Изделие 141. Минобороны обсуждает создание нового самолёта с вертикальным взлётом и посадкой - миростроительство

Внешне турбовинтовой двигатель самолета сильно похож на моторы поршневого типа. Но их сходства только визуальны, так как во всем остальном они совершенно отличаются. У данного двигателя совсем другие характеристики, тип и режим работы, также отличаются и их возможности.

ТВД – по сути, являться газотурбинным двигателем, который нашел большой спрос в авиастроении. Газотурбинный двигатель был создан для единственной цели, он должен был стать универсальным преобразователем энергии, благодаря этой особенности он стал использоваться в авиации.

ГТД является своего рода тепловой машиной. В момент сгорания топлива идет выброс газов, которые и вращают турбину, тем самым создают крутящий момент. Также есть возможность прикрепить к валу турбины необходимые дополнения. К ТВД отличным дополнением будет воздушный винт.

ТВД является некой смесью моторов поршневого типа с турбореактивным. Изначально самолеты были оснащены только поршневыми двигателями. Они выглядели как цилиндры и устанавливались в форме звезды, в центре этой звезды ставился вал, благодаря которому и и происходило вращение воздушного винта. Но из-за их низких характеристик и ограничения в скорости было принято решение об отказе от данного двигателя. На замену им как раз пришли турбовинтовые двигатели (ТВД).

Самый первый двигатель был создан в СССР, первые успешные испытания были проведены еще в 30-х годах, ТВД поступили на массовое производство спустя 20 лет. Его почти сразу же начали устанавливать в гражданские и военные самолеты. Что позволило улучшить преимущество в небе.

Строение двигателя является очень простым, в нем нет никаких сложных схем. В нем находиться воздушный винт с редуктором, компрессор, камера сгорания топлива, турбина и сопла (выходное устройство). С помощью компрессора происходит нагнетания и сжатие воздуха, после этого он отправляет этот воздух в камеру сгорание, куда подается топливо. Горючая смесь образуется во время смешивания сжатого воздуха и топливом.

После воспламенения смесь оставляет после себя газ с большим энергичным потенциалом. После газ начинает расширяться и выходит на лопасть турбины, тем самым начинает ее вращать. Вследствие этого начинается и вращение воздушного винта с компрессором, их вращение начинается за счет работы лопастей.

Не использованный газ выходит в сопло, и с помощью него образуется реактивная тяга. Величина тяги может доходить до 10 процентов тяги самого мотора. Из-за незначительно тяги ТВД не является реактивным двигателем. Если обратить внимание на строение и принцип работы двигателя, то его можно сравнить с турбореактивным двигателям. Но есть одна особенность в реактивном двигателе, остатки энергии не выходят в виде воздуха через сопло, они до конца расходиться на работу винта.

Вал

Существует две разновидности двигателя, в первом случае в двигателе находиться один рабочий вал, а во втором установлено два вала. В одновальном двигателе все расположено на единственном валу, в то время как на двухвальном ТВД, на одном валу расположена турбина с компрессором, а на втором находиться винт и редуктор, также они никак не связанны друг с другом.

Если в мотор двухвального типа, то его структура выглядит примерно так: в нем находиться две турбины, которые связанны между собой с помощью газодинамики. Одна турбина служит для работы компрессора, а другая в то время отвечает за работу самого винта. ТВД двухвального типа используют намного чаще, чем другой вариант двигателя, так как его характеристики намного лучше, чем у одновального типа. Но двигатель второго типа выглядит намного сложнее, чем другой тип двигателя. Также двухвальный ТВД способен начать выработку энергии до начала запуска самого винта.

Компрессор у ТВД обладает ступенчатой конструкцией, количество ступени варьируется от 2 до 6. Благодаря такой системе двигатель лучше работает с перепадами температуры и давлением, благодаря этому пилот может с легкостью регулировать обороты двигателя. Такая конструкция позволяет не только лучше работать мотору, но и из-за ступенчатой системы появилась возможность облегчить вес мотора.

Эта особенность очень важна для авиации, так как вес самолета также снижается, а за счет этого есть возможность развивать необходимую скорость и совершать перелеты на более длинные дистанции, так как топливо затратность зависит от веса самолета. В составе компрессора находиться: рабочие колеса с лопатками и направляющий аппарат.

Существует несколько видов аппарата, первый это регулируемый, в направляющем аппарате установлены лопатки, с помощью которых его можно поворачивать вокруг оси. А второй вариант не имеет возможности регулирования.

