Оптический материал. Оптические материалы4

), полимерные (Органическое стекло) и другие материалы, прозрачные в том или ином диапазоне электромагнитных волн . Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой , видимой , инфракрасной областях спектра .

В разговорной речи и в промышленности нередко все твёрдые оптические материалы называют стёклами.

Роль оптических материалов иногда выполняют и оптические среды, некоторые полимеры, плёнки, воздух, газы, жидкости и другие вещества, пропускающие оптическое излучение .

Силикатные стёкла

Самым древним и известным оптическим материалом является обычное стекло , состоящее из смеси диоксида кремния и других веществ. Развитие технологии и ужесточение требований по мере роста совершенства оптических приборов привели к созданию особого класса технических стёкол - оптического стекла .

От прочих стёкол оно отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией .

Кварцевое стекло

См. также

Напишите отзыв о статье "Оптические материалы"

Примечания

Литература

  • Винчелл А. Н., Винчелл Г., Оптические свойства искусственных минералов, пер. с англ., М., 1967;
  • Сонин А. С., Василевская А. С., Электрооптические кристаллы, М., 1971;
  • Физико-химические основы производства оптического стекла, под ред. Н. И. Демкиной, Л., 1976;
  • Мидвин-тер Д. Э., Волоконные световоды для передачи информации, пер. с англ., М., 1983;
  • Кочкин Ю. И., Румянцева Г. Н., «Зарубежная радиоэлектроника», 1985, № 9, с. 89-96;
  • Леко В. К., Мазурин О. В., Свойства кварцевого стекла, Л., 1985;
  • Deutsch Т. F., «J. Electronic Materials», 1975, v. 4, № 4, р.663-719;
  • Lucas I., «Infrared Physics», 1985, v.25, № 1/2, p.277-81.

Ссылки

Отрывок, характеризующий Оптические материалы

– Урра! – зазвучали воодушевленные голоса офицеров.
И старый ротмистр Кирстен кричал воодушевленно и не менее искренно, чем двадцатилетний Ростов.
Когда офицеры выпили и разбили свои стаканы, Кирстен налил другие и, в одной рубашке и рейтузах, с стаканом в руке подошел к солдатским кострам и в величественной позе взмахнув кверху рукой, с своими длинными седыми усами и белой грудью, видневшейся из за распахнувшейся рубашки, остановился в свете костра.
– Ребята, за здоровье государя императора, за победу над врагами, урра! – крикнул он своим молодецким, старческим, гусарским баритоном.
Гусары столпились и дружно отвечали громким криком.
Поздно ночью, когда все разошлись, Денисов потрепал своей коротенькой рукой по плечу своего любимца Ростова.
– Вот на походе не в кого влюбиться, так он в ца"я влюбился, – сказал он.
– Денисов, ты этим не шути, – крикнул Ростов, – это такое высокое, такое прекрасное чувство, такое…
– Ве"ю, ве"ю, д"ужок, и "азделяю и одоб"яю…
– Нет, не понимаешь!
И Ростов встал и пошел бродить между костров, мечтая о том, какое было бы счастие умереть, не спасая жизнь (об этом он и не смел мечтать), а просто умереть в глазах государя. Он действительно был влюблен и в царя, и в славу русского оружия, и в надежду будущего торжества. И не он один испытывал это чувство в те памятные дни, предшествующие Аустерлицкому сражению: девять десятых людей русской армии в то время были влюблены, хотя и менее восторженно, в своего царя и в славу русского оружия.

