Canon eos 7d прошивка.

Солнечные пятна видимым образом перемещаются по солнечному диску от восточного края к западному. Это перемещение Галилей в 1610 г. правильно понял как выражение осевого вращения Солнца, направленного так же, как вращение Земли. Пятна, особенно крупные, существуют долго, и поэтому можно наблюдать их повторное появление на обращенной к Земле стороне Солнца, а фиксируя более точно их положение на солнечном диске, можно легко и точно установить синодический период вращения Солнца S. Он будет отличаться от звездного периода вращения Р, так как мы наблюдаем вращение Солн вокруг оси с движущейся Земли. Период обращения Земли Е составляет 1 год. Три величины - S, Р и Е - связаны очевидной формулой

из которой легко получить период Р вращения Солнца вокруг своей оси относительно звезд.

Исследование движений пятен позволило установить, с одной стороны, положение в мировом пространстве оси вращения и экватора Солнца, а с другой, - показало, что пятна, помимо общего монотонного перемещения по диску Солнца, имеют еще собственные перемещения по нему.

Вместе с тем оказалось, что период возвращения пятен в то же положение на диске Солнца закономерно изменяется с гелиографической широтой (т. е. с положением пятна относительно солнечного экватора): экваториальные области Солнца вращаются всего быстрее, а по мере удаления от экватора вращение замедляется. Проследить это экваториальное ускорение вращения Солнца по пятнам удается лишь в поясе от +40° до -40° гелиографической широты, так как на более высоких широтах пятна почти не встречаются.

Весьма обстоятельное определение элементов вращения Солнца сделал более 100 лет назад Кэррингтон. Он нашел следующее положение экватора Солнца:

долгота восходящего узла солнечного экватора относительно эклиптики

наклон солнечного экватора к эклиптике

Земля пересекает плоскость солнечного экватора в начале июня и в начале декабря. В это время пути видимого перемещения пятен по диску Солнца прямолинейны. В остальное время они криволинейны. Первую половину года к Земле обращен южный полюс Солнца, а вторую - северный.

Для расчета гелиографических долгот служит, по предложению Кэррингтона, тот нулевой меридиан, который проходил через центр солнечного диска в гринвичский полдень 1 января 1854 г. (юлианская дата JD 2 398 220,0). В дальнейшем этот же меридиан проходит центр солнечного диска через каждые 27,2753 суток, на основании чего идет счет солнечных оборотов (так, например, 1954, дек. 21,63 начался 1355-й оборот Солнца). Приведенное выше значение есть синодический период S вращения Солнца на средней широте пятен (около 16°). Ему соответствует по формуле (1.1) звездный период вращения Солнца . Отсюда получается угловая скорость вращения Солнца на гелиографической широте за сутки. На других гелиографических широтах угловая скорость

Это одна из многих эмпирических формул, выводимых по наблюдениям тысяч пятен.

Большое количество пятен в данном случае необходимо, чтобы уничтожить влияние эффекта собственных перемещений пятен по поверхности Солнца. С меньшей точностью определяется вращение Солнца по факелам. Одно из таких определений дало формулу

Описанными средствами изучается вращение Солнца вблизи его экватора. Для того чтобы проследить солнечное вращение на более высоких широтах, эффективно применяется метод определения лучевых скоростей противоположных точек солнечного диска, лежащих на одной широте.

Для этого получают спектрограммы того и другого края солнечного диска одновременно, одну под другой, для чего диск Солнца проектируют на длинную щель спектрографа, и призмами, установленными перед щелью, переносят изображения противоположных точек диска в середину щели на ось спектрографа (призмы расположены подобно зеркалам в перископе и, в частности, в перископическом интерферометре; см. КПА 461). При достаточно большой дисперсии, например 0,5 А/мм, линии солнечного спектра, принадлежащие восточному и западному краям Солнца, будут заметным образом смещены друг оносительно друга; величина этого смещения даст (по формуле эффекта Доплера) удвоенную скорость вращения Солнца на соответствующей гелиографической широте. В конце прошлого и начале нынешнего столетия были проведены многочисленные и обширные ряды наблюдений (Дунер, Хальм, Белопольский, Адамс и др.), позволяющие проследить вращение Солнца до гелиографической широты 75°. По последним определениям оно подчиняется формуле вида (1.2) или (1.3), но с существенно иным значением вращения на экваторе, а именно:

Из формулы (1.4) получается скорость вращения экватора Солнца 1,93 км/с, тогда как по формуле (1.2) эта же величина получается равной 2,03 км/с.

