Классный час твоя будущая профессия 6. «Ты и твоя будущая профессия» (классный час - практикум)

Чертежи теплообменников в Компасе

На этой странице Вы можете скачать чертежи в программе Компас различных теплообменников за символичекую сумму или

Вы можете прислать свой чертеж. Он будет размещен на нашем сайте. Тем самым Вы окажите неоценимую услугу следующему поколению студентов.

Публикуются только качественные чертежи. Предпочтение отдается чертежам в 3D.

Скачать комплект чертежей пластинчатого теплообменника в 3d с деталировкой всего за 100 рублей.

Скачать комплект чертежей горизонтального теплообменника в 3d.

3D модель отправляется с историей построения, что позволяет самостоятельно менять значения размеров 3д сборки.

Скачать комплект чертежей горизонтального теплообменника охладителя с деталировкой.

____________________________

Скачать чертеж теплообменник подогреватель.



____________________________

Скачать чертеж теплообменник подогреватель вторичным паром.



____________________________

Скачать чертеж теплообменник испаритель в производстве вторичного пара.



____________________________

Скачать чертеж теплообменник подогреватель питательной воды.



____________________________

Скачать чертеж теплообменник кипятильник отпарной колонны.



____________________________

Скачать чертеж теплообменник подогреватель сетевой воды.



____________________________

Скачать чертеж теплообменник пароперегреватель.



____________________________

Скачать чертеж водяной экономайзер.



____________________________

Скачать чертеж паровой котел с деталировкой.



____________________________

Скачать чертеж подогреватель азотной кислоты.



____________________________

Скачать чертеж рекуператор с деталировкой.



____________________________

Скачать чертеж рекуператор в производстве высших алифатических аминов с деталировкой.



____________________________

Скачать чертеж теплообменник охладитель жидкого аммиака.



____________________________

Скачать чертеж теплообменник охладитель аминов в производстве высщих алифатических аминов.



В зависимости от способа передачи тепла различают две основные группы теплообменников :

  • - Поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена - глухую стенку;
  • - Теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.

Значительно реже применяются регенеративные теплообменники, в которых нагрев жидких сред происходит за счет их соприкосновения с ранее нагретыми твердыми телами - насадкой, заполняющей аппарат, периодически нагреваемой другим теплоносителем.

Конструкция теплообменников должна отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом.

Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретому к менее нагретому телу.

Тела, участвующие в теплообмене, называются теплоносителями.

Где скачать чертежи теплообменника

  • Поисковый запрос: чертеж теплообменника в Перми - позволит Вам скачать его в Перми и Пермском крае например для Пермского национального исследовательского политехнического университета.
  • Поисковый запрос: чертеж теплообменного аппарта в Казани - позволит Вам скачать его в Казани, скажем для технических специальностей Казанского национального исследовательского университета.
  • Поисковый запрос: чертеж теплообменника в Омске - позволит Вам скачать его в для Омского государственного технического университета.

Кожухотрубчатые теплообменники

Эти теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменников. кожухотрубчатый теплообменник жесткой конструкции, который состоят из корпуса, или кожуха 1, и приваренных к нему трубных решеток 2. В трубных решетках закреплен пучок труб 3. К трубным решеткам крепятся (на прокладках и болтах) крышки 4.

В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред движется внутри труб (в трубном пространстве), а другая - в межтрубном пространстве.

Среды обычно направляют противотоком друг к другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремиться двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.

Кроме того, при указанных направлениях движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата. В противном случае, например при подаче более холодной (нагреваемой) среды сверху теплообменника, более нагретая часть жидкости, как более легкая, может скапливаться в верхней части аппарата, образуя «застойные» зоны.

При сравнительно небольших расходах жидкости скорость ее движения в трубах низка, и, следовательно, коэффициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты неудобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообмене (кожух аппарата). Поэтому более рационально увеличивать скорость теплообмена путем применения многоходовых теплообменников.

В многоходовом теплообменнике корпус 1, трубные решетки 2, укрепленные в них трубы 3 и крышки 4 такие же, как и в одноходовом теплообменнике С помощью поперечных перегородок 5, установленных в крышках теплообменника, трубы разделены на секции, или ходы, по которым последовательно движется жидкость, протекающая в трубном пространстве теплообменника. Обычно разбивку на ходы производят таким образом, чтобы во всех секциях находилось примерно одинаковое число труб.

Вследствие меньшей площади суммарного поперечного сечения труб, размещенных в одной секции, по сравнению с поперечным сечением всего пучка труб, скорость жидкости в трубном пространстве многоходового теплообменника возрастает (по отношению к скорости в одноходовом теплообменнике) в число раз, равное числу ходов. Так, в четырехходовом теплообменнике скорость в трубах при прочих равных условиях в четыре раза больше, чем в одноходовом. Для увеличения скорости и удлинения пути движения среды в межтрубном пространстве служат сегментные перегородки 6. В горизонтальных теплообменниках эти перегородки являются одновременно промежуточными опорами для пучка труб.

Повышение интенсивности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономически целесообразной скорости, определяемой числом ходов теплообменника, которое обычно не превышает 5-6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по сравнению с чисто противоточным движением участвующих в теплообмене сред.

В одноходовых и особенно в многоходовых теплообменниках теплообмен может ухудшаться вследствие выделения растворенных в жидкости (или паре) воздуха и других неконденсирующихся газов. Для их периодического удаления в верхней части кожуха теплообменников устанавливают продувочные краники.

Одноходовые и многоходовые теплообменники могут быть вертикальными и горизонтальными. Вертикальные теплообменники более просты в эксплуатации и занимают меньшую производительную площадь. Горизонтальные теплообменники изготавливаются обычно многоходовыми и работают при больших скоростях участвующих в теплообмене сред для того, чтобы свести к минимуму расслоение жидкостей вследствие разности их температур и плотностей, а также устранить образование застойных зон.

Если средняя разность температур труб и кожуха в теплообменниках жесткой конструкции, т.е. с неподвижными, приваренными к корпусу трубными решетками, становиться значительной, то трубы и кожух удлиняют неодинаково. Это вызывает значительные напряжения в трубных решетках, может нарушить плотность соединения труб с решетками, привести к разрушению сварных швов, недопустимому смешению обменивающихся теплом сред. Поэтому при разностях температур кожуха и труб, больших 500С, или при значительной длине труб применяют кожухотрубчатые теплообменники нежесткой конструкции, допускающей некоторое перемещение труб относительно корпуса аппарата.