Благодаря воздушному винту создается тяга, но у каждого винта есть свои ограничения в скорости. Самая идеальная скорость вращения винта является 750-1,5 тысячи оборотов в минуту, в данной частоте уровень коэффициента полезного действия винта самый большой, но если скорость заходит за эти пределы, КПД начинает значительно падать.

В тоже время винт начинает приносить не повышение скорости, а наоборот начинает работать как тормоз. Такую особенность еще называют как «эффект запирания».

Такой эффект происходит из-за того что одна часть лопастей начинает набирать завышенные обороты и тем самым превышает скорость звука, из-за чего двигатель начинает неправильно работать. Такой эффект сработает также если лопастям увеличить их в диаметре, так как чем лопасть длиннее, тем выше скорость потока на концах лопастей.

Турбина в двигателе может разогнаться до 20 тысяч оборотов в минуту, но воздушный винт не сможет справиться с такой скоростью и просто выйдет из строя. Из-за этого турбину оснащают редуктором, который в свою очередь занижает вращение и увеличивает крутящий момент. Несмотря на строения и формы редуктором, задача у них остается одной и той же, уменьшение скорости и повышение крутящего момента.

Из-за этого ТВД не может раскрыть всего своего потенциала, эти недостатки сильно ударяют по военным самолетам, так как им очень важна скорость и маневренность. Авиаконструкторы и инженеры не оставляют надежны в разработке нового двигателя, который позволит избежать таких неудобств.

Турбовинтовые двигатели на первый взгляд внешне напоминают поршневые моторы по общей черте и тех и других — воздушному винту. Но на этом сходство прекращается, далее наступает путь конструктивно совершенно иной машины, с иным принципом работы, с иными характеристиками и режимами работы, с иными возможностями.

Турбовинтовые двигатели (ТВД) – это разновидность газотурбинных двигателей, которые нашли широкое применение в авиации. Сами по себе газотурбинные двигатели (ГТД) были разработаны в качестве универсального преобразователя энергии, которые в итоге стали использовать в авиастроении. Газотурбинный двигатель представляет собой тепловую машину, в которой при сгорании топлива расширенные газы вращают турбину, создавая крутящий момент, а к валу турбины можно подключать необходимые агрегаты. В случае с ТВД к валу подключается воздушный винт.

Турбовинтовые двигатели – это своеобразная «помесь» поршневых моторов с турбореактивными. Поршневые двигатели были первыми силовыми установками, которыми снабжались самолеты. Они представляли собой цилиндры, расположенные в виде звезды, в центре которой располагался вал, вращающий воздушный винт. Но из-за своего большого веса и ограничений по скорости от них со временем отказались, отдав предпочтение турбореактивным двигателям. Правда, ТРД тоже оказались далеко не идеальными. При возможности развивать сверхзвуковую скорость они довольно «прожорливые», что повышает затраты на топливо при их эксплуатации, а их использование на пассажирских и грузовых самолетах делает перелеты слишком дорогими. Именно этот недостаток реактивных двигателей и было возложено устранить их турбовинтовым сородичам, которые на сегодняшний день успешно используются в авиации. Взяв за основу строение и принцип работы ТРД и умело совместив его с работой воздушного винта от поршневых моторов, они смогли соединить в себе небольшие габариты и малый вес, экономный расход топлива и высокий КПД.

Hawker Beechcraft King Air 350

Впервые в Советском Союзе ТВД сконструировали и испытали еще в 30-х годах, а в 50-е началось их серийное производство. Диапазон их мощностей был в пределах 1880-11000 кВт. Турбовинтовые двигатели долгое время успешно использовались в гражданской и военной авиации, отличаясь надежностью и долговечностью. Примером может служить заслуженный «ветеран» отечественного авиастроения АИ-20, которым оснащались ИЛ-18, АН-8, АН-32, АН-12, БЕ-12, ИЛ-38. Но со временем стало понятно, что увеличивать их мощность можно только до определенного предела, а использовать их на сверхзвуковых скоростях не получится, так что сфера их использования резко сократилась. Сейчас ТВД в основном используются в гражданской авиации на самолетах с низкой скоростью, тогда как сверхзвуковые самолеты оснащены турбореактивными двигателями. ТВД устанавливаются на АН-24, АН-32, ИЛ-18, ТУ-114.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты. Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата. Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее, тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Преимущества и недостатки

Подведя итоги, можно выделить основные преимущества и недостатки ТВД. Преимуществами турбовинтовых двигателей являются:

— небольшой вес в сравнение с поршневыми моторами;

— экономичность и меньший расход топлива в сравнение с турбореактивными двигателями, что объясняется наличием воздушного винта, КПД которого порой достигает 86%.

