Оптоволоконные материалы. Оптический материал


Оптические материалы , кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, свойствам, функцией, назначению, а также по технологии изготовления.

Структура и свойства. По строению оптические материалы подразделяют на моно- и поликристаллические, стекла, аморфные, стекло-кристаллические и жидкокристаллические. Прир. монокристаллы, например, CaF 2 , SiO 2 , кальцита СаСО 3 , . каменной и др., давно используют в качестве оптических материалов. Кроме того, используют большое кол-во синтетич. монокристаллов, обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.

Поликристаллические оптические материалы характеризуются прозрачностью, по величине сходной с прозрачностью монокристаллов, и лучшими по сравнению с ними конструкц. свойствами. Наиб. применение находит оптич. (иртраны) на основе Аl 2 О 3 (напр., поликор, или лукалокс), Y 2 O 3 (иттралокс), MgAl 2 O 4 , SiO 2 (кварцевая оптич. керамика), цирконато-титанатов Pb, La (электрооптич. керамика), а также бескислородные поликристаллические оптические материалы для ИК области спектра- LiF, MgF 2 , ZnS, ZnSe и др.

Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. свойствами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве оптических материалов используют бесцветные или цветные оксидные и бескислородные стекла (см. также Стекло неорганическое). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO 2 по массе), свинцово- или боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. . например алюмосиликафосфатные стекла, содержащие Аl 2 О 3 , SiO 2 , P 2 O 5 . Несиликатные оксидные стекла содержат Р 2 О 5 , В 2 О 3 , GeO 2 или ТеО 2 . При изменении состава стекол изменяются и их оптич. константы, главным образом показатель преломления n D и коэф. дисперсии света v D . В зависимости от величин этих характеристик на диаграмме n D - v D (т. наз. диаграмма Аббе) оптические материалы делят на типы – кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (v D кроны -большим (v D > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты - SiO 2 , Na 2 O, К 2 О. Кроме того, для увеличения v D в состав кронов добавляют В 2 О 3 , А1 2 О 3 , ВаО, СаО, в состав флинтов-PbO, TiO 2 , ZnO, MgO, Sb 2 O 3 . Осветлители стекол-As 2 O 3 и Sb 2 O 3 . Наиб. высокими значениями v D обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении металлов).

Неорг. аморфные оптические материалы используют главным образом в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные оптические материалы - в виде пленок, оптич. волокон, массивных образцов (напр., ..

О стеклокристаллических оптические материалы см. . о жидкокристаллических-Жидкие кристаллы.

К особому классу относятся оптические материалы с непрерывно изменяющимся составом и оптич. свойствами. Основа таких материалов - градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или градан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых растворов галогенидов Т1), (напр., полиметилметакрилата). Градиентные слои и пленки на монокристаллах Li и др. кристаллич. или стеклянных материалах - основа интегрально-оптич. устройств.

По спектральному диапазону различают оптические материалы, пропускающие в УФ, видимой и ИК областях спектра. Некоторые оптические материалы характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют главным образом кварц, фториды Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные оптические материалы. Такие оптические материалы, как Si, Ge, GaAs, InSb, пропускают только ИК излучение; щелочных металлов, BaF 2 , ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.

Материалы оптических устройств (линзы, светофильтры и т.п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) поверхности. Наиб. важное свойство-оптич. однородность, т.к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для керамики) и т.п.

Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения поверхности. Разновидность просветляющих покрытий - интерференц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF 4 , MgF 2 или SiO 2) до среднего (2,0-2,6; ZrO 2 , GeO 2 , ZnS, TiO 2 или A1 2 S 3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют главным образом из Ag, Au, Al, поглощающие - из . . и .

Электрооптические, магнитооптические, акустооптические и пьезооптические оптические материалы характеризуются способностью менять свои оптич. свойства под действием разл. полей (электрич., магн., звуковых). Наиб. распространенные электрооптич. материалы-КН 2 РО 4 , KH 2 AsO 4 и их дейтериевые аналоги, др. и аммония, типа сфалерита и эвлитина, разл. сегнето- и антисегнетоэлектрики, в т.ч. LiNbO 3 , LiTaO 3 , BaTiO 3 , бариевостронциевые бронзы и др. К маг-нитооптич. материалам относят железоиттриевые и железо-гадолиниевые гранаты, ферриты, содержащие РЗЭ, и др. (см. Магнитные материалы). Осн. акустооптич. и пьезооптич. материалы - кварц, мн. титанаты, ниобаты, танталаты и др. (см. Акустические материалы).