Для уменьшения температурных деформаций, обусловленных большой разностью температур труб и кожуха, значительной длиной труб, а также различием материала труб и кожуха, используют кожухотрубчатые теплообменники с линзовым компенсатором у которых на корпусе имеется линзовый компенсатор 1, подвергающийся упругой деформации. Такая конструкция отличается простотой, но применима при небольших избыточных давлениях в межтрубном пространстве (6 атм).

Скачать чертеж Кожухотрубчатые теплообменники с компенсирующими устройствами:

а - с линзовым компенсатором; б - с плавающей головкой; в - с U-образными трубами; 1 - компенсатор; 2 - подвижная трубная решетка; 3 - U-образные трубы.

При необходимости обеспечения больших перемещений труб и кожуха используют теплообменник с плавающей головкой (рис. 1.2б). Нижняя трубная решетка является подвижной, что позволяет всему пучку труб свободно перемещаться независимо от корпуса аппарата. Этим предотвращается опасная температурная деформация труб и нарушение плотности их соединения с трубными решетками. Однако компенсация температурных удлинений достигается в данном случае за счет усложнения и утяжеления конструкции теплообменника.

В кожухотрубчатом теплообменнике с U-образными трубами сами трубы выполняют функцию компенсирующих устройств. При этом упрощается и облегчается конструкция аппарата, имеющего лишь одну неподвижную трубную решетку. Наружная поверхность труб может быть легко очищена при выемке всей трубчатки из корпуса аппарата. Кроме того, в теплообменниках такой конструкции, являющихся двух- или многоходовыми, достигается довольно интенсивный теплообмен. Недостатки теплообменников с U-образными трубами: трудность очистки внутренней поверхности труб, сложность размещения большого числа труб в трубной решетке.

В химической промышленности применяются также теплообменники с двойными трубами С одной стороны аппарата размещены две трубные решетки, причем в одной решетке закреплен пучок труб меньшего диаметра, открытых с обоих концов, а в другой решетке трубы большего диаметра с закрытыми левыми концами, установленные концентрически относительно труб. Среда движется по кольцевым пространствам между трубами и выводится из межтрубного пространства по трубам. Другая среда движется сверху вниз по межтрубному пространству корпуса теплообменника, омывая трубы снаружи. В теплообменниках такой конструкции трубы могут удлиняться под действием температуры независимо от корпуса теплообменника.

Кожухотрубчатый теп-лообменник с двойными трубами:

Элементные теплообменники. Для повышения скорости движения среды в межтрубном пространстве без применения перегородок, затрудняющих очистку аппарата, используют элементные теплообменники. Каждый элемент такого теплообменника представляет собой простейший кожухотрубчатый теплообменник. Нагреваемая и охлаждаемая среды последовательно проходят через отдельные элементы, состоящие из пучка труб в кожухе небольшого диаметра. Теплообменник, состоящий из таких элементов (ходов), допускает значительные избыточные давления в межтрубном пространстве; его можно рассматривать как модификацию многоходового кожухотрубчатого теплообменника.

В элементных теплообменниках взаимное движение сред приближается к эффективной схеме чистого противотока. Однако вследствие разделения общей поверхности теплообмена на отдельные элементы конструкция становиться более громоздкой и стоимость теплообменника возрастает.

Двухтрубчатые теплообменники

Теплообменники этой конструкции, называемые также теплообменниками типа «труба в трубе», состоят из нескольких последовательно соединенных трубчатых элементов, образованных двумя концентрически расположенными трубами. Один теплоноситель движется по внутренним трубам, а другой - по кольцевому зазору между внутренними трубами и наружными трубами. Внутренние трубы (обычно диаметром 57-108 мм) соединяются калачами, а наружные трубы, имеющие диаметр 76-159 мм, - патрубками.

Благодаря небольшим поперечным сечением трудного и межтрубного пространства в двухтрубчатых теплообменниках даже при небольших расходах достигаются довольно высокие скорости жидкости, равные обычно 1-1,5 м/сек. Это позволяет получать более высокие коэффициенты теплопередачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Кроме того, с увеличением скоростей теплоносителей уменьшается возможность отложения загрязнений на поверхности теплообмена.

Вместе с тем эти чертежеи теплообменников скачать бесплатно более громоздки, чем скачать бесплатно чертежи кожухотрубчатые, и требуют большего расхода металла на единицу поверхности теплообмена, которая в аппаратах такого типа образуется только внутренними трубами.

Скачать чертеж двухтрубчатые теплообменники могут эффективно работать при небольших расходах теплоносителей, а также при высоких давлениях. Если требуется большая поверхность теплообмена, то эти аппараты выполняют из нескольких параллельных секций.

Змеевиковые теплообменники

Погружные теплообменники скачать. В погружном змеевиковом теплообменнике капельная жидкость, газ или пар движутся по спиральному змеевику, выполненному из труб диаметром 15-75 мм, который погружен в жидкость, находящуюся в корпусе аппарата. Вследствие большого объема корпуса, в котором находиться змеевик, скорость жидкости в корпусе незначительна, что обуславливает низкие значения коэффициента теплоотдачи снаружи змеевика. Для его увеличения повышают скорость жидкости в корпусе путем установки в нем внутреннего стакана, но при этом значительно уменьшается полезно используемый объем корпуса аппарата. Вместе с тем в некоторых случаях большой объем жидкости, заполняющей корпус, имеет и положительное значение, так как обеспечивает более устойчивую работу теплообменника при колебаниях режима. Трубы змеевика крепятся на конструкции.

В теплообменниках этого типа змеевики часто выполняются также из прямых труб, соединенных калачами. При больших расходах среды, движущейся по змеевику из прямых труб, ее сначала направляют в общий коллектор, из которого она поступает в параллельные секции труб и удаляется также через общий коллектор. При таком параллельном включении секций снижается скорость и уменьшается длина пути потока, что приводит к снижению гидравлического сопротивления аппарата.