На следующий день государь остановился в Вишау. Лейб медик Вилье несколько раз был призываем к нему. В главной квартире и в ближайших войсках распространилось известие, что государь был нездоров. Он ничего не ел и дурно спал эту ночь, как говорили приближенные. Причина этого нездоровья заключалась в сильном впечатлении, произведенном на чувствительную душу государя видом раненых и убитых.
На заре 17 го числа в Вишау был препровожден с аванпостов французский офицер, приехавший под парламентерским флагом, требуя свидания с русским императором. Офицер этот был Савари. Государь только что заснул, и потому Савари должен был дожидаться. В полдень он был допущен к государю и через час поехал вместе с князем Долгоруковым на аванпосты французской армии.
Как слышно было, цель присылки Савари состояла в предложении свидания императора Александра с Наполеоном. В личном свидании, к радости и гордости всей армии, было отказано, и вместо государя князь Долгоруков, победитель при Вишау, был отправлен вместе с Савари для переговоров с Наполеоном, ежели переговоры эти, против чаяния, имели целью действительное желание мира.
Ввечеру вернулся Долгоруков, прошел прямо к государю и долго пробыл у него наедине.
18 и 19 ноября войска прошли еще два перехода вперед, и неприятельские аванпосты после коротких перестрелок отступали. В высших сферах армии с полдня 19 го числа началось сильное хлопотливо возбужденное движение, продолжавшееся до утра следующего дня, 20 го ноября, в который дано было столь памятное Аустерлицкое сражение.
До полудня 19 числа движение, оживленные разговоры, беготня, посылки адъютантов ограничивались одной главной квартирой императоров; после полудня того же дня движение передалось в главную квартиру Кутузова и в штабы колонных начальников. Вечером через адъютантов разнеслось это движение по всем концам и частям армии, и в ночь с 19 на 20 поднялась с ночлегов, загудела говором и заколыхалась и тронулась громадным девятиверстным холстом 80 титысячная масса союзного войска.
Сосредоточенное движение, начавшееся поутру в главной квартире императоров и давшее толчок всему дальнейшему движению, было похоже на первое движение серединного колеса больших башенных часов. Медленно двинулось одно колесо, повернулось другое, третье, и всё быстрее и быстрее пошли вертеться колеса, блоки, шестерни, начали играть куранты, выскакивать фигуры, и мерно стали подвигаться стрелки, показывая результат движения.
Как в механизме часов, так и в механизме военного дела, так же неудержимо до последнего результата раз данное движение, и так же безучастно неподвижны, за момент до передачи движения, части механизма, до которых еще не дошло дело. Свистят на осях колеса, цепляясь зубьями, шипят от быстроты вертящиеся блоки, а соседнее колесо так же спокойно и неподвижно, как будто оно сотни лет готово простоять этою неподвижностью; но пришел момент – зацепил рычаг, и, покоряясь движению, трещит, поворачиваясь, колесо и сливается в одно действие, результат и цель которого ему непонятны.

Оптические материалы

оптическим излучением

Самыми распространенными в настоящее время являются кристаллы группы KDP .

KDP (дигидрофосфат калия,KH 2 PO 4 ),

DKDP (дидейтерофосфат калия,KD 2 PO 4 ),

ADP (дигидрофосфат аммония NH4 H2 O4 ),

DADP (дейтерированный дигидрофосфат аммония ND4 D2 O4 ), CDA (дигидроарсенат цезия CsH2 AsO4 ),

DCDA (детероарсенат цезия CsD2 AsO4 ), KDA (дигидроарсенат калия KH2 AsO4 ), RDA (дигидроарсенат рубидия RbH2 AsO4 ), RDP (дигидрофосфат рудибия RbH2 PO4 ).

В основном используются кристаллы KDP иDKDP .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дигидрофосфат калия (KDP) (KH 2 PO 4 ) –

синтетический бесцветный кристалл, выращиваемый из водных растворов методом медленного снижения температуры.

Кристалл KDP был использован в качестве нелинейной среды одним из первых, так что величина его нелинейных характеристик до сих пор является эталоном, и часто нелинейные коэффициенты других кристаллов даются в единицах, относительно KDP.

Диапазон прозрачности 0,1767 1,5 мкм. Коэффициент линейного поглощения 0,03 0,05 см-1 вблизи = 1,06 мкм. Обладает высоким линейным электрооптическим эффектом при наложении электрического поля вдоль осиz , т.е. вдоль направления (001). Электрооптическая постояннаяr 63 = 10,5 10-10 см/В (при = 0,9893 мкм,Т = 295 К). В настоящее время является одним из основных материалов для изготовления умножителей частоты, генераторов гармоник, модуляторов света. Температура эксплуатации не должна превышать 393 К. Особенно эффективно применение при пониженных температурах и при частотах до 10 Гц (при СВЧ сильно возрастают диэлектрические потери). Показатели преломления

n о = 1,4936,n е = 1,4598 (для = 1,06 мкм). Полуволновое напряжение для = 0,547 мкм приT = 293 К 7,5 кВ. Плотность 2,338 г/см3 .