Многие оптические материалы способны поляризовать световой поток, например вращать плоскость поляризации света. При облучении некоторых оптических материалов видимыми и УФ лучами наблюдается вторичное свечение-фотолюминесценция (см. Люминесценция).

Методы получения. В зависимости от состава и назначения оптических материалов для их получения применяют разл. методы. Общим является то, что все оптические материалы получают из сырья, максимально очищенного от примесей (напр., для оптических материалов, работающих в видимой и ближней ИК областях, осн. красящие примеси-Fе, Mn, Cu, Cr, Ni, Co). Содержание примесей в сырье не должно превышать 10 -2 % по массе, что обеспечивает коэф. поглощения менее 10 -2 см -1 , а в случае волоконно-оптич. материалов -10 -5 -10 -7 % по массе.

Для выращивания синтетич. используют методы монокристаллов выращивания, для оксидной керамики - спекание (см. Керамика), для получения поликристаллических оптических материалов из .горячее прессование. Бескислородные поликристаллические оптические материалы для ИК области спектра с размерами зерен ~ 50 мкм и коэф. поглощения ~ 10 -3 см -1 получают с использованием метода хим. осаждения из газовой фазы или конденсацией из паровой фазы. Оптические стекла получают методом варки стекла. Для кварцевых оптич. волокон наиб. распространено хим. осаждение из газовой фазы по реакциям SiCl 4 + O 2 SiO 2 + 2 Сl 2 или SiCl 4 + О 2 + 2Н 2 SiO 2 + 4 НСl. Образующиеся при высокой температуре частицы SiO 2 осаждают (в виде слоев) на внутр. поверхность кварцевой трубки (т. наз. CVD-метод; англ, chemical vapor deposition), внеш. поверхность цилиндрич. подложки (OVD-метод; англ. outer vapor deposition) или на торец затравочного кварцевого стержня (VAD-метод; англ, vapor axial deposition); затем при нагревании заготовка оплавляется и вытягивается в тонкое оптич. волокно. Для изменения состава и n D кварц легируют Ge, F и др. Для получения поликомпонентных и ИК оптич. волокон используют филь-ерный метод или перетяжку пары "согласованных" стекол по методу "штабик-трубка".

В предыдущих главах, рассматривая тот или иной вопрос, связанный с работой оптической системы, мы не затрагивали явлений, обусловленных изменением показателей преломления оптических сред при переходе от одного участка спектра к другому.

Оптические системы могут обслуживать довольно широкий диапазон длин волн, простирающийся от 300 нм (ультрафиолетовая часть спектра) до 1000-2000 нм (ближняя и дальняя инфракрасные части) и до и бэлее (дальняя инфракрасная часть).

Из этого широкого участка спектра на долю видимого участка, воспринимаемого глазом человека, приходится более узкий

участок от 434,1 нм (ртутная линия спектра G) до 766,5 нм (красная линия спектра , принадлежащая водороду).

В качестве опорных точек на этом участке обычно принимают следующие линии спектра:

(см. скан)

Изменение длины волны света приводит к изменению показателей преломления оптических сред. В большинстве случаев наблюдается рост показателей преломления при уменьшении длины световой волны; принято говорить, что подобные среды имеют нормальный ход изменения показателей преломления, т. е. нормальную дисперсию.

В отличие от сред с нормальной дисперсией встречаются среды, у которых рост показателей преломления связан с увеличением длины волны; такие среды называют средами с аномальной дисперсией.

Оптические стекла и большинство оптических кристаллов, используемых при создании оптических систем, обладают нормальным ходом дисперсии.

Для сопоставления свойств различных оптических сред можно воспользоваться значениями показателей преломления для каких-либо двух длин волн; в видимой части спектра обычно используют длины волн спектра водорода; такую разность показателей называют средней или основной дисперсией.

Однако знание основной дисперсии еще не позволяет достаточно полно охарактеризовать хроматические свойства той или иной среды; поэтому на практике пользуются понятием относительной дисперсии - отношением средней дисперсии к разности между основным показателем преломления среды и единицей:

Величину обратную относительной дисперсии, называют коэффициентом дисперсии или числом Аббе.