Но при всех своих достоинствах ТВД не могут полностью заменить собой реактивные двигатели, ведь их конструкция не позволяет развивать большие скорости. Их скоростной предел составляет 750 км/час, тогда как современная авиация требует намного большего. Еще один минус – шум при работе винта, превышающий гранично допустимые значения, определенные Международной организацией гражданской авиации.

Таким образом, несмотря на высокий КПД и экономичность, использование турбовинтовых двигателей ограничено. В основном ими оснащаются самолеты, летающие с небольшой скоростью и на дальние расстояния, что позволяет значительно снизить стоимость пассажирских и грузовых перелетов. В этих случаях их использование полностью оправдано. Но в военной авиации ТВД практически не используются – здесь важны не экономия топлива, а скорость, маневренность и бесшумность, что вполне могут обеспечить турбореактивные двигатели. Вместе с тем в авиационной промышленности постоянно ведутся работы по созданию сверхзвуковых винтов, которые смогли бы преодолевать звуковой барьер без потерь КПД и «эффекта запирания». Возможно, со временем этим двигателям удастся вытеснить своих реактивных собратьев и занять их место в современном авиастроении. Пока же ТВД остаются пусть и не самыми мощными, но выносливыми и надежными «рабочими лошадками».

Турбовинтовой двигатель (ТВД) - авиационный газотурбинный двигатель, создающий основную силу тяги винтом, а дополнительную - струёй газов, вытекающих из реактивного сопла.

Необходимость в переходе от поршневых установок к турбовинтовым возникла при проектировании и эксплуатации с большой грузоподъёмностью и дальностью полёта. Летательные аппараты обладающие большой, принципиальная схема турбовинтового двигателя грузоподъемностью должны иметь двигатели способные развивать необходимую тягу при минимальном удельном весе. По тому критерию подходят турбореактивные установки. Но они крайне неэффективны на малых скоростях. Решением проблемы стало комбинирование технологий винтомоторных двигателей с реактивной тепловой машиной.

Конструктивно турбовинтовой двигатель схож с турбореактивным, но у ТВД имеется винт, создающий основную часть тяги, и редуктор, связывающий винт с валом тепловой машины. Редуктор используется для уменьшения оборотов винта по сравнению с оборотами газовой турбины. Рабочие обороты турбины колеблются между 18 и 21 тысячами об/мин. При таких оборотах КПД винта падает почти до нуля, тогда как максимальный КПД винт достигается при оборотах от 750 до 1500 об/мин.

Существуют варианты ТВД с двумя винтами, направленными в противоположные стороны. Подобный тип двигателей применяется на летательных аппаратах, требующих большой мощности двигателей.

Тяга в турбовинтовых установках, преимущественно (до 90%), создаётся винтом, и лишь малая доля струёй отработанных газов

Основные преимущества ТВД перед другими газотурбинными двигателями состоят в лучших тяговых характеристиках на взлёте и в большей экономичности на скоростях полёта до 800 км/ч.

Реактивные двигатели


Реактивный двигатель -- двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела. По закону сохранения импульса, летательный аппарат получает такой же импульс, какой имеет рабочее тело при выходе из двигателя.

Реактивный двигатель сочетает в себе двигатель с движителем, то есть он создаёт тяговое усилие только за счёт Первый отечественный турбореактивный двигатель ТР-1

взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Все разновидности реактивных двигателей объединяет наличие двух основных элементов конструкции: камеры сгорания и сопла. Камера сгорания - объём, образованный совокупностью деталей двигателя, в котором происходит сжигание горючей смеси. После отработки горючего, Продукты сгорания устремляются в реактивное сопло, в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Дальнейшая классификация будет зависеть от наличия в двигателе компрессора - узла, предназначенного для нагнетания рабочего тела в камеру сгорания. Наиболее значимыми представителями компрессорных двигателей являются: турбореактивные двигатели и двухконтурные турбовинтовые двигатели. Группа бескомпрессорных состоит из прямоточных и пульсирующих реактивных двигателей.

Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.

«Но то же самое можно сказать и об автомобиле», - возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.

Для чего же нужен двигатель?

Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными , или атмосферными. А вторая группа получила название ракетных . Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Винтовые двигатели

Воздушные двигатели делятся на винтовые и реактивные .

В свою очередь, винтовые подразделяются на винто-моторные, или поршневые , и турбовинтовые . И у тех, и у других движителем служит воздушный винт. Но у винтомоторных тепловой машиной является мотор, а у турбовинтовых – турбокомпрессор.