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

KDP имеет высокую оптическую прочность (около 2 ТВт/см2 при воздействии пикосекундных импульсов = 30 пс, = 1,06 мкм, поверхностная прочность примерно на порядок меньше и сильно зависит от состояния рабочих поверхностей). Кристаллы хорошо растворяются в этиловом спирте, бензине, но особенно хорошо растворяются в воде (33 г на 100 г воды) и высоко гигроскопичны.

К основным недостаткам относятся малая механическая прочность, высокая гигроскопичность и невозможность использования для модуляции излучения при длинах волн больше

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Дидейтерофосфат калия (DKDP) (KD 2 PO 4 ) – является дейтерированным аналогом KDP и имеет более высокие технические и эксплуатационные характеристики. DKDP выращивается из водных растворов с использованием тяжелой воды.

Прозрачен от 0,2 до 2 мкм, коэффициент поглощения при

1,06 мкм на порядок ниже, чем у KDP. В связи с более высоким значением электрооптического коэффициента (более чем в 2 раза) получил более широкое распространение в модуляторах, чемKDP (электрооптическая постояннаяr 63 = 25,7 10-10 см/В при = 0,69 мкм,Т = 293 К). При уменьшении температуры электрооптическая постоянная резко возрастает (379 10-10 см/В при 217 К).

Ниобат лития (LiNbO 3 )

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

) – одноосный отрицательный кристалл тригональной сингонии. Нерастворим в воде и слабых кислотах. Весьма технологичен при механической обработке и склеивании. Производится методом вытягивания из расплава.

Диапазон прозрачности 0,33 5,5 мкм.

Нелинейные кристаллы и кристаллы для управления

оптическим излучением

Кристалл широко используется в системах генерации второй гармоники лазерного излучения и в электрооптических модуляторах света (т.к. обладает малыми полуволновыми напряжениями – всего сотни вольт).

Имеет существенные недостатки: ярко выраженный фоторефрактивный эффект (обратимое оптическое разрушение типа optical damage); малая оптическая прочность (излучение неодимового лазера разрушает кристаллы ниобата лития при интенсивности 6 МВт/см2 ); необходимость хорошей термостабилизации. Эти недостатки позволяют использовать ниобат лития в модуляторах только низкоинтенсивных лазеров (типа гелий-неонового). Ниобат лития с примесями элементов группы железа широко применяется в оптических запоминающих устройствах. Находит свое использование и в поляризационных призмах в условиях повышенной влажности.

Оптическая керамика (иртран )– это стеклокристаллический материал, получаемый из поликристаллической массы методом горячего (при температурах около 2/3 температуры плавления вещества) прессования под большим давлением в вакууме. Размер зерен микрокристаллов порядка десятков микрометров.

Данные керамики механически изотропны, по термомеханическим свойствам значительно превосходят аналоги соответствующих монокристаллов. Хорошо обрабатываются и обладают высокой устойчивостью к тепловым ударам. По плотности и прозрачности эти материалы близки к соответствующим монокристаллам.

Преимущество керамик заключается в их высокой однородности, которая дает возможность изготавливать из них крупные оптические детали.

Помимо этого керамика применяется для изготовления светорассеивающих экранов, подложек интерференционных светофильтров, окон приборов, работающих в ИК области спектра, а также в условиях высоких механических и термических нагрузок.

Оптические поликристаллы (оптическая керамика)

Наиболее распространена оптическая керамика КО1 (MgF 2 ). Ее рабочий спектральный интервал 1…7 мкм.

Керамика КО2 (ZnS ) работает в интервале 1…14 мкм. Показатель преломления для 10,6 мкм равен 2,2. Температура плавления 1850 С, но гораздо ранее она начинает окисляться.