Основная дисперсия и числа Аббе дают представления о свойствах оптической среды лишь для двух выбранных линий спектра; поэтому в случае необходимости определения свойств преломляющей среды для большего числа волн прибегают кроме основных дисперсий к частным относительным дисперсиям и числам Аббе.

Сведения о преломляющих свойствах различных сред и различных марок оптического стекла регламентируются ГОСТ 3514-67 и 13659-68, а также соответствующими справочниками.

Для оптических стекол различных марок значения показателей преломления варьируют в пределах от 1,43 до 2,17, числа Аббе - от 75 до 16.

Ассортимент марок оптического стекла представлен на рис. 11.1, где вдоль оси абсцисс отложены значения чисел Аббе (в убывающем порядке) и вдоль оси ординат - величины показателей преломления. Отдельными точками обозначены стекла различных марок. Нетрудно заметить, что область существования стекол снизу ограничена довольно характерной границей, идущей первоначально почти горизонтально и постепенно поднимающейся вверх по мере уменьшения чисел Аббе.

В начале этой границы располагается группа стекол с показателями преломления от 1,50 до 1,52 и числами Аббе от 65 до 59; эта группа стекол носит название кронов и обозначается буквой К.

За группой флинтов следует группа тяжелых флинтов, обозначаемых буквами ТФ. Тяжелые флинты охватывают область показателей преломления от 1,64 до 1,80 и чисел Аббе от 34 до 26.

Между группой кронов и простых флинтов располагается группа кронфлинтов и группа легких флинтов; эти две группы обозначают буквами КФ и ЛФ. Группа кронфлинтов охватывает область значений показателей преломления от 1,50 до 1,54 и чисел Аббе от 58 до 51; группа легких флинтов занимает область показателей преломления от 1,54 до 1,58 и чисел Аббе от 47 до 38.

Все перечисленные выше марки стекол нередко называют областью старых стекол, которая раньше состояла лишь из двух первых групп - простых кронов и простых флинтов. Характерной особенностью групп старых стекол является рост показателей преломления при постепенном уменьшении чисел Аббе.

Для решения многих задач создания оптических систем с повышенными характеристиками потребовались стекла, у которых при больших показателях преломления, равных показателям преломления обычных флинтов, числа Аббе соответствовали бы кронам; такая группа стекол с показателями преломления от 1,56 до 1,65 при числах Аббе от 61 до 51 называется тяжелыми кронами и обозначается буквами ТК.

В последние десятилетия была разработана группа лантановых стекол с еще более высокими показателями преломления - от 1,66 до 1,75 - при числах Аббе от 57 до 48; это группа сверхтяжелых кронов, обозначаемая буквами СТК.

(кликните для просмотра скана)

Область стекол с показателями преломления от 1,75 до 1,8 и выше при числах Аббе от 41 до 30 образует группу тяжелых баритовых флинтов, обозначаемую буквами ТБФ.

Рост показателей преломления наблюдается и при больших значениях чисел Аббе; эта группа стекол представлена фосфатными кронами, обозначаемыми ФК, с показателями преломления от 1,52 до 1,58 и числами Аббе от 70 до 65.

При таких же значениях чисел Аббе (70-65) группа легких кронов, обозначаемая буквами ЛК, имеет показатели преломления менее 1,5.

Стекла марок БК и БФ имеют средние значения показателей преломления и чисел Аббе.

В последние годы были разработаны фтористо-фосфатные стекла типа ФФС, еще не вошедшие в ГОСТ; эти стекла имеют показатели преломления от 1,43 до 1,60 и числа Аббе от 97 до 70.

Кроме ассортимента оптических стекол используется также и ряд других материалов, прозрачных как в видимой, так и в ультрафиолетовой и инфракрасной частях спектра. Показатели преломления и числа Аббе некоторых материалов приведены ниже:

В инфракрасной области этот список может быть дополнен рядом материалов, прозрачных как в ближней, так и в дальней области спектра. Ниже приведены средние значения показателей преломления таких материалов в соответствующем интервале длин волн.

Необходимо отметить, что изменение показателей преломления в известной степени связано также и с изменением температуры; аберрации в оптических системах, вызванные этими изменениями, называют термооптическими аберрациями.