Теплоотдача в межтрубном пространстве погружных теплообменников малоинтенсивна, так как тепло передается практически путем свободной конвекции. Поэтому теплообменники такого типа работают при низких тепловых нагрузках. Несмотря на это погружные теплообменники находят довольно широкое применение вследствие простоты устройства, дешевизны, доступности для очистки и ремонта, а также удобства работы при высоких давлениях и в химически активных средах. Они применяются при поверхностях нагрева до 10-15 м2. Скачать чертеж погружного теплообменника.

Если в качестве нагревающего агента в погружном теплообменнике используется насыщенный водяной пар, то отношение длины змеевика к его диаметру не должно превышать определенного предела; например, при давлении пара 2 105-5 105 н/м2 (2-5 атм) это отношение не должно быть больше 200-275. В противном случае скопление парового конденсата в нижней части змеевика вызовет значительное снижение интенсивности теплообмена при значительном увеличении гидравлического сопротивления.

Оросительные теплообменники

Такой теплообменник представляет собой змеевики из размещенных друг над другом прямых труб, которые соединены между собой калачами. Трубы обычно расположены в виде параллельных вертикальных секций с общими коллекторами для подачи и отвода охлаждаемой среды. Сверху змеевики орошаются водой, равномерно распределяемой в виде капель и струек при помощи желоба с зубчатыми краями. Отработанная вода отводится из поддона, установленного под змеевиком. Оросительные теплообменники применяются главным образом в качестве холодильников и конденсаторов, причем около половины тепла отводится при испарении охлаждающей воды. В результате расход воды резко снижается по сравнению с ее расходом в холодильниках других типов. Относительно малый расход воды - важное достоинство оросительных теплообменников, которые, помимо этого, отличаются также простотой конструкции и легкостью очистки наружной поверхности труб.

Несмотря на то, что коэффициенты теплоотдачи в оросительных теплообменниках, работающих по принципу перекрестного тока, несколько выше, чем у погружных, их существенными недостатками являются: громоздкость, неравномерность смачивания наружной поверхности труб, нижние концы которых при уменьшении расхода орошающей воды очень плохо смачиваются и практически не участвуют в теплообмене. Кроме того, к недостаткам этих теплообменников относятся: коррозия труб кислородом воздуха, наличие капель и брызг, попадающее в окружающее пространство.

В связи с испарением воды, которое усиливается при недостаточном орошении, теплообменники этого типа чаще всего устанавливаются на открытом воздухе; их ограждают деревянными решетками (жалюзи), главным образом для того, чтобы свести к минимуму унос брызг воды.

Оросительные теплообменники работают при небольших тепловых нагрузках и коэффициенты теплопередачи в них не высоки. Их часто изготовляют из химически стойких материал.

Описание конструкции конденсаторов

Достоинством кожухотрубных конденсаторов яв-ляется возможность создания высоких и даже одинаковых ско-ростей обоих теплоносителей и, следовательно, больших коэффи-циентов теплоотдачи. К числу их недостатков относятся боль-шое гидравлическое сопротивление и значительная металлоемкость.

Наиболее широкое распространение получили кожухотрубные конденсаторы, используемые для теплообмена между потоками в различных агрегатных со-стояниях (пар-жидкость, жидкость-жидкость, газ-газ, газ- жидкость). Аппарат состоит из пучка труб, помещенного внутри цилиндрического корпуса (обечайки), сваренного из листовой стали, реже - литого. Трубки завальцованы в двух трубных решетках или приварены к ним в зависимости от свойств кон-струкционных материалов. Чаще всего применяются трубы диа-метрами: 25x2; 38X2; 57X2,5 мм; длина их обычно достигает 6 м. Трубки размещаются в пучке в шахматном порядке, по вер-шинам равностороннего треугольника, с шагом t=(1,25-1,30) dн, где dн - наружный диаметр труб. Аппарат снабжен двумя съемными крышками со штуце-рами для входа и выхода теплоносителя, движущегося внутри труб. Трубное и меж-трубное пространства разоб-щены. Второй теплоноситель движется в межтрубном про-странстве, снабженном вход-ным и выходным штуцерами. По трубам движется, как правило, тот поток, который содержит взвешенные твер-дые частицы (для удобства чистки), находится под боль-шим давлением (чтобы не утяжелять корпус) или об-ладает агрессивными свой-ствами (для предохранения корпуса от коррозии).

Конструкция Кожухотрубного холодильника из:

  • корпуса;
  • трубы;
  • трубной решетки;
  • крышки;
  • штуцеры для входа и выхода из трубного пространства;
  • шту-церы для входа и выхода из межтрубного простран-ства;
  • поперечные пере-городки межтрубного про-странства;
  • опорные лапы соответственно при вер-тикальном и горизонталь-ном расположениях аппа-рата.

Горячая жидкость входит в трубное пространство состоящее из труб. Холодный теплоноситель входит в межтрубное пространство, в результате соприкосновения двух теплоносителей с разными тепловыми потоками возникает теплообмен и тепловые потоки выравниваются, тем самым определяя заданную температуру на входе для горячего или холодного теплоносителя. Теплоносители поступают в трубное пространство при помощи штуцера 6, в межтрубное - штуцер. Аппарат имеет эллиптические крышки и днище, крепление аппарата осуществляется при помощи опорных лап 8. Крепление труб к трубной решетке 8 осуществляется за счет развальцовки.

Площадь проходного се-чения межтрубного простран-ства значительно больше (иногда в 2 раза) суммарного живого сечения труб, по-этому при одинаковых объ-емных расходах теплоноси-телей коэффициент теплоот-дачи со стороны межтрубного пространства оказывается более низким. Для устранения этого явления прибегают к увеличению скорости теплоносителя путем размещения различных перегородок в межтрубном пространстве. Кожухотрубные аппараты соответственно местным условиям располагаются вертикально или горизонтально; при необходимо-сти удлинения пути теплоносителей они могут соединяться по-следовательно, а при невозможности размещения требуемого числа труб в одном корпусе их соединяют параллельно. Для удлинения пути теплоносителей с целью увеличения их скорости и интенсификации теплообмена используют много-ходовые аппараты. Так, в двухходовом аппарате благодаря перегородке 1 в верхней крышке 2 тепло-носитель проходит сначала по трубам лишь через половину пучка и в обратном направлении - через вторую половину пучка.

Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.

История появления и внедрения

Изобрели кожухотрубные (или ) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.

Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.

В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.

Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.

Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.

Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.

Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.

Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.

