристики размеров и формы поперечного сечения потока вводят понятие о живом сечении и его элементах: смоченном периметре и гидравлическом радиусе.

Живым сечением называется поверхность в пределах потока, проведённая нормально к линиям тока.

Для круглого трубопровода, когда всё поперечное сечение заполнено жидкостью, живым сечение является площадь круга: (рис.3.6).

Рис. 3.6. Элементы потока

Смоченным периметром называют ту часть периметра живого сечения, по которой жидкость соприкасается со стенками трубопровода (рис.3.6). Смоченный периметр обычно обозначают греческой (хи). Для круглой трубы полностью заполненной жидкостью смоченный периметр равен длине окружности:

Гидравлическим радиусом называют отношение живого сечения к смоченному периметру, т.е. величину

Эта величина характеризует удельную, т.е. приходящуюся на единицу длины смоченного периметра, площадь живого сечения. Легко сделать вывод, что поток с наибольшим гидравлическим радиусом при прочих равных условиях имеет минимальную силу трения, приложенную к смоченной поверхности.

Для круглых труб, полностью заполненных жидкостью, гидравлический радиус равен четверти диаметра:

Введение гидравлического радиуса как характерного размера позволяет сравнивать по критерию подобия (Re) потоки с разными формами живого сечения.

Рассмотренные основные понятия позволяют решать самые различные практические задачи гидравлики.

Пример 3.1. Определить скорость потока в трубопроводе. Диаметр , расход воды (несжимаемой жидкости) -.

Решение. Искомая скорость .

Определим площадь живого сечения:

Скорость потока:

3.6. Уравнение количества движения для потока жидкости

Гидравлика – это техническая механика жидкости, в которой часто используются упрощённые методы для решения инженерных задач. Во многих случаях при решении практических задач гидравлики удобно применять такие центральные понятия механики, как количество движения (уравнение импульсов) и кинетическая энергия.

В связи с этим необходимо рассмотреть возможность вычисления количества движения и кинетическую энергию потока жидкости по средней скорости, а не по действительным местным скоростям. Это позволит существенно упростить гидравлические расчёты.

Для материального тела массой , движущегося со скоростью, изменение количества движения за времявследствие действия силывыразится векторным уравнением

где - приращение количества движения, обусловленное импульсом.

Жидкость представляет собой материальную систему, поэтому основной закон механики может быть приложен к любой выделенной из неё массе.

Применим эту теорему механики к участку потока жидкости с расходом между сечениями 1-1 и 2-2 (выделенный участок заштрихован). Ограничимся рассмотрением только установившегося движения жидкости (рис. 3.7).

За время этот участок переместится в положение, определяемое сечениямии. Объёмы этих элементов, а, следовательно, и их массыодинаковы, поэтому приращение количества движения будет равно

Это приращение количества движения обусловлено импульсом всех внешних сил, действующих на объём жидкости между сечениями 1-1 и 2-2. Внешними силами, приложенными к выделенному объёму, являются сила тяжести всего объёма , силы давления в первом и втором сеченияхи(нормальные к этим сечениям и направленные внутрь объёма), а также реакции стенок трубы, которая складывается из сил давления и трения, распределённых по боковой поверхности объёма.

Рис. 3.7. Применение уравнения количества движения

к потоку жидкости

Уравнение импульсов (3.7) для рассматриваемого случая можно записать в виде

После сокращения на

Составив проекции этого векторного уравнения на три координатные оси, получим три алгебраических уравнения с тремя неизвестными - .

Л. Эйлер предложил удобный графический способ нахождения силы . Перенося в формуле (3.?) все слагаемые в одну сторону, можно представить его в виде суммы векторов:

где вектор взят с обратным знаком (т.е. по направлению обратный действительному). В соответствии с этим выражением (3.10) силуможно найти, построив замкнутый многоугольник сил, как это показано на рис. 3.7,а .

Анализ показывает, что при вычислении количества движения и кинетической энергии по средней скорости допускается ошибка, которую можно учесть с помощью двух коэффициентов:

Коэффициента Буссинеска при вычислении количества движения;

Коэффициента Кориолиса в уравнении Бернулли при вычислении кинетической энергии.

Величина обоих коэффициентов зависит от характера распределения скоростей в поперечном сечении потока жидкости. На практике при турбулентном режиме движения коэффициент Кориолиса , а коэффициент Буссинеска. Поэтому обычно полагают. Однако встречаются отдельные случаи, когдадостигает больших значений, и тогда пренебрежение им может привести к значительным погрешностям.