Использование: в частности оптические системы, обладающие улучшенным качеством изображения при теоретически предельных характеристиках. Сущность изобретения: для изготовления линз используется ортогерманат висмута, что позволяет при разработке оптических систем при одинаковых фокусных расстояниях повысить качество изображения за счет исправления астигматизма вследствие уменьшения кривизны преломляющей поверхности, а также увеличить срок эксплуатации оптических систем за счет негигроскопичности материала, его монокристалличности, а также высокой радиационной стойкости. 1 ил., 1 табл.

Изобретение относится к оптике в частности к линзам, и может использоваться в оптических системах, обладающих улучшенным качеством изображения при теоретически предельных характеристиках. Известны оптические материалы стекла с высоким показателем преломления в частности, сверхтяжелые кроны СТК16 и СТК20 с показателями преломления n e =1,790 и 1,768 и дисперсиями 45,4 и 50 соответственно По химическому составу сверхтяжелые кроны представляют собой боратные стекла, содержащие 7-39 мол. SiO 2 ; 24-52 мол. B 2 O 3 ; 34-48 мол. (CaO, ZnO, Al 2 O 3 + La 2 O 3 , TiO 2 , ZrO 2) Известна также группа тяжелых баритовых флинтов, например, ТБФ9 с n e = 1,8129 и n 42,5, а также ТБФ11 с n e =1,837 и n 42,8. По химическому составу тяжелые баритовые флинты состоят из 20-40 мол. SiO 2 ; 20 мол. B 2 O 3 ; 3-43 мол. BaO, PbO с добавками ZnO, CaO, TiO 2 , WO 3 Эти стекла довольно перспективны для улучшения качества изображения при разработке оптических систем с характеристиками, близкими к предельным. Однако, показатель преломления этих стекол ограничен величинами, указанными выше, и не может быть более 2,0, при этом они имеют высокие значения дисперсии. Достаточно сложная технология изготовления таких стекол оптического качества ограничивает их выпуск и определяет высокую стоимость. Кроме того к недостаткам этих стекол относится их взаимодействие с влагой. По показателю пятнаемости стекла, содержащие >17 мол. B 2 O 3 относятся к III группе (пятнающиеся стекла) и IV группе (нестойкие стекла) Наиболее близким к предлагаемому материалу для изготовления линз является оптический материал: к которому относится группа сверхтяжелых флинтов типа СТФ2 с n e =1,955, и n 20,2 и СТФ3 с n e =2,186 и n 16,6. По химическому составу сверхтяжелые флинты состоят из 50 мол. SiO 2 ; 48-59 мол. PbO и 0,5-1,5 мол. K 2 O (Na 2 O). Недостатком таких стекол, является желтый оттенок, что снижает прозрачность в видимой области на 10-20% а также повышенная кристаллизационная способность, что приводит к изменению оптических характеристик вследствие старения Техническим результатом изобретения является изыскание оптического преломляющего материала с высоким показателем преломления при относительно невысокой дисперсии (n 20), обеспечивающего повышение качества изображения. Согласно изобретению технический результат обеспечивается за счет того, что ортогерманат висмута Bi 4 Ge 3 O 12 , показатель преломления которого n=2,1, а дисперсия n 20. Указанное соединение описано в литературе и ранее использовалось в качестве сцинтилляционного материала для регистрации гамма-излучения, электроном и др. элементарных частиц в ядерной физике, геологии, медицине. Использование ортогерманата висмута для изготовления линз в литературе не описано. Применение ортогерманата висмута Bi 4 Ge 3 O 12 в сравнении с обычными кроновыми и флинтовыми стеклами (аналоги и прототип) при одинаковых (нормированных) фокусных расстояниях приводит к меньшей кривизне преломляющих поверхностей и вследствие этого к снижению абберций всех порядков, а это в свою очередь, приводит к возможности увеличения относительного отверстия оптической системы без ее усложнения. При этом, помимо возможности создания новых систем, возникает возможность упрощения серийно выпускаемых оптических систем, в частности, фотообъективов за счет замены в них сложных коррекционно-силовых компонентов более простыми, содержащими ортогерманат висмута. Таким образом, применение Bi 4 Ge 3 O 12 в качестве оптического материала при изготовлении линз оптических систем приводит к возможности повышения качества изображения без их усложнения за счет уменьшения кривизны преломляющей поверхности и за счет исправления астигматизма. Получение монокристаллов ортогерманата висмута. Исходную смесь оксидов висмута (III) марки ОСФ 13-3 (для монокристаллов) и оксида германия (IV) (ТУ 48-21-72), взятую в соотношении Bi 2 O 3:GeO 2 2:3, в количестве 1,0 кг перемешивают в агатовой ступке и затем проводят твердофазный синтез шихты Bi 4 Ge 3 O 12 в платиновой чашке на воздухе при 750-950 o C. Полученную шихту загружают в платиновый тигель диаметром 200 мм, высотой 300 мм в количестве 40 кг, расплавляют и проводят процесс выращивания монокристаллов методом Чохральского на ориентированную затравку. Получают бесцветные монокристаллы диаметром до 150 мм и длиной до 250 мм. На чертеже представлен окуляр. В качестве примера конкретного использования можно привести разработку окуляра для телескопических систем. Окуляр имеет следующие конструктивные параметры (см.таблицу). Расчет хода действительных лучей свидетельствует, что по сравнению с известным трехлинзовым окулятором, в котором одна линза (N 1) с высоким показателем преломления (n=2,0667), выполненная из сверхтяжелого флинта заменяется на линзу из ортогерманата висмута, данный окуляр обладает улучшенным качеством изображения за счет уменьшения кривизны поверхности линзы, и исправления астигматизма (астигматическая разности в пределах поля 30 o не превышает 2 мм, что более чем в три раза лучше, чем в известном окуляре). Применение линз, выполненных из ортогерманата висмута Bi 4 Ge 3 O 12 при разработке оптических систем при одинаковых (нормированных) характеристиках позволяет повысить качество изображения без усложнения оптической системы, а также существенно расширить спектральный диапазон применения оптических приборов. Кроме того, использование Bi 4 Ge 3 O 12 выгодно экономически, т.к. позволяет снизить стоимость изделий за счет несложной технологии изготовления предлагаемого оптического материала. Использование линз, выполненных из ортогерманата висмута позволяет также увеличить срок эксплуатации оптических систем за счет негигроскопичности применяемого материала (отсутствие пятнаемости), высокой радиационной стойкости. Поскольку в качестве оптического материала используется монокристалл (а не стекло как в прототипе), то устраняется один из основных недостатков высокопреломляющих стекол, а именно повышенная кристаллизационная способность, что также позволяет увеличить срок эксплуатации этого материала. Источники информации: 1. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 52. 2. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 62-77. 3. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 62. 4. Физико-химические основы производства оптического стекла /под ред. Л. И.Демкиной. Л. Химия, 1976, с. 185-186, с. 209-220. 5. Бесцветное оптическое стекло СССР. Каталог. М. Госстандарт, 1990, с. 74. 6. Каргин Ю.Ф. Каргин В.Ф. Скориков В.М. Шадеев Н.И. Пехова Т.И. Синтез и излучение сцинтилляционных свойств монокристаллов Bi 4 Ge 3 O 12 . Изв. АН СССР, Неорганические материалы, 1984, т. 20, N 5, с. 815-817. 7. Русинов М.М. Композиция оптических систем. Л. Машиностроение, 1989, с. 202-203.