Керамика КО3 (CaF 2 ) может работать в спектральном интервале 0,4…10 мкм, но рабочая область сильно зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла. Химически устойчива. Отсутствие плоскостей спайности в поликристаллическом фтористом кальции увеличивает его устойчивость к механическим и тепловым ударам. Является перспективным материалом для прозрачных в ИК области элементов, работающих при больших перепадах давления и температуры.

Оптические поликристаллы (оптическая керамика)

Керамика КО4 (ZnSe )

диапазон 0,5…21 мкм (реально до 15 мкм),

но рабочая область зависит от качества сырья, в видимой области прозрачность несколько ниже, чем у монокристалла.

Показатель преломления n=2,402 при λ=10,6мкм (сильно зависит от температуры).

Показатель поглощения α=0,13 см-1 при λ=10,6мкм.

Температура плавления 1520 С, но сильное окисление начинается от

В воде не растворяется, слабо растворяется в кислотах. Является перспективным материалом для прозрачных в ИК отласти элементов, работающих при больших перепадах давления и температуры.

Керамика КО5 (MgO ), диапазон 0,4…8 мкм. Температура плавления 2800 С.

n=1,723 при =2 мкм.

Высокая теплопроводность позволяет использовать КО5 в изделиях, подвергающихся температурным ударам. В воде не растворяется, но при длительном хранении в атмосферных условиях взаимодействует с влагой и углекислотой с поверхностным образованием тонкого налета карбоната магния. Поэтому при длительном хранении поверхность лучше подвергать химической защите.


Скачать: oticheskiemateriali1995.djvu

Ответственный редактор А. С К О Ч E Н С К И ЙПРЕДИСЛOBИE

Большие успехи, достигнутые в развитии физики и химии твердого тела, а также многих отраслей техники, в значительной степени обусловлены созданием синтетических кристаллов с разнообразными свойствами.

Настоящая книга посвящена определенному классу кристаллических материалов, а именно оптическим кристаллам, которые применяются в инфракрасной технике. Для наиболее эффективного использования этих материалов требуется знание оптических, термомеханических, электрических и других характеристик. Однако эти характеристики, к сожалению, недостаточно систематизированы в научной литературе, что затрудняет выбор материала с оптимальными свойствами. Авторы поставили целью собрать в единое целое необходимые данные, разбросанные по многочисленным монографиям и оригинальным статьям. В результате анализа большого числа литературных данных были отобраны 74 материала, которые либо уже широко используются в инфракрасной технике, либо являются весьма перспективными. В число этих материалов были также включены наиболее интересные стекла и пластические массы. Затем были выявлены те свойства материалов, которые наиболее важны при их применении и качестве оптических материалов.Описание оптических материалов и их свойств и составляет содержание настоящей книги.

Авторы выражают глубокую признательность. Д. Кисловскому за ценные советы и замечания, проф. М. В. Классен-Неклюдовой за ценные критические замечания, И. М. Сильвестровой и. А. Шувалову за помощь в работе.

Авторы были бы признательны за все замечания, относящиеся к построению и содержанию книги, которые могли бы быть учтены при дальнейшей работе над справочной монографией подобного рода.I. ОПТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ИНФРОKРАСНОЙ ТЕХНИКИ

За последние годы резко возросло применение инфракрасного излучения л физике, химии, биологии и технике. Инфракрасный спектральный анали;! позволяет осуществлять количественное определение состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении анергии химических связей, механизма химических реакций, процессов поглощения излучения в твердых телах, особенно в полупроводниках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые області» применения инфракрасного излучения и связи с созданием квантово механических генераторов, работающих в инфракрасном участке спектра.

Важнейшие детали и узлы в инфракрасной аппаратуре построены из ряда оптических материалов. Оптические материалы требуются для изготовления призм, линз, окошек, фильтров, кювет, обтекателей и т. д. Эти материалы должны обладать разнообразными физическими и химическими свойствами и удовлетворять достаточно жестким эксплуатационным требованиям.