Исследование поверхностных или граничных свойств, например смачивающей способности; исследование диффузионных эффектов; анализ материалов путем определения их поверхностных, граничных и диффузионных эффектов; исследование или анализ поверхностных структур в атомном диапазоне

Изобретение относится к сельскому хозяйству, в частности к способам для изучения стока талых и дождевых вод, возникающего на стокоформирующей поверхности. Технический результат изобретения - упрощение способа и повышение точности определения смоченного периметра для шероховатого русла. Сущность изобретения: моделируют процесс взаимодействия потока воды с шероховатой поверхностью путем замены рабочей части наклонного лотка, выполненной с исследуемой шероховатой поверхностью, прецизионно изготовленным образцом с гидравлически гладкой поверхностью, находят зависимость высоты потока от расхода воды для гидравлически гладкой поверхности. Прецизионно изготовленный образец с гидравлически гладкой поверхностью заменяют на рабочую часть, выполненную с исследуемой шероховатой поверхностью, и находят графическую зависимость высоты потока от расхода воды для шероховатой поверхности. Коэффициент смоченного периметра определяют путем отношения критических расходов воды, соответствующих критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды, соответственно для шероховатой и гидравлически гладкой поверхностей русла. Величину смоченного периметра для шероховатой поверхности определяют как произведение коэффициента смоченного периметра на смоченный периметр для гидравлически гладкой поверхности. 1 табл., 3 ил.

Рисунки к патенту РФ 2292034

Изобретение относится к сельскому хозяйству, в частности к способам и устройствам для изучения стока талых и дождевых вод, возникающего на стокоформирующей поверхности (на склонах, в овражно-балочной сети, во временных руслах и т.д.), и может быть использовано в области гидрологии, гидротехники, гидромелиорации, в промышленно-гражданском и дорожном строительстве.

Известен способ определения смоченного периметра, как элемента живого сечения потока, для призматических русел . Например, круглое живое сечение имеет смоченный периметр, равный длине окружности

где R - радиус круглого живого сечения.

Для правильных прямоугольных русел смоченный периметр определяют по сумме ширины и удвоенной высоты потока жидкости

где В - ширина русла, h - высота потока движущейся жидкости.

Недостатком известного способа является то, что для всех приведенных сечений точность определения смоченного периметра зависит от гидравлической гладкости русла. Для шероховатых поверхностей смоченный периметр существенно больше, чем для гладких. При проведении гидравлических расчетов данный факт не учитывают или применяют приближенное определение смоченного периметра для шероховатого русла.

Известен также способ определения смоченного периметра на шероховатой поверхности, предложенный проф. А.А.Сабанеевым , основанный на замене действительного смоченного периметра ломаной линией. Здесь для каждого из отрезков ломаной линии устанавливается угол наклона ее к горизонту

где h i - высота отрезков ломаной линии; b i - длина проекции каждого отрезка по горизонтали,

Суммируя значения i , получают выражение для смоченного периметра в виде:

Однако действительный смоченный периметр не может быть заменен ломаной линией, так как шероховатая поверхность сложена из мелких частиц, имеющих различную форму очертания (окружность, эллипс и других фигур более сложной формы).

Цель изобретения - упрощение способа и повышение точности определения смоченного периметра для шероховатого русла.

Поставленная цель достигается тем, что в способе определения смоченного периметра для русла с шероховатой поверхностью, включающем моделирование процесса взаимодействия потока воды с шероховатой поверхностью, для которого используют рабочую часть наклонного лотка, выполненную в виде прецизионно изготовленного образца с гидравлически гладкой поверхностью, задают с помощью системы питания постоянного напора расходы воды и замеряют высоту потока во входной и выходной частях лотка, находят графическую зависимость высоты потока от расхода воды для гидравлически гладкой поверхности, прецизионно изготовленный образец с гидравлически гладкой поверхностью заменяют на рабочую часть, выполненную с исследуемой шероховатой поверхностью, задают расходы воды и замеряют высоту потока во входной и выходной частях лотка, находят графическую зависимость высоты потока от расхода воды для шероховатой поверхности, по графическим зависимостям определяют критические расходы воды для шероховатой и гидравлически гладкой поверхности, соответствующие критическому числу Рейнольдса на границе между ламинарным и переходным режимами течения воды, выраженные на кривых резким увеличением высоты потока, определяют коэффициент смоченного периметра k как отношение критических расходов воды, соответствующих критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды, соответственно для шероховатой и гидравлически гладкой поверхностей:

h - высота потока воды в выходной части лотка, м,

и определяют величину смоченного периметра для шероховатой поверхности как произведение коэффициента смоченного периметра на смоченный периметр для гидравлически гладкой поверхности:

где Ш - смоченный периметр шероховатой поверхности, м;

Г - смоченный периметр гидравлически гладкой поверхности, м.

На фиг.1 показано устройство для реализации предложенного способа ; на фиг.2 - разрез А-А на фиг.1.

Устройство состоит из наклонного лотка 1, закрепленного на основании 2 (фиг.1), где лоток составлен из трех отдельных составных частей, состоящих из входной и выходной 3, выполненных с гидравлически гладкой поверхностью (например, зеркальное стекло), и рабочей 4, выполненной с исследуемой шероховатой поверхностью, прецизионно устанавливаемой между входной и выходной частями с помощью микрометрических винтов 5, размещенных в основании 2, микрометров 6 с мерными иглами 7, установленных во входной и выходной частях лотка вдоль его продольной оси на боковых стенках (фиг.2), уголков 8, размещенных с боков основания по всей длине, обеспечивающих прямолинейность лотка 1, системы питания 9 постоянного напора, успокоителя 10 и зажима Гофмана 11.