В зависимости от способа крепления труб к доске или решетке, выделяют:

  • Приваренные трубы;
  • Закрепленные в развальцованных нишах;
  • Соединенные болтами с фланцем;
  • Запаянные;
  • Имеющие сальники в конструкции крепежа.

По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):

  • Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
  • По количеству ходов – одно- или многоходовые;
  • По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
  • По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

В сравнении с теплообменниками U, W-трубчатыми и с неподвижными трубками кожухотрубные имеют больше преимуществ и являются эффективнее. Поэтому их чаще покупают, несмотря на высокую стоимость. С другой стороны, самостоятельное изготовление подобной системы вызовет большие трудности, а скорее всего, приведет к значительным потерям тепла в процессе работы.

Особое внимание при эксплуатации теплообменника следует уделять состоянию труб, а также настройке в зависимости от конденсата. Любое вмешательство в систему приводит к изменению площади теплообмена, поэтому ремонт и пуско-наладку должны производить обученные специалисты.

Вас может заинтересовать:

    Для управления потоками жидкостей и газов в трубопроводных системах, их линий и участков используются специальные устройства, называемые запорно-регулирующей арматурой. Данный вид трубопроводной арматуры предназначен для полного перекрытия или регулировки напора потока среды, управлением других технологический процессов, к которым относят: давление жидкости; напор; температуру; объем транспортируемого вещества. Для...

    В зависимости от способа эксплуатации, готовые металлические изделия могут трансформироваться, разбираться или иметь стационарную конструкцию. Используемые методы изготовления металлоконструкций зависят от особенностей объекта, на котором они будут эксплуатироваться. К примеру, для быстровозводимых сооружений обычно используются легкие металлоконструкции, каркас зданий практически любых типов состоит из упрочненного...

    Резервуары различной емкости для размещения газов и газовых смесей получили названия газгольдеры. В них закачивается для хранения природный, нефтяной сжиженный газ и другие виды газов и смесей. Они являются важнейшей частью автономной системы снабжения газом частных домов, коттеджей. Рис.1. Газгольдер подземный для питания газовых приборов и агрегатов. Функции, выполняемые...

    Руководство нефтедобывающего предприятия «Томскнефть» приняло решение о применении беспилотных летательных аппаратов, созданных специалистами компании ZALA AERO (г. Ижевск), являющейся лидером в данной отрасли. Этот вариант был признан лучшим для получения возможности качественного контроля подведомственных объектов нефтегазодобычи и трасс трубопроводов. Эти сведения были получены от начальника управления по эксплуатации...

Простота изготовления, ремонтопригодность, хорошие эксплуатационные характеристики и надежность конструкции делают рекуперативный или кожухотрубный аппарат одним из самых распространенных видов теплотехнического оборудования. В качестве рабочей среды могут применяться: газ, вода, пар, воздух, нефть и т. д. Чем выше их популярность, тем чаще специалисты сталкиваются с необходимостью делать расчет для их выбора. К счастью, прогресс не стоит на месте. Была разработана программа для выбора рекуператоров. Расскажем о ней подробнее.

Рис. 1 Схема кожухотрубного
теплообменника

К чему сводится расчет кожухотрубного теплообменника? К определению поверхности теплообмена и конечных температур теплоносителя. На чем он основывается? На составлении теплового баланса рекуператора по заданной схеме (см. рис.1) и определении коэффициента теплопередачи.

Исходные данные:

  • начальные температуры обеих сред (греющей и нагреваемой), их давление и массовый расход.
  • физические характеристики теплоносителей (вязкость, плотность, теплопроводность и т. д.).
  • конечная температура одной из температурных сред.

Расчет поверхности.

Программа определяет тепловую мощность рекуператора из уравнения теплового баланса.

Уравнение теплового баланса

  • Q = Ср* Ϭt.
  • G - массовый расход среды, кг/с.
  • Ϭt - изменение температуры среды, °С.

Полученную мощность подставляем в уравнение коэффициента теплопередачи и находим из него поверхность нагрева (теплообмена), м2.

  • F = Q / k ∆t.
  • Q - тепловая мощность, уже определенная из уравнения теплового баланса, Вт.
  • к - коэффициент теплопередачи через разделяющую стенку, Вт/м2К, определяется довольно сложным расчетом.
  • ∆t – средний температурный напор, который определяет схема движения греющей и обогреваемой сред (противоток, прямоток), °С.

Определив из последнего уравнения поверхность нагрева теплообменника, из базы типовых рекуператоров подбирается вариант с похожими характеристиками.


Рис. 2

Описанный выше расчет был предварительным. После него начинается самый сложный и длинный этап - проверочный расчет кожухотрубного теплообменника. Рассчитываются проходные сечения по греющей и обогреваемой среде, делается расчет теплообменника на прочность, меняется схема движения сред и все пересчитывается заново. В конечном итоге программа определяет коэффициент запаса по поверхности нагрева.

Этот запас необходим, на случай если внезапно поменяется нагрузка на теплообменник (плохая работа питательных насосов, шламообразование в трубах, часть трубного пучка пришлось заглушить для ремонта). В заключение программа вычислит массу рекуператора. Это удобно - сразу есть работа для строителей (выдается задание на фундаменты).

Программа методом многочисленных итераций находит оптимальные варианты и выдает в виде списка. Даже если ни один вариант схемы типового конденсатора вам не подойдет, у вас на руках останется расчет, в котором есть все данные для разработки рабочего проекта.

Раньше эта работа делалась вручную, можно так сделать и сейчас, но долго выбирать оптимальную схему никто не будет - выберут первую, которая пройдет по температурам. Так зачем мучиться несколько дней, если программа предоставит вам расчет кожухотрубчатого теплообменника буквально за минуты?

Кожухотрубчатый теплообменник. Конструкция и принцип работы

Рассмотрим кожухотрубчатый теплообменник, чертеж которого мы видим на рисунке 2. Опишем его конструкцию, соблюдая последовательность его сборки.


Рис. 3
  • Между трубными решетками ввариваются трубы с предварительно надетыми на них дистанционными решетками. Последние не только дистанционируют трубы пучка, они еще и делают теплообменный аппарат многоходовым, увеличивая тепловую эффективность его схемы. Эта конструкция образует трубную систему рекуператора.
  • К кожуху привариваются два штуцера - подвода и отвода среды. К торцам кожуха варятся фланцы.
  • В днища рекуператора вваривают штуцера повода и отвода среды. Приваривают фланцы, ответные фланцам кожуха.
  • Трубная система вставляется в кожух. Трубные решетки зажимаются между фланцами днища и кожуха, уплотняются прокладками, соединяются болтами или шпильками (см. рис. 3). Это дает возможность легко осуществить ремонт кожухотрубных теплообменников: разболтить фланцевое соединение и вынуть трубный пучок.