Формула изобретения

Применение монокристаллов ортогерманата висмута Bi 4 Ge 3 O 1 2 в оптических системах в качестве оптического материала с показателем преломления n 2,1 и дисперсией = 20.н

Основные характеристики оптических материалов.

Диаграмма пропускания оптических материалов для инфракрасной области спектра.

Кристаллографические характеристики

Кристаллы - твердые тела c упорядоченной атомной трехмерно-периодической пространственной структурой, называемойкристаллической решеткой. Кристаллические оптические материалы обладают высокой прозрачностью в ультрафиолетовой и инфракрасной областях спектрального диапазона и разнообразием дисперсионных свойств, что обуславливает их использование в оптике. Приведенные кристаллографические данные включают сингонию, класс симметрии, параметры решетки и спайность.
Сингония характеризует кристаллы по признаку формы элементарной ячейки, определяя тип симметрии.
Класс симметрии кристалла отражает полную совокупность его возможных симметричных преобразований.
Параметры решетки – это ее три элементарные трансляции a, b и c.
Спайность - способность кристалла раскалываться по определенным кристаллографическим плоскостям, в направлениях, где химические связи решетки ослаблены. Для обозначения спайности указывают кристаллографический символ плоскости легкого раскола. Качественно, спайность характеризуется как " высоко-совершенная ", "совершенная" или "несовершенная".
Кристалл может состоять из одного целостного блока - монокристалл или из хаотически ориентированных монокристаллических зерен разного размера - поликристаллы. Кристаллографические особенности поликристаллов определяются свойствами зерен, из которых они образованы, а также их величиной, взаимным расположением и силами взаимодействия между ними.