Можно думать, что такие расхождения реальны и связаны с различием уровней, на которых существуют пятна или зарождаются спектральные линии. Кроме того, на протяжении десятилетий значение первого члена в формуле (1.4) сильно меняется: так, в начале нашего столетия экваториальная скорость вращения Солнца определялась как 2,06 и даже 2,08 км/с, но ввиду множества обстоятельств, осложняющих наблюдения и обработку, говорить о реальном изменении скорости вращения Солнца было бы неосторожно, тем более, что самые последние измерения опять дают среднее значение скорости вращения Солнца на экваторе 2,06 км/с. Для характеристики изменения вращения Солнца с широтой формула (1.4) заслуживает полного доверия. В частности, из нее следует, что на широте 75° период вращения Солнца достигает 32 земных суток.

Все изложенные факты - экваториальное ускорение вращения Солнца и разная скорость вращения его на разных уровнях - указывают на то, что Солнце вращается не как твердое тело. Это вполне соответствует нашему представлению о его газовой природе.

Выше мы говорили, что Солнце вращается вокруг своей оси, но не как твердый шар. Период его обращения различен на разных гелиографических широтах. Кроме того, вращение меняется со временем. Поэтому задача определения вращения Солнца остается всегда, актуальной. Вращение Солнца легче всего определять по времени прохождения различных образований по диску Солнца. Это называется "определение-по трассерам". Поскольку пятна, факелы, флоккулы, волокна располагаются на разных высотах над основанием фотосферы и на разных гелиографических широтах, периоды их обращения отличаются. Самое быстрое вращение на экваторе. При переходе к полюсам скорость вращения уменьшается, период обращения возрастает. С ростом высоты в атмосфере Солнца скорость вращения увеличивается.

Регулярно определяя долготу и широту долгоживущих солнечных пятен, можно определить среднюю скорость их вращения и ее изменение с широтой. При этом надо помнить, что мы наблюдаем Солнце не с неподвижной точки, а с Земли, движущейся вокруг Солнца в ту же сторону, в которую вращается и само Солнце. Поэтому для земного наблюдателя период обращения Солнца (так называемый синодический период) примерно на двое суток больше, чем период вращения Солнца относительно далеких звезд, которые можно считать неподвижными. Последний период называется сидерическим.

Если мы определили, что за сутки долгота пятна изменилась на угол Δλ п, то сюда вошел не только угол поворота Солнца за сутки, Δλ , но и угол, соответствующий смещению Земли на орбите Δλ 3 ,


Так как Земля делает полный оборот в 360° вокруг Солнца за год, т. е. за 365,2422 суток, то


Зная Δλ 3 , можно найти угол поворота Солнца за сутки Δλ по наблюдению изменения λ п за то же время:


Но по измерениям разных пятен, даже если они находятся на одной широте, скорость вращения Солнца получается разной. Дело здесь не только в ошибках измерения координат пятен, о которых мы говорили раньше. На самом деле каждое пятно, вращаясь со всей поверхностью Солнца, перемещается еще и относительно этой поверхности или. как говорят, имеет собственное движение. Скорости собственных движений пятен весьма разнообразны, достигая иногда 1° в сутки. Изучение этих движений представляет большой интерес, так как они тесно связаны с эволюцией активных областей и вспышками.

Таким образом мы пришли к тому, что из измерений координат пятен можно определить две характеристики: скорость вращения Солнца на разных широтах и собственные движения пятен. Решение первой из этих задач требует большого наблюдательного материала. А так как вращение Солнца меняется не только с широтой, но и со временем, я не советую любителям браться за ее решение. Гораздо более интересная и доступная задача - собственные движения пятен.

В этом случае мы можем учесть скорость вращения Солнца на разных широтах по формуле, полученной из длительных наблюдений солнечных пятен.