Греющая среда может циркулировать в межтрубном пространстве, а может идти по трубной системе. Равновероятны оба варианта схемы. Все зависит от физических характеристик среды и удобства монтажа подводящих трубопроводов. Схема кожухотрубного теплообменника закладывается в расчет программы.

Компенсация температурных удлинений

Кожухотрубчатый теплообменник, принцип работы которого всегда построен на передаче тепла от греющей среды к обогреваемой через разделительную стенку, имеет один момент, который сильно влияет на его конструкцию. В том случае, если значения температур греющей и обогреваемой среды будут сильно различаться, конструкция должна предусматривать компенсацию температурных удлинений. Если этого не сделать, то корпус будет расширяться быстрее, чем трубный пучок (или наоборот). Это приведет к деформации труб, а значит, ремонт - неизбежен. Возможные варианты решений приведены на рис.4


Рис. 4

I и II - греющая и обогреваемая среда.

  • 1 - кожух рекуператора.
  • 2 - трубная система.
  • 3 - компенсатор.
  • 4 - головка трубной системы.

а) Теплообменник с линзовым компенсатором, к которому приварены две независимых части корпуса. Эта конструкция (схема) подходит только для рекуператоров с низкими температурами и давлением. Если подавать на него теплоносители с высокими параметрами, то остановки на ремонт не избежать (работа тонкого компенсатора в таких условиях невозможна). Теплообменник кожухотрубный, чертеж которого показан на рис. 2 как раз относится к линзовым теплообменникам.

б) Рекуператор с плавающей головкой. Трубная система только с одной стороны зажата между фланцами корпуса и крышки (днища). С другой стороны торцы труб вварены в отдельную камеру (головку), которая не связана жестко с корпусом. Таким образом, трубный пучок и корпус могут удлиняться независимо друг от друга. Ремонт в этом случае не составит проблем - трубная система вытаскивается вместе с головкой.

в) Теплообменный аппарат с трубками U-образной формы. Крышка, куда входит греющая среда, разделена перегородкой на две камеры. Принцип, на котором основан теплообмен: в одну камеру входит среда I и по половине труб U-образной формы, проходя весь кожухотрубчатый теплообменник, возвращается во вторую камеру входной крышки. Среда II входит в один патрубок кожуха, циркулирует в межтрубном пространстве и выходит по второму патрубку. Корпус и трубная система расширяются независимо друг от друга.

Программа расчета кожухотрубчатого теплообменника требует четко сформулированных исходных данных. Чтобы работа рекуператора была безупречной, а остановки на ремонт редкими, нужна верно заданная схема.

Есть несколько особенностей, которые очень важны для расчета. Это:

  • Скорость теплоносителей. Так, для жидких теплоносителей ω =0,6…6 м/с, для газообразных ω = 3-30 м/с. Чем выше скорость, тем выше тепловая мощность теплообменника. Но при этом растет и расход электроэнергии (нагрузка) на питательный насос, которому нужно «продавить» среду по системе. Чаще всего скорости сознательно занижают.
  • При выборе диаметра и материала трубного пучка нужно учесть:
    • качество воды (пара). Шлак и накипь снизят теплопередачу и тепловую мощность рекуператора.
    • чем хуже условия, в которых будет проходить работа теплообменника, тем лучше должна быть сталь, из которой он будет сделан. Если придется делать промывку кислотой, то без нержавейки тут не обойтись. Лучше раз потратиться на изготовление, чем постоянно останавливать рекуператор на ремонт.
  • Ограничение по габаритам. Его размеры не должны превышать максимально возможные транспортировочные габариты.
  • Ремонтопригодность. После монтажа перед рекуператором должно быть достаточно пространства, чтобы можно было произвести ремонт кожухотрубных теплообменников (вынуть трубную систему из кожуха). Работа сварщиков тоже требует пространства для маневра. Если это невозможно, то рекомендуется конструкция (схема), показанная на рис. 5.
  • Удобство эксплуатации. Его конструкция должна предусматривать свободный подход к задвижкам, приборам контроля, фланцам.
  • Технология изготовления. Сама работа (технология) и сортамент материалов накладывает определенные ограничения. Так, например, очень трудно будет найти лист толщиной 9 мм, в то время как 10 мм можно купить у любой фирмы. Выточить много деталей - дорого. Желательно такие элементы конструкции сразу менять. И т. д. и т. п.

Рис. 5

Изначально неверный расчет рекуператора и выбор неподходящей схемы - главные причины, из-за которых происходит ремонт теплообменного аппарата. Программа по расчету теплообменных аппаратов существенно ускорит процесс расчета, и снизит процент ошибки до нуля. Простой интерфейс программы будет понятен даже начинающему расчетчику.

Сегодня в рамках рубрики теория производства пойдет речь о технологических схемах и чертежах теплообменников . Для этого мы подробно рассмотрим изображения тех аппаратов, которыми занимается наше предприятие. Я думаю, что очень важно знать, как должно правильно выполняться отображение того или иного аппарата и что должно быть указано рядом, помимо стандартного описания. А это могут быть технические характеристики, особенности конкретной модели и т.д.

Все зависит от назначение изображения. Поэтому и идет такое разделение названий. Одни нужны для изготовления, поэтому и отображают геометрические и присоединительные размеры, характеристики, марки сталей металлопроката. Другие изображения показывают, а какие же процессы протекают внутри этих устройств и наконец есть такие, какие показывают общее расположение всех элементов входящих в систему и направления протекающих процессов.

Поэтому для начала можно ознакомиться с производимыми теплообменными аппаратами . В этой статье находится список устройств предлагаемых к изготовлению. И далее пройдя в интересующую позицию можно посмотреть на их внешний вид, описание протекающих процессов, увидеть технические характеристики и далее переходить непосредственно к самим схемам, которые разберем в этой статье. В основном наше предприятие производит корпусные тепловые обменники и кожухотрубные, которые иногда еще называют кожухотрубчатые, что по сути одно и то же, поэтому я вам их и покажу.