Оптические характеристики

. Показатель преломления n , обозначает отношение фазовых скоростей света в и в материале. Показатель определяется свойствами вещества и длиной световой волны. Для некоторых кристаллов показатель преломления сильно меняется при изменении длины волны излучения, а также может еще более резко меняться в областях частотной шкалы где возрастает поглощение излучения материалом. Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света.
Температурный коэффициент показателя преломления определяется по следующей формуле: b(t,l) = dn(l)/dt, º Cˉ¹ где t – температура. Для анизотропных и оптически одноосных кристаллов фтористого магния и сапфира значения показателей преломления и относительного температурного коэффициента показателя преломления приведены для обыкновенного nо и необыкновенного nе лучей.
Коэффициент пропускания t(l) - отношение потока монохроматического излучения, прошедшего сквозь образец материала, к потоку падающего излучения. В некоторых случаях вместо коэффициента пропускания указывается значение показателя ослабления, который рассчитывается по следующей формуле:

Где t i (l) - коэффициент внутреннего пропускания, который равен отношению потока монохроматического излучения, достигшего выходной поверхности образца, к потоку излучения, прошедшему через его входную поверхность, S - толщина образца, измеренная в сантиметрах. Ослабление излучения вызывается поглощением и рассеянием внутри материала, но оно не включает потери на отражение, которые могут быть определены по формуле:

Потери на отражение = (n-1)2 / (n+1)2

В таблицах приведены коэффициенты для пропускания для образцов материала толщиной 10 мм.

Тепловые характеристики

Температурный коэффициент линейного расширения a t , °С -1 , характеризует относительное изменение длины образца при изменении его температуры на 1 °С и определяется по формуле:

Где l - длина образца; t-температура.
Теплопроводность , Вт/(м °С) , характеризует способность материала проводить тепло и определяется количеством теплоты, передаваемым через единичную площадку за единицу времени при единичном градиенте температуры. Для анизотропных кристаллов фтористого магния и сапфира значения температурного коэффициента линейного расширения и теплопроводности приведены в направлениях параллельном и перпендикулярном оптической оси.
Удельная теплоемкость , Дж/(кг °С) , определяется как количество тепловой энергии, необходимой для повышения температуры одного килограмма вещества на один градус по Цельсию..
Термостойкость , °С, характеризует способность v материала выдерживать термические напряжения не разрушаясь. Мерой термостойкости является максимальная разность температур при быстрой их смене, выдерживаемая образцом без разрушения.

Механические характеристики

Плотность , г/см³ , определяется отношением массы вещества к его объему.
Твердость по Моосу , характеризует способность материала подвергаться царапанию другим материалом. Приведены справочные числа твердости по условной шкале Мооса, в которой 10 стандартных минералов расположены в ряд по степени возрастания твердости.
Микротвердостъ по Виккерсу , Па, характеризует сопротивление поверхности материала вдавливанию твердого наконечника - индентора в виде четырехгранной алмазной пирамидки при определенной нагрузке. Приведены справочные значения микротвердости при нагрузке 1 Н.
Постоянные упругой податливости S 11, S 12, S 44 , Па -1 являются коэффициентами пропорциональности между составляющими напряжения и деформации.
Модуль упругости (модуль Юнга) E, Па, - нормальное напряжение, изменяющее линейный размер тела в два раза.
Модуль сдвига G, Па, - касательное напряжение, вызывающее относительный сдвиг, равный единице.
Коэффициент поперечной деформации (коэффициент Пуассона) – отношение относительного поперечного сжатия к его относительному удлинению.

Фотоупругие характеристики

Оптические коэффициенты напряжений В 1 , В 2 , Па -1 отражают взаимосвязь между двулучепреломлением и вызывающем его напряжениями:

Где Dn12 - двулучепреломление, вызываемое напряжением сдвига s12.

Фотоупругие постоянные С 1 , С 2, Па -1 характеризуют зависимость изменения показателя преломления D n 1 и D n 2 материала под действием нормального напряжения s приложенного вдоль главных кристаллографических направлений.