Поршневой (винто-моторный) двигатель

Поршневые двигатели можно назвать ровесниками современной авиации. Они устанавливались на первых самолётах, поднятых в воздух братьями Райт. И вплоть до 40-х годов ХХ века альтернативы им не было. Но, несмотря на то, что впоследствии были изобретены и другие двигатели, основанные на совершенно другом принципе работы, поршневые используются в авиации и сейчас.

Современный авиационный поршневой двигатель представляет собой двигатель внутреннего сгорания (ДВС). Принцип его работы такой же, как и у автомобильных ДВС. Разница лишь в том, что движение поршня через специальные механизмы в автомобиле передаётся на колёса, а в самолёте – на воздушный винт. А лопасти винта захватывают воздух, отбрасывают его назад, тем самым создавая тягу.

Турбовинтовой двигатель (ТВД)

1 - воздушный винт; 2 - редуктор; 3- турбокомпрессор.

Турбовинтовой двигатель является разновидностью газотурбинного двигателя.

Простейшую конструкцию газотурбинного двигателя можно представить как вал, на котором находятся два диска с лопатками, между которыми расположена камера сгорания. Первый диск – диск компрессора. Второй – диск турбины. Атмосферный воздух сжимается в компрессоре и подаётся в камеру сгорания. Туда же подаётся и топливо. Смесь воздуха с топливом с помощью свечи зажигания поджигается и сгорает, образуя продукты сгорания под высоким давлением, которые приводят во вращение диск турбины. Таким образом, энергия сжатого и нагретого газа преобразуется в механическую работу.

Газотурбинный двигатель первоначально был разработан вовсе не для авиации. В нём нет выходящей реактивной струи. Вся его мощность сосредоточена на валу, который вращает нужные агрегаты. Но в турбовинтовом авиационном двигателе вал приводит во вращение винт, который через редуктор укрепляется на нём перед компрессором. А винт уже и создаёт тягу.

Существуют вертолётные турбовинтовые двигатели, которые приводят в движение несущий винт вертолёта.

Реактивные двигатели

К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.

Турбореактивный двигатель (ТРД)

Этот тип двигателя является основным в реактивной авиации.

Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.

В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.

В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.

Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.

На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.

Турбореактивный двухконтурный двигатель (ТРДД)

1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая. Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя.

Прямоточный воздушно-реактивный двигатель (ПВРД)

1 - воздух; 2 - впрыск горючего; 3 - стабилизатор пламени; 4 - камера сгорани; 5 - сопло; 6 - форсунки.

Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.

Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.

В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.

Пульсирующий воздушно-реактивный двигатель

1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча зажигания; 6 - камера сгорания; 7 - сопло.

В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.

И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.

Ракетные двигатели

В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.

Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.

Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.

Транспортный самолет АН-8 с двигателями АИ-20.

Сегодня продолжаем более подробно говорить о типах авиационных двигателей. На повестке дня следующий тип – турбовинтовой двигатель (ТВД ).
Кто читал мои статью , тот конечно, знает, что турбовинтовой двигатель – это разновидность газотурбинного.

Газотурбинный двигатель – это и, как в любой тепловой машине, в нем есть устройство расширения, которым является турбина. Ну, а турбина нужна в первую очередь, чтобы вращать компрессор, а во вторую, для привода различных дополнительных агрегатов, то есть полезной нагрузки. Это может быть, например, электрогенератор, винт в судовой установке, а применительно к авиации – винт воздушный или же вспомогательная силовая установка ().

Получается, что турбину можно как бы условно разделить на две части – турбину компрессора и турбину полезной нагрузки. Последнюю еще называют свободной турбиной . Часто на практике их так и делают в виде двух агрегатов. Если свободную турбину убрать, то останется неиспользованная часть энергии газового потока (так называемая свободная энергия ), которая потом в реактивном сопле двигателя может быть преобразована в кинетическую энергию, и мы получим тягу двигателя за счет реакции струи. Вы уже наверное поняли:-), что в этом случае мы будем иметь .

Однако возможен и промежуточный вариант. То есть часть свободной энергии (большую) можно использовать для полезной нагрузки, а оставшуюся часть (меньшую) для работы в сопле, то есть для получения реактивной тяги. Вот именно по такому принципу и устроен турбовинтовой двигатель . Полезная нагрузка для него – это вышеупомянутый воздушный винт . Справедливости ради стоит сказать, что реактивная тяга играет для ТВД небольшую роль. Доля ее обычно не более 15% (на современных ТВД и того меньше).

Принципиальное устройство турбовинтового двигателя.