Необходимым условием для использовании оптических материалов является их хорошая прозрачность в нужном участке инфракрасного спектра. В настоящее время имеются материалы с достаточно высокой прозрачностью, по крайней мере в определенном спекі рельном диапазоне.Просветленно оптики еще более расширяет возможности выбора подходящего прозрачного материала. Отметим, что в последнее время увеличилась потребность в оптических материалах для дальней инфракрас-6

ной области спектра 200 - 1000 мк. В ряде случаев, кроме прозрачности материалов в инфракрасной области спектра, требуется дополнительная прозрачность для радиоволнового диапазона.

Важной оптической.характеристикой материалов является их показатель преломления и днсиерсня. Во многих случаях (призмы, оптические системы г большим увеличением и широким углом зрения) необходимы материалы с высоким показателем преломления, в то время как при изготовлении окон и обтекателей желателен небольшой показатель преломления, во избежание больших потерь на отражение. Кроме того, для возможности корректировки аберрации в оптических системах и создания иммерсионной оптики необходимо иметь материалы, обладающие различными показателями преломления. Весьма большое значение n.wor тсмиературнан зависимость нро-пускания и преломления материалов,ибо часто в">з шкаег нагрев оптических деталей до сравнительно высоких температур.

Как правило, в оптических материалах, используемых в инфракрасной технике, двупреломление должно отсутствовать. Однако для создания некоторых типов оптических конструкций, например, интер-ферепционпо-полярнзационпых фильтров или компенсаторов, требуются материалы, обладающие дьупреломлением в инфракрасной области спектра.

Весьма интересны материалы, обладающие электрооптическим эффектом (эффектом Керри), которые становятся двупреломляющимн иод действием электрического ноли. Такие материалы позволяют создавать твердые ячейки Keppa, обеспечивающие модуляцию излучения.

), поликристаллические (Прозрачные керамические материалы), полимерные (Органическое стекло) и другие материалы, прозрачные в том или ином диапазоне электромагнитных волн . Их применяют для изготовления оптических элементов, работающих в ультрафиолетовой , видимой , инфракрасной областях спектра .

В разговорной речи и в промышленности нередко все твёрдые оптические материалы называют стёклами.

Роль оптических материалов иногда выполняют и оптические среды, некоторые полимеры, плёнки, воздух, газы, жидкости и другие вещества, пропускающие оптическое излучение .

Силикатные стёкла

Самым древним и известным оптическим материалом является обычное стекло , состоящее из смеси диоксида кремния и других веществ. Развитие технологии и ужесточение требований по мере роста совершенства оптических приборов привели к созданию особого класса технических стёкол - оптического стекла .

От прочих стёкол оно отличается особенно высокой прозрачностью, чистотой, бесцветностью, однородностью, а также строго нормированными преломляющей способностью и дисперсией .

Кварцевое стекло

Переплавляя чистый диоксид кремния (например, горный хрусталь), получают так называемое кварцевое стекло . От прочих силикатных стёкол оно отличается существенной химической стойкостью, чрезвычайно малым коэффициентом линейного расширения и относительно высокой температурой плавления (1713–1728 °C). Благодаря этому возможно построение оптических систем, работающих в более широком диапазоне температур и агрессивных сред.

Кроме того, кварцевое стекло прозрачно для ультрафиолетового диапазона электромагнитных волн, что делает этот материал незаменимым для оптических систем, работающих в этой области спектра.

Органические стёкла

Основным поводом к созданию искусственного заменителя - органического стекла , стало отсутствие в пору его разработки (1930-е годы) материалов, пригодных для использования в авиации - прозрачных но нехрупких и достаточно прочных и гибких - этими качествами и был наделён данный синтетический полимер. В настоящее время органическое стекло уже не способно удовлетворять всем требованиям, предъявляемым ни авиацией, ни, тем более - космонавтикой, однако на смену ему пришли другие виды пластиков и новые модификации «обычного» стекла (наделённые повышенной отражательной способностью, термостойкие и прочные). Оргстекло по строгим физико-химическим характеристикам к своему прототипу отношения не имеет.