Пьезооптические постоянные p 11, p 12 , p 44, Па -1 являются коэффициентами пропорциональности между составляющими напряжения и показателя преломления.


Скачать: oticheskiemateriali1995.djvu

Ответственный редактор А. С К О Ч E Н С К И ЙПРЕДИСЛOBИE

Большие успехи, достигнутые в развитии физики и химии твердого тела, а также многих отраслей техники, в значительной степени обусловлены созданием синтетических кристаллов с разнообразными свойствами.

Настоящая книга посвящена определенному классу кристаллических материалов, а именно оптическим кристаллам, которые применяются в инфракрасной технике. Для наиболее эффективного использования этих материалов требуется знание оптических, термомеханических, электрических и других характеристик. Однако эти характеристики, к сожалению, недостаточно систематизированы в научной литературе, что затрудняет выбор материала с оптимальными свойствами. Авторы поставили целью собрать в единое целое необходимые данные, разбросанные по многочисленным монографиям и оригинальным статьям. В результате анализа большого числа литературных данных были отобраны 74 материала, которые либо уже широко используются в инфракрасной технике, либо являются весьма перспективными. В число этих материалов были также включены наиболее интересные стекла и пластические массы. Затем были выявлены те свойства материалов, которые наиболее важны при их применении и качестве оптических материалов.Описание оптических материалов и их свойств и составляет содержание настоящей книги.

Авторы выражают глубокую признательность. Д. Кисловскому за ценные советы и замечания, проф. М. В. Классен-Неклюдовой за ценные критические замечания, И. М. Сильвестровой и. А. Шувалову за помощь в работе.

Авторы были бы признательны за все замечания, относящиеся к построению и содержанию книги, которые могли бы быть учтены при дальнейшей работе над справочной монографией подобного рода.I. ОПТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ИНФРОKРАСНОЙ ТЕХНИКИ

За последние годы резко возросло применение инфракрасного излучения л физике, химии, биологии и технике. Инфракрасный спектральный анали;! позволяет осуществлять количественное определение состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении анергии химических связей, механизма химических реакций, процессов поглощения излучения в твердых телах, особенно в полупроводниках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые області» применения инфракрасного излучения и связи с созданием квантово механических генераторов, работающих в инфракрасном участке спектра.

Важнейшие детали и узлы в инфракрасной аппаратуре построены из ряда оптических материалов. Оптические материалы требуются для изготовления призм, линз, окошек, фильтров, кювет, обтекателей и т. д. Эти материалы должны обладать разнообразными физическими и химическими свойствами и удовлетворять достаточно жестким эксплуатационным требованиям.

Необходимым условием для использовании оптических материалов является их хорошая прозрачность в нужном участке инфракрасного спектра. В настоящее время имеются материалы с достаточно высокой прозрачностью, по крайней мере в определенном спекі рельном диапазоне.Просветленно оптики еще более расширяет возможности выбора подходящего прозрачного материала. Отметим, что в последнее время увеличилась потребность в оптических материалах для дальней инфракрас-6

ной области спектра 200 - 1000 мк. В ряде случаев, кроме прозрачности материалов в инфракрасной области спектра, требуется дополнительная прозрачность для радиоволнового диапазона.

Важной оптической.характеристикой материалов является их показатель преломления и днсиерсня. Во многих случаях (призмы, оптические системы г большим увеличением и широким углом зрения) необходимы материалы с высоким показателем преломления, в то время как при изготовлении окон и обтекателей желателен небольшой показатель преломления, во избежание больших потерь на отражение. Кроме того, для возможности корректировки аберрации в оптических системах и создания иммерсионной оптики необходимо иметь материалы, обладающие различными показателями преломления. Весьма большое значение n.wor тсмиературнан зависимость нро-пускания и преломления материалов,ибо часто в">з шкаег нагрев оптических деталей до сравнительно высоких температур.

Как правило, в оптических материалах, используемых в инфракрасной технике, двупреломление должно отсутствовать. Однако для создания некоторых типов оптических конструкций, например, интер-ферепционпо-полярнзационпых фильтров или компенсаторов, требуются материалы, обладающие дьупреломлением в инфракрасной области спектра.

Весьма интересны материалы, обладающие электрооптическим эффектом (эффектом Керри), которые становятся двупреломляющимн иод действием электрического ноли. Такие материалы позволяют создавать твердые ячейки Keppa, обеспечивающие модуляцию излучения.