Итак классический ТВД по конструкции очень похож на обычный турбореактивный двигатель. У него есть компрессор , камера сгорания , турбина и сопло . Но добавлен еще один важный агрегат. Дело в том, что частота вращения ротора любого газотурбинного двигателя очень высока (до 30000 об/мин), а воздушный винт при таких оборотах работать не может. Поэтому между ротором двигателя и винтом устанавливается редуктор , понижающий обороты. Редукторы бывают разных конструкций, но функции у них одинаковы.

Анимация, показывающая принцип работы ТВД.

Как и все в этом мире 🙂 турбовинтовой двигатель имеет преимущества и недостатки. Это следствие того, что он соединил в себе качества поршневого и ТРД. Он, как газотурбинный двигатель (родственник реактивного:-)) является представителем того самого семейства двигателей, которому в свое время сдал свои позиции (об этом ). Поэтому ТВД значительно легче поршневого при той же мощности. Это очень хорошо, ведь масса – важнейший показатель для авиации. Все тяжелое, как известно, летает без особой охоты:-).

Одновременно по сравнению с турбореактивным двигателем, турбовинтовой значительно экономичнее. Дело в том, что от поршневого ТВД взял себе воздушный винт. Этот агрегат, особенно в современных разработках имеет довольно высокий коэффициент полезного действия, до 86%, что и обуславливает экономичность всего двигателя.

Однако винту недоступны большие скорости. не дает возможности винтовым самолетам летать со скоростями выше 750 км/ч (единственный самолет наш бомбардировщик ТУ-95 достигает скорости 920 км/ч). Кроме того современные воздушные винты достаточно шумны, что не одобряют нормы Международной организации гражданской авиации (ICAO ).
Вот и получается, что турбовинтовой двигатель применяется в основном там, где не нужны большие скорости или же важна экономичность. Чаще всего – это ближне- и среднемагистральная гражданская авиация, а также транспортная авиация. Но, честно говоря, и оттуда ТВД частенько вытесняется современными экономичными двухконтурными турбореактивными двигателями .

Турбовинтовой двигатель АИ-20.

Уже достаточно послужил людям и всегда отличался высокой экономичностью и большой надежностью. Хорошо известен, например, двигатель-ветеран АИ-20 (и его модификации, начало выпуска 1957 год)) . Он устанавливался на заслуженный пассажирский самолет ИЛ-18 , а также на транспортные самолеты тип АН-8 , АН-12 , АН-32 , на морские БЕ-12 и военно-морские ИЛ-38 . Этот двигатель в некоторых местах эксплуатируется до сих пор и отличается очень высокой надежностью. Такого ресурса, как у АИ-20 (40 000 часов летной эксплуатации!) нет наверное ни у одного двигателя.

Противолодочный самолет БЕ-12 с двигателями АИ-20.

Пассажирский ветеран ИЛ-18 с двигателями АИ-20.

И, конечно, списывать со счетов турбовинтовой двигатель еще рано. Конструкторы, соблазненные его высокой экономичностью постоянно ведут работу по улучшению существующих образцов и созданию новых. Разрабатываются новые типы винтов, в частности сверхзвуковых (с переменным, правда, успехом:-)).

Турбовинтовентиляторный двигатель Д-27.

Примером служит сравнительно недавно появившийся двигатель Д-27 , разработанный в Запорожском машиностроительном конструкторском бюро „Прогресс“ имени академика А. Г. Ивченко. В том самом, где создавался когда-то АИ-20. Д-27 внешне очень похож на турбовинтовой двигатель , но на самом деле это качественный скачок вперед. Он даже название имеет измененное: . Предназначен для пассажирских и транспортных самолетов, для которых скорость также важна, как и экономичность. Таких, например, как новый транспортник АН-70 . На оси свободной турбины Д-27 (понятно через редуктор:-)) установлено два винто-вентилятора , вращающихся в разные стороны. Этот двигатель не имеет аналогов и на данный момент является единственным рабочим двигателем такого типа в мире.

Транспортный самолет АН-70 с двигателями Д-27.

Прогресс не остановить:-), так что нам вполне вероятно еще предстоит увидеть новые типы самолетов с «нимбами» винтов и мягким гулом турбовинтовых двигателей.

В заключении предлагаю вам посмотреть два ролика. Первый хорошо показывает принцип работы ТВД. Пояснительные надписи на английском, но, я думаю, понять не сложно. Для тех, кто «совсем не англичанин»:-), поясню, что Gearbox — это редуктор, а Nozzle -это сопло, Inlet — это вход, Combustion Chamber — камера сгорания. Второй ролик — это анимация работы еще одного прогрессивного и очень интересного турбовинтового двигателя Pratt Whitney PT6A . Обратите внимание, что направление движения газов по тракту двигателя организовано «задом наперед» 🙂

Фотографии кликабельны .