Сборочные чертежи корпусных теплообменников

Сборочные чертежи теплообменников общего вида выполняются, как стандартно, так и с учетом требований заказчика, т.е. возможна корректировка некоторых размеров. Особенно это касается присоединительных размеров, крепежа, фланцев и так далее не затрагивая самих теплообменных элементов, в данном случае длины теплообменных труб , т.к. это уже влияет на выдаваемую тепловую мощность и соответственно не подлежит изменению.

И так к аппаратам корпусного типа относятся промышленные воздухоохладители электромашин типа во-воп-вуп-вб-ввг , газоохладители турбогенераторов го-огп-огпф и аппараты воздушного охлаждения масла . С них и начнем.

Охладитель воздуха во-194

Т.к. охладитель может изготавливаться с различным расположением фланцев, то даны два этих варианта для боле полного ознакомления. Щелкнув по фото можно несколько увеличить изображение.

Если вы уже увеличили картинку, то пройдя по первой ссылке 1. посмотрите полноразмерное изображение, а пройдя по ссылке 2. почитайте подробное описание.

Так как мы рассматриваем два принципиально разных вида: это корпусные и кожухотрубные, то укажу на их отличие. Первые делаются с открытым корпусом, так идет процесс теплообмена с окружающей средой вода-воздух, а вторые с полностью герметичным корпусом и теплообмен идет только между двумя теплоносителями циркулирующими внутри кожуха.

Газоохладитель го-136

Газовый охладитель представляет аналогичную конструкцию воздушным охладителям. Их отличие лишь в том, что в качестве теплоносителя у первых используется воздух, а у вторых газ- водород, для организации водородно-жидкостного охлаждения турбогенераторов.

Здесь так же можно посмотреть на большое изображение кликнув по первой ссылке или по следующей и почитать описание устройства и работы газоохладителей.

Маслоохладитель дц-180

Представляет из себя такую же конструкцию, как и воздухоохладители или газоохладители, состоящую из похожих элементов и металлопроката для изготовления, но служит для воздушного охлаждения масла трансформаторов, в основном устанавливаемых на улице где нет возможности организовать другой вид охлаждения. Отличаются от вышеописанных тем, что нагретая среда движется внутри теплообменных трубок, а охлаждающий воздух нагнетается на оребрение труб вентиляторами и уносит теплоту в окружающее пространство, тем самым охлаждая проходящее через охладитель масло, которое далее возвращается в трансформатор для охлаждения его обмоток. В отличии от кужухотрубных имеет открытый корпус для свободного прохождения охлаждающего воздуха.


Скачать чертежи теплообменников большого формата можно по ссылкам: во , го , дц . Здесь даны конкретные модели в соответствии со своим номером для ознакомления с тем, какие бывают виды чертежей теплообменников . Аппараты других тепловых мощностей соответственно отличаются размерами, вариантами подключения и используемого для изготовления металопроката, как листового, так и трубного. Их настолько много, что все разместить на одном сайте практически не реально. К тому же кроме стандартных моделей есть и индивидуальные разработки под запросы конкретного заказчика. Поэтому конкретное отображение модели передается вместе с готовым теплообменным аппаратом непосредственно заказчику.

Для всех вышеописанных охладителей основным теплообменным элементом является биметаллическая оребренная труба , где оребрение алюминий в основном ад1, а несущая трубка в зависимости от воды делается из латуни л96 или л68, нержавейки 12х18н10т или медно-никелового сплава мнж5-1.

На этом закачиваем рассмотрение данного типа аппаратов и переходим к совершенно другого вида и соответственно наружного и внутреннего устройства. Если первые попадают под классификацию запчастей и элементов к электрическим машинам и турбинам, то нижеследующие уже классифицируются уже, как сосуды работающие под давлением, к которым предъявляются очень жесткие и серьезные требования.

Сборочные чертежи кожухотрубных теплообменников

Возьмем для наглядного примера модернизированный маслоохладитель мб модели 63-90 , относящийся к кожухотрубным.


Для просмотра полного изображения оригинального формата нажмите на иконку и перейдите по ссылке 1. Здесь же можно ознакомиться и с описанием самого аппарата, для этого пройдите по пункту номер 2.

Указанный охладитель масла наилучшим образом подходит для того, чтобы рассмотреть во всех подробностях, конечно на увеличенном варианте, как должен выглядеть правильный чертеж кожухотрубного теплообменника мб-63-90-м . Расскажу о правильности оформления изображений. Все чертится, как и положено по ГОСТу, показываются нужные виды и размеры, но кроме этого должны быть указаны технические характеристики, металлопрокат примененный при изготовлении и те особенности, которые отличают данный аппарат от аналогичных, но других производителей. На наших допустим указывается профиль и размеры профилированных теплообменных трубок нашей разработки, об хороших особенностях применения которых можно почитать в этом материале . Там же можно посмотреть и как она выглядит. Она изготавливается из тонкостенной нержавеющей трубки марки стали 12Х18Н10Т, что положительно влияет на технико-эксплуатационные характеристики всего устройства.

Обязательно должны быть указаны материалы из которых изготавливается основные узлы, листовой металлопрокат корпуса и водяных камер и марка стали трубы. Допустим в приведенном примере должна быть и указана марка листового проката для корпуса, это углеродистая сталь ст3сп. Оговорюсь маленько почему листовой метлопрокат применяется для корпуса и камер, ведь охладитель, то кожухотрубный и предполагается, что для него применяют трубу, а не лист, а потому, что точность изготовления окружности при изготовлении из листового металла получается гораздо выше, чем у готовых труб. Идем далее, так же указан и материал трубок, на приведенном примере это латунь марки ло-70 (в соответствии с требованиями заказчика), но в основном для производства маслоохладителей мы применяем нержавейку 12х18н10т или 08х18н10т, почему говорил несколько . Подбор металлопроката очень важен, как листового, так и трубного т.к. выбор его зависит от рабочих условий всего аппарата и соответственно привязывается к конкретной модели. Это уже относится к пб 03 576 03 правилам устройства и безопасности сосудов работающих под давлением и к пб 03 584 03 правила проектирования, изготовления и приемки сосудов и аппаратов стальных сварных. Пб 03 576 03 можно скачать , а пб 03 584 03 .