Способ реализуется следующим образом. Предварительно перед началом опытов взамен рабочей части 4 в лоток 1 устанавливается прецизионно изготовленный образец с гидравлически гладкой поверхностью, например зеркальное стекло, которое по линиям стыка гидроизолируется (условно не показано). Затем с помощью системы питания постоянного напора устанавливается предварительно рассчитанный расход воды Q В

где Re КР 1000 - критическое число Рейнольдса для безнапорных потоков; В - ширина лотка, м; - кинематическая вязкость воды, м 2 /с.

Открывается зажим Гофмана 11 и при помощи микрометров 6 с мерной иглой 7 замеряется высота потока воды во входной h в1 и выходной h частях лотка 1. Далее увеличивают расход воды и проводят опыты по вышеприведенной методике. Задавая расходы, определяется высота потока воды во входной h в1 и выходной h частях лотка 1. Полученные результаты заносятся в журнал наблюдений, где строится график зависимости высоты потока от расхода воды h=f(Q).

Затем взамен зеркального стекла в лоток 1 устанавливается рабочая часть 4 с исследуемой шероховатой поверхностью. Места стыка рабочей части 4 и лотка 1 гидроизолируются. Открывается зажим Гофмана 11 и при помощи микрометров 6 с мерной иглой 7 замеряется высота потока воды во входной части лотка h в (в результате исследований было установлено, что для одних и тех же заданных расходов высота потока h в h в1 , поэтому h в не замеряется) и высота потока воды в выходной h части лотка 1.

Полученные результаты заносятся в журнал наблюдений, где строится график зависимости высоты потока от расхода воды h=f(Q). По графику определяются критические расходы воды и , соответствующие критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды, выраженной на кривых h=f(Q) резким увеличением высоты потока, соответственно для шероховатой и гидравлически гладкой поверхностей.

Выразим критическое число Рейнольдса для безнапорных потоков для гидравлически гладкой поверхности

и для исследуемой шероховатой поверхности

На границе между ламинарным и переходным режимами число Рейнольдса практически одинаково для гладкой и шероховатой поверхности русла. Последнее подтверждается многочисленными исследованиями. Так по данным Чугаева Р.Р. число Рейнольдса Re не зависит от шероховатой поверхности, а на величину числа Рейнольдса Re в значительной мере влияет поперечное сечение потока.

Приравняв выражения (1) и (2), получим, что соотношение смоченных периметров шероховатой и гидравлически гладкой поверхностей равно соотношению критических расходов воды, соответствующих критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды на шероховатой и гидравлически гладкой поверхностях

Определим коэффициент смоченного периметра через соотношение критических расходов

и величину смоченного периметра для шероховатой поверхности

где k - коэффициент смоченного периметра; Ш - смоченный периметр шероховатой поверхности, м; Г - смоченный периметр гидравлически гладкой поверхности, м; - критический расход воды в м 3 /c, соответствующий критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды на шероховатой поверхности, определяемый по графической зависимости , полученной в результате эксперимента; - критический расход воды в м 3 /с, соответствующий критическому числу Рейнольдса, на границе между ламинарным и переходным режимами течения воды на гидравлически гладкой поверхности, определяемый по графической зависимости , полученной в результате эксперимента.

3. Патент РФ №2021647, кл. А 01 В 13/16, 1994.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения смоченного периметра для русла с шероховатой поверхностью, включающий моделирование процесса взаимодействия потока воды с шероховатой поверхностью, отличающийся тем, что для его осуществления используют рабочую часть наклонного лотка, выполненную в виде прецизионно изготовленного образца с гидравлически гладкой поверхностью, задают с помощью системы питания постоянного напора расходы воды и замеряют высоту потока во входной и выходной частях лотка, находят графическую зависимость высоты потока от расхода воды для гидравлически гладкой поверхности, прецизионно изготовленный образец с гидравлически гладкой поверхностью заменяют на рабочую часть, выполненную с исследуемой шероховатой поверхностью, задают расходы воды и замеряют высоту потока во входной и выходной частях лотка, находят графическую зависимость высоты потока от расхода воды для шероховатой поверхности, по графическим зависимостям определяют критические расходы воды для шероховатой


Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

3.1. Основные понятия о движении жидкости

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Рис. 3.1. Живые сечения: а - трубы, б - клапана

Смоченный периметр χ ("хи") - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Рис. 3.2. Смоченный периметр

Для круглой трубы

если угол в радианах, или

Расход потока Q - объем жидкости V , протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z)

P = φ f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

υ = f 1 (x, y, z, t)

P = φ f 1 (x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой .

Рис. 3.3. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Рис. 3.4. Труба с переменным диаметром при постоянном расходе

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q 1 =Q 2 = const , откуда

ω 1 υ 1 = ω 2 υ 2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

3.2. Уравнение Бернулли для идеальной жидкости

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P , средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2 . Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q .

Для измерения давления жидкости применяют пьезометры - тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито . Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии .

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 , называемой плоскостью сравнения , будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода .

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2 ;
- удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
- удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна .

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная .

3.3. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2 .

Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).