Эта формула дает изменение долготы пятна, расположенного на широте φ, за сутки только из-за вращения Солнца. Собственные движения пятен сюда не входят.

Задача определения собственных движений сводится к следующему. Для изучаемых пятен несколько раз в день измеряются гелиографические координаты φ п и λ п в моменты Т п (по всемирному времени). Находим для каждого наблюдения ΔТ П =Т П -Т 1 , выраженное в долях суток. Затем из приведенной выше формулы для Δλ и найденных значенийΔТ П находим угол поворота Солнца за время ΔТ П на широте пятна φ п,

Луна вращается вокруг Земли. Земля вращается вокруг Солнца. Закономерный вопрос: а Солнце тоже вокруг чего-нибудь вращается?

Ответ на этот вопрос астрономы получили только в 20 веке, и ответ этот - ДА.

Наше Солнце входит в состав огромной звездной системы, которая называется Галактикой (еще ее называют Млечный Путь). Наша Галактика имеет форму диска, похожего на две сложенные краями тарелки. В центре его находится округлое ядро Галактики.


Наша Галактика - вид сбоку

Если посмотреть на нашу Галактику сверху, то она выглядит, как спираль, в которой звездное вещество сосредоточено, в основном, в ее ветвях, называемых галактическими рукавами. Рукава находятся в плоскости диска Галактики.



Наша Галактика - вид сверху

Наша Галактика содержит более 100 миллиардов звезд. Диаметр диска Галактики - около 30 тысяч парсек (100 000 световых лет) , а толщина - около 1000 световых лет.

Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики, подобно тому, как планеты в Солнечной системе обращаются вокруг Солнца. Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса (находящегося в созвездии Волосы Вероники). Скорость вращения диска не одинакова на различных расстояниях от центра: она убывает по мере удаления от него.

Чем ближе к центру Галактики - тем выше плотность звезд. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной.

Однако Солнце находится очень далеко от центра Галактики, можно сказать - на ее окраине, на расстоянии около 26 тыс. световых лет (8,5 тысяч парсек), вблизи плоскости галактики. Оно расположено в рукаве Ориона, соединенном с двумя более крупными рукавами - внутренним рукавом Стрельца и внешним Рукавом Персея.

Солнце движется со скоростью около 220-250 километров в секунду вокруг центра Галактики и делает полный оборот вокруг ее центра, по разным оценкам, за 220-250 миллионов лет. За время своего существования Период обращения Солнца вместе с окрестными звездами около центра нашей звездной системы называют галактическим годом. Но нужно понимать, что общего периода для Галактики нет, так как она вращается не как твердое тело. Солнце за время своего существования облетело Галактику примерно 30 раз.

Обращение Солнца вокруг центра Галактики носит колебательный характер: каждые 33 миллиона лет оно пересекает галактический экватор, затем поднимается над его плоскостью на высоту в 230 световых лет и снова опускается вниз, к экватору.

Интересно, что Солнце делает полный оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава. В результате Солнце не пересекает области активного звездообразования, в которых часто вспыхивают сверхновые - источники губительного для жизни излучения. То есть оно находится в секторе Галактики, максимально благоприятном для зарождения и поддержания жизни.

Кстати...

Наиболее пытливые почемучки, наверно, не остановятся и на этом и спросят: "А наша Галактика тоже вращается вокруг какого-нибудь центра?"

И снова ответ - да.

Млечный Путь входит в группу галактик, связанных между собой гравитационными силами, которую называют Местной группой. Кроме Млечного пути, в нее входят галактика Андромеды и галактика Треугольника, а также около 50 более мелких галактик. Поперечник Местной группы - 1 миллион парсек (мегапарсек), или 3 млн. световых лет.

Местная группа галактик, в свою очередь, является частью еще более крупного скопления - Местного сверхскопления Девы. Его размер - 200 миллионов световых лет, а его центр находится на расстоянии 50 млн. световых лет от нас. Сверхскопление вращается вокруг оси, перпендикулярной его диску, и напоминает в этом смысле обычную галактику. Скорость движения Местной группы вокруг центра сверхгалактики - около 400 километров в секунду.