Дополнительно мы указываем в дополнительном описании кроме стандартных моментов те, которые важны покупателям и заказчикам. Например вы можете заметить на чертеже надпись: Для защиты от коррозии внутренние поверхности водяных камер и перегородок в них покрыть композиционным материалом surface protector d. Хотя это наш бонус, данная эмаль увеличивает срок службы устройства и снижает коррозию металла, но указать мы это обязаны.

Более подробно об устройстве теплообменников и применяемого при производстве металлопроката, можно будет основательно ознакомиться в следующих статьях. А так, как мы все рассмотрели, что должно быть отражено, то перейдем еще к одному виду теплообменных устройств. Скачать чертеж кожухотрубчатого теплообменника мб-63-90-м можно . Кстати дополнительно укажу, что этот мб и вся эта серия относится к аппаратам вертикального типа и является четырехходовым по трубному пространству в котором движется вода. Идем дальше.

Чертежи теплообменников типа труба в трубе

Аппараты относятся к типу вышеописанным т.е. к кожухотрубным, но имеют более простую конструкцию. Отличаются тем, что во-первых назначение совершенно разное, их применяют для охлаждения или нагрева каких-либо технологических жидкостей, а применяют трубы гораздо более большого диаметра. Но это не тема сегодняшнего разговора. Вы может подробно о них почитать в статье основные параметры теплообменников типа труба в трубе . Наша задача сегодня ознакомиться с правильными графическим изображениями и их особенностями.

Покажу на примере ттон.

Указываются основные размеры теплообменников и идентификатор по номеру. Например условное обозначение выглядит так: ттон-1-25/57-6 3-4.0-г-3-м3 однопоточный неразборный ттон с приварными двойниками (исполнение 1), с диаметром труб теплообменных 25 мм, а кожуховых 57 мм, с условным давлением внутри теплообменных труб 6.3 Мпа, в кожухе 4 Мпа, трубы теплообменные гладкие (Г) длиной 3000 мм, м3 - это указывает на то, из какого металлопроката, из каких марок стали изготавливается данная модель. Если быть поточней, то для м3 применяют нержавейку 12Х18Н10Т и 08Х18Н10Т по ГОСТ 5632 и ГОСТ 9941.

Если необходимо скачать полный чертеж кожухотрубного теплообменника труба в трубе перейдите по ссылке на страницу , выберите изображение и сохраните себе на компьютер. И идем дальше.

Схемы подвода, движения и вывода теплоносителей в теплообменниках типа во, го, дц и кожухотрубных


Схемы движения теплоносителей в теплообменниках типа во можно посмотреть и ознакомиться с подробным описанием протекающих процессов, а направления движения тепловых носителей в кожухотрубных посмотрим ниже и поговорим об этом.


И так, начинаем. Нагретое масло заходит в маслоохладитель, в верхнюю его часть через патрубки (подробней можно посмотреть в материале об устройстве кожухотрубных теплообменников), и спускается постепенно вниз по заданной спирально-кольцевой траектории, совершая определенной число ходов, например в модели мб-63-90-м их 17, зависит от конкретной модели. Масло движется в межтрубном пространстве.

Снизу аппарата подается охлаждающая вода через левый патрубок, видно на рисунке, в водяную камеру и далее направляется в внутрь части теплообменных труб и по ним поднимается наверх, начиная охлаждать масло. Это один ход воды. Дойдя до верхней водяной камеры вода попадает в следующую группу трубок и стекает вниз, завершая второй ход. Далее так же поднимается наверх, спускается вниз, завершая четвертый ход и выходит наружу, в магистраль трубопровода через правый патрубок. В нашем примере четырехходовой кожухотрубчатый теплообменник типа мб.

В результате охлажденное до нужной температуры масло подается в систему маслоснабжения или смазки подшипников турбины.

сделай свой твит зафоловь

Кожухотрубный теплообменник - это устройство обмена тепла между двумя разными потоками. Происходит нагрев одной среды благодаря охлаждающему агенту другой. Две различные среды могут менять своё агрегатное состояние, но в процессе передачи энергии перемешивания не происходит. Обмен теплом осуществляется через стенки устройства. Трубы часто выполняются ребристыми, чтобы увеличить площадь теплопередающей поверхности.

Виды теплообменников

Теплообменники бывают различных видов. Их диаметр может составлять от 159 до 3000 мм. Максимальное давление - 160 кг/см 2 . Длина может колебаться от нескольких десятков до 10 000 мм. Виды агрегатов:

  1. Со встроенными решётками, выполненными в виде трубы.
  2. Устройство кожухотрубного теплообменника может предусматривать наличие температурного компенсатора.
  3. Прибор, оснащённый плавающей головкой.
  4. С U-образной формой устройства.
  5. Комбинированный. В нём есть компенсатор и встроенная плавающая головка.

В этом видео вы узнаете, как классифицируются теплообменники:

Конструкция кожухотрубного теплообменника, в котором есть трубные решётки, имеет жёсткую сцепку всех элементов. Такие аппараты чаще всего используются в нефтяной или химической промышленности. Этот тип устройства занимает примерно три четверти всего рынка. У данного вида трубные решётки привариваются изнутри к стенкам корпуса, а к ним на жёсткой сцепке приделаны теплообменные трубы. Это позволяет избежать каких-либо сдвигов всех составных элементов внутри корпуса.

Кожухотрубчатый теплообменный аппарат компенсирует удлинение от тепла продольным сжатием или же с помощью специальных гибких вставок в расширителях. Это полужесткая конструкция.

Устройство с плавающей головкой считается намного совершеннее. Плавающая головка - это специальная подвижная решётка. Она перемещается по всей трубной системе вместе с крышкой. Такой аппарат дороже, но и намного надёжнее.


Существуют теплообменники с одним ходом и многоходовые

У аппарата с U-образной трубной системой два конца привариваются к одной решётке. Угол поворота составляет 180°, а радиус - от 4 диаметров трубы. Благодаря такой конструкции трубы внутри корпуса могут свободно удлиняться.

Существуют одноходовые и многоходовые теплообменники. Выбор зависит от направления перемещения теплоносителя внутри аппарата. В одноходовом наполнитель движется по кратчайшему пути. Самый яркий пример такого типа устройств - это водонагреватель ВВП , который используется в системах отопления. Такой аппарат лучше всего применять в местах, где не нужен высокий показатель теплообмена (разница между температурой окружающей среды и носителем тепла минимальная).