Кремний

Инфракрасная область

Линза, изготовленная из однородного кремния , прозрачна для инфракрасного излучения и непрозрачна для видимого света. В этой области спектра кремний имеет:

Рентгеновские линзы

Свойства кремния позволили создать новый тип фокусирующих систем для волн рентгеновского диапазона. Для изготовления таких систем используется контролируемое формирование периодического массива пор в процессе глубокого фотоанодного травления кремния. в ИПТМ РАН были разработаны способы управления формой пор.

И др., давно используют в качестве оптических материалов. Кроме того, используют большое кол-во синтетич. , обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.

Поликристаллические оптические материалы характеризуются прозрачностью, по величине сходной с прозрачностью , и лучшими по сравнению с ними конструкц. св-вами. Наиб. применение находит оптич. (иртра-ны) на основе Аl 2 О 3 (напр., поликор, или лукалокс), Y 2 O 3 (иттралокс), MgAl 2 O 4 , SiO 2 (кварцевая оптич. ), цирконато-титанатов Pb, La (электрооптич. ), а также бескислородные поликристаллические оптические материалы для ИК области спектра- LiF, MgF 2 , ZnS, ZnSe и др.

Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. св-вами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве оптических материалов используют бесцв. или цветные оксидные и бескислородные стекла (см. также ). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO 2 по массе), свинцово- или боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. , напр. алюмоси-ликафосфатные стекла, содержащие Аl 2 О 3 , SiO 2 , P 2 O 5 . Несиликатные оксидные стекла содержат Р 2 О 5 , В 2 О 3 , GeO 2 или ТеО 2 . При изменении состава стекол изменяются и их оптич. , гл. обр. показатель преломления n D и коэф. дисперсии света v D . В зависимости от величин этих характеристик на диаграмме n D - v D (т. наз. диаграмма Аббе) оптические материалы делят на типы-кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (v D < 50), -большим (v D > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты - SiO 2 , Na 2 O, К 2 О. Кроме того, для увеличения v D в состав добавляют В 2 О 3 , А1 2 О 3 , СаО, в состав флинтов-PbO, TiO 2 , ZnO, MgO, Sb 2 O 3 . Осветлители стекол-As 2 O 3 и Sb 2 O 3 . Наиб. высокими значениями v D обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении ).

\

Рис. 2. оптич. стекол (диаграмма Аббе) в зависимости от их показателя преломления (n D) и коэф. дисперсии света (v D): ЛК-легкие ; ФК-фосфатные ; ТФК-тяжелые фосфатные ; К-кроны; БК-баритовые ; ТК - тяжелые ; КФ - кронфлинты: БФ-баритовые флинты; ТБФ-тяжелые баритовые флинты; ЛФ-легкие флинты; Ф-флинты; ТФ-тяжелые флинты; СТФ-сверхтяжелые флинты; СТК-сверхтяжелые .

Особое место среди стекол занимают фотохромные (см. )стекла. Выделяют также , уникальные по термо- и хим. стойкости, огнеупорности и др. св-вам. Стеклообразный SiО 2 -осн. компонент кварцевых оптич. волокон для протяженных волоконно-оптич. линий связи; такие волоконно-оптич. материалы характеризуются миним. оптич. потерями на поглощение (~ 10 -6 см -1). Для линий протяженностью 10-100 м используют также оптич. волокна на основе поликомпонентных стекол и (оптич. потери ~ 10 -3 - 10 -5 см -1).

Оптич. потери (теоретические) у бескислородных оптич. стекол на 1-3 порядка ниже, чем у оксидных. В качестве таких материалов для ИК диапазона используют обычно разл. халькогенидные стекла, содержащие As, S (Se, Те), Sb, P, Tl, Ge и др. Наим. оптич. потерями в ИК диапазоне обладают оптич, волокна на основе галогенидов Ag, Tl и их твердых р-ров и волоконные световоды на основе фтороцирконатных (содержат Zr, F с добавлением Ва, Na, РЗЭ и др.) и халькогенидных стекол [содержат As-S(Se)-Ge].