В многоходовых аппаратах присутствуют специальные поперечные перегородки. Они обеспечивают перенаправление потока теплоносителя. Используются там, где необходима большая скорость теплообмена. Также трубчатые аппараты делятся на одноточные, перекрестноточные и противоточные.

Чтобы теплообменник можно было эксплуатировать в экстремальных условиях, вместо обычных стальных труб используют стеклянные или графитовые. Корпус герметизируют с помощью сальников.

Принцип работы

Устройство имеет довольно простой принцип действия. Кожухотрубный теплообменник разделяет носители. Внутри конструкции перемешивания продуктов не происходит. Передача тепла осуществляется по стенкам трубчатых элементов , которые разделяют теплоносители. Один носитель находится внутри труб, а другой подаётся под давлением в межтрубное пространство. Агрегатные состояния обоих энергоносителей могут отличаться. Это может быть газ, пар или жидкость.

Принцип работы кожухотрубчатого теплообменника заключается в штатных процессах передачи энергии между жидкостями и различными газами. Для повышения коэффициента переноса тепловой энергии применяются довольно большие скорости перемещения продуктов внутри конструкции. Для пара или газа генерируют от 8 до 25 м/с. Для жидких теплоносителей минимальная скорость составляет 1,5 м в секунду.


Тепло проходит через стенки данного агрегата

Конструкция кожухотрубчатого аппарата

Основное достоинство кожухотрубного обменника тепла и главная причина его популярности заключается в высокой надёжности конструкции. В неё входят распределительные камеры, которые оснащаются трубками. Также предусматривается цилиндрический кожух, пучок труб и определённое количество решёток. Вся конструкция дополняется крышками, которые находятся с торцов. В комплект входят опоры, которые позволяют размещать устройство в горизонтальной плоскости. Также существует крепление для монтажа аппарата в любой точке пространства.

Для увеличения обмена тепла между теплоносителем используются трубы, которые покрыты специальными рёбрами. Если задача состоит в снижение теплоотдачи, то корпус покрывается каким-либо теплоизолирующим слоем. Так можно значительно увеличить аккумулирующие свойства изделия. Используются специальные конструкции, в которых одна труба находится во второй.

Для изготовления кожуха применяется толстолистовая сталь (от 4 мм). Чтобы произвести решётки, чаще всего берётся такой же материал, но его толщина гораздо больше (от 2 см). Основной элемент - пучок из труб, изготовленных из материала, который имеет высокую теплопроводность. Этот пучок закрепляется с одной или двух сторон на трубных решётках.

Преимущества и недостатки

У этих устройств есть несколько преимуществ, что обеспечивает достаточную конкурентоспособность на рынке теплообменных систем. Основные преимущества оборудования:

  1. Конструкция обеспечена отличной стойкостью к гидравлическим ударам. У аналогичных систем этой характеристики нет.
  2. Кожухотрубные теплообменники способны работать в экстремальных условиях или с продуктами, которые довольно сильно загрязнены.
  3. Их очень просто эксплуатировать. Легко проводить механическую чистку оборудования, его плановое техническое обслуживание. Аппаратура имеет высокую ремонтопригодность.

У данного теплообменника имеются как плюсы, так и минусы

Несмотря на все преимущества, у этого устройства присутствуют и недостатки. Их следует учитывать перед приобретением. В зависимости от целей использования, возможно, могут потребоваться другие аналогичные системы. Недостатки аппарата:

  1. КПД ниже, чем у пластинчатых изделий. Это связано с тем, что у кожухотрубных обменников площадь поверхности, передающей тепло, меньше.
  2. Имеет большие размеры. Это повышает его конечную стоимость, а также затраты на эксплуатацию.
  3. Коэффициент теплоотдачи сильно зависит от того, насколько быстро перемещается агент.

Несмотря на все свои недостатки, кожухотрубные устройства заняли свою нишу на рынке теплообменников. Они остаются популярными, и их используют во многих отраслях промышленности.

Область применения

Кожухотрубные изделия используются в составной части инженерных сетей ЖКХ. Также их применяют в теплопунктах для обеспечения горячей водой жилых домов. У индивидуальных тепловых пунктов есть определённые преимущества перед центральным тепловым и водообеспечением: они гораздо эффективнее обеспечивают теплом здания и другие объекты, чем централизованная теплосеть .

Также тепловые обменники этого типа используются в нефтедобывающей, химической и газовой промышленностях. Их применяют в сфере теплоэнергетики, где теплоносители имеют высокие показатели передачи температуры. И это ещё далеко не все отрасли, где применяется подобное оборудование. Его можно встретить в испарителях ребойлера или же в конденсаторах-охладителях воздушного теплообмена, ректификационных колоннах. Оно нашло применение в пивном производстве и пищевой отрасли.

Эксплуатация устройства

Трубчатый обменник тепловой энергии обладает высоким показателем срока эксплуатации. Чтобы он выполнял свою роль качественно и служил долго, необходимо своевременно проводить плановое техническое обслуживание. Чаще всего заполняют агрегат жидкостью, которая не прошла этапы фильтрации. Это приводит к постепенному закупориванию трубок, что не даёт жидкости-теплоносителю свободно перемещаться по системе. Нужно вовремя и систематически проводить механическую очистку всех элементов кожухотрубного изделия. Также необходимо промывать составные части под высоким давлением.

Если возникла необходимость ремонта трубчатого аппарата, первым делом нужно провести диагностические мероприятия. Это позволяет обнаружить главные проблемы. Самой уязвимой частью являются трубки, которые чаще всего повреждаются. Диагностика проводится с помощью гидравлических испытаний.

Всё оборудование обмена тепловой энергии довольно капризное. К этому числу относятся и кожухотрубные устройства. При любых вмешательствах в конструкцию для проведения ремонта нужно учитывать, что это может повлиять на коэффициент теплопроводности и, соответственно, обмена тепла между носителями. Многие предприятия, а также физические лица покупают сразу несколько установок, чтобы можно было быстро подключиться к другому устройству.

Необходимо не забывать, что могут появляться определённые трудности во время регулирования оборудования «по конденсату». Абсолютно любые изменения влекут за собой увеличение или уменьшение теплообмена. Также нужно учитывать, что изменение площади происходит нелинейно.