К аморфным оптическим материалам относятся мн. нсорг. и орг. в-ва. Среди первых наиб. распространены аморфный Si, SiO 2 , II-VI групп, соед. типа A II B VI , среди вторых-разл. : (орг. стекло), мн. .

Неорг. аморфные оптические материалы используют гл. обр. в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные оптические материалы-в виде пленок, оптич. волокон, массивных образцов (напр., ).

О стеклокристаллических оптических материалах см. , о жидкокристаллических-Жидкие .

К особому классу относятся оптические материалы с непрерывно изменяющимся составом и оптич. св-вами. Основа таких материалов - градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или гра-дан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых р-ров галогенидов Т1), (напр., ). Градиентные слои и пленки на Li и др. кристаллич. или стеклянных материалах - основа интегрально-оп-тич. устройств.

По спектральному диапазону различают оптические материалы, пропускающие в УФ, видимой и ИК областях спектра. Нек-рые оптические материалы характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют гл. обр. , Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные оптические материалы. Такие оптические материалы, как Si, Ge, GaAs, InSb, пропускают только ИК излучение; , BaF 2 , ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.

С увеличением массы , составляющих структуру оптических материалов, длинноволновая граница пропускания большего числа оптических материалов перемещается в сторону расширения спектрального диапазона; напр., для имеет место след. ряд: < селени-ды < < (либо =) . Для иоди-да Cs длинноволновая граница прозрачности составляет ~ 60 мкм.

По назначению различают: оптические материалы для элементов оптич. устройств; просветляющие, отражающие и поглощающие покрытия; электрооптич., магнитооптич., акустооптич. и пьезооптич. материалы. Иногда к оптическим материалам относят , материалы для преобразования света в тепло и электричество, а также оптические материалы в виде , : дисперсные , отражающие покрытия, люминесцирующие стекла, для . В качестве оптических материалов иногда применяют оптич. (с определенным показателем преломления), прозрачные орг. и др.

Материалы оптич. устройств (линзы, светофильтры и т.п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) пов-сти. Наиб. важное св-во-оптич. однородность, т.к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для ) и т.п.

Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения пов-сти. Разновидность просветляющих покрытий - интерфе-ренц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF 4 , MgF 2 или SiO 2) до среднего (2,0-2,6; ZrO 2 , GeO 2 , ZnS, TiO 2 или A1 2 S 3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют гл. обр. из Ag, Au, Al, поглощающие - из , и .

Электрооптические, магнитооптические, акустооптические и пьезооптические оптические материалы характеризуются способностью менять свои оптич. св-ва под действием разл. полей (электрич., магн., звуковых). Наиб. распространенные электрооптич. материалы-КН 2 РО 4 , KH 2 AsO 4 и их дейтериевые аналоги, др. и , типа сфалерита и эвлитина, разл. сегнето- и антисегнетоэлектрики, в т.ч. LiNbO 3 , LiTaO 3 , BaTiO 3 , бариевостронциевые и др. К маг-нитооптич. материалам относят железоиттриевые и железо-гадолиниевые гранаты, содержащие РЗЭ, и др. (см. ). Осн. акустооптич. и пьезооптич. материалы - , мн. , и др. (см. ).

Многие оптические материалы способны поляризовать световой поток, напр. вращать плоскость света. При облучении нек-рых оптических материалов видимыми и УФ лучами наблюдается вторичное свечение-фотолюминесценция (см. ).

Методы получения. В зависимости от состава и назначения оптических материалов для их получения применяют разл. методы. Общим является то, что все оптические материалы получают из сырья, максимально очищенного от примесей (напр., для оптических материалов, работающих в видимой и ближней ИК областях, осн. красящие примеси-Fе, Mn, Cu, Cr, Ni, Co). Содержание примесей в сырье не должно превышать 10 -2 % по массе, что обеспечивает коэф. поглощения менее 10 -2 см -1 , а в случае волоконно-оптич. материалов -10 -5 -10 -7 % по массе.

Для выращивания синтетич. используют методы