В конце 20 века астрономы выяснили, что Местное сверхскопление несется со скоростью 500-700 километров в секунду в сторону огромнейшего скопления галактик, обладающего мощной гравитационной силой (силой притяжения), который назвали Великим Аттрактором (англ. Great Attractor, от "attract" - "привлекать, притягивать, пленять"). Он находится на расстоянии примерно 65 миллионов парсек или 250 млн. световых лет, в созвездии Наугольника.



Иерархия движений, в которых принимает участие наша планета:
а) вращение Земли вокруг Солнца;
б) вращение вместе с Солнцем вокруг центра нашей Галактики;
в) движение относительно центра Местной группы галактик вместе со всей Галактикой под действием гравитационного притяжения туманности Андромеды (галактики М31);
г) движение к скоплению галактик в созвездии Девы и движение к Великому Аттрактору.

Местное сверхскопление, в свою очередь, - лишь одно из множества сверхскоплений галактик во Вселенной. Соседнее с нашим сверхскопление находится в созвездии Геркулеса на расстоянии 700 миллионов световых лет, причём на протяжении примерно 300 миллионов световых лет по пути к нему - полная пустота, нет ни галактик, ни звезд. Таким образом, вещество во Вселенной распределено не равномерно и не хаотически, а в виде ячеек, в гранях которых сосредоточено вещество, а внутри ячеек - гигантские абсолютно пустые пространства-"пузыри". Галактики и их скопления расположены в порядке, напоминающем пчелиные соты невообразимых размеров. Чем ближе к стыкам таких ячеек, тем сильнее сконцентрировано вещество. Чем обусловлена такая симметричная, упорядоченная структура? На этот вопрос сегодня нет ответа.

Наша звезда, снятая через фильтры

Вращение Солнца зависит от того откуда его измеряет наблюдатель, заинтересованы? Пятна на экваторе примерно за 24,47 земных суток, совершают полный оборот вокруг.

Астрономы называют это сидерическим периодом вращения, который отличается от синодического периода количеством времени, необходимого для того, чтобы пятна повернулись вокруг Солнца при наблюдении с Земли.

Скорость вращения уменьшается по мере приближения к полюсам, так что на полюсах период вращения вокруг оси может достигать 38 дней.

Наблюдения вращения

Движение Солнца хорошо заметно, если наблюдать его пятна. Все пятна двигаются по поверхности. Это движение является частью общего движения звезды вокруг своей оси.

Наблюдения показывают, что оно вращается не как твердое тело, а дифференцированно.

Это означает, что оно движется быстрее на экваторе и медленнее на полюсах. Газовые гиганты: Юпитер и Сатурн, также имеют дифференциальное вращение.

Астрономы измерили скорость вращения Солнца с широты 26 ° от экватора, и обнаружили, что один оборот вокруг оси занимает 25,38 дней. Его ось составляет угол, равный 7 градусам и 15 минутам.

Внутренние регионы и ядро вращаются вместе как твердое тело. А внешние слои, конвективная зона и фотосфера, вращаются с разной скоростью.

Обращение Солнца вокруг центра галактики

Наше светило и мы вместе с ним вращается вокруг центра галактики Млечный Путь. Средняя скорость составляет 828000 км/час. Один оборот занимает около 230 миллионов лет. Млечный Путь является спиральной галактикой. Считается, что она состоит из центрального ядра, 4-х основных рукавов, имеющих несколько коротких сегментов.

Cтраница 1


Вращение Солнца искривляет радиальное направление силовых линий, поэтому ММП имеет спиральную форму. С помощью искусственных спутников Земли удалось установить, что в течение одного оборота Солнца чередуются секторы ММП с положительной и отрицательной полярностью.  

Период вращения Солнца вокруг оси, наблюдаемый по солнечному экватору, равен 24 7 земных суток.  

Скорость вращения Солнца можно получить, измеряя на солнечном диске движение по долготе различных квазистационарных образований (таких, как солнечные пятна, факелы, темные волокна и даже центры корональной активности) или из спектрографических наблюдений доплеровских смещений отдельных спектральных линий вблизи солнечного лимба Выполненные Шейнером до 1630 г. наблюдения солнечных пятен показали, что вблизи солнечного экватора их период обращения короче, чем на высоких гелиоцентрических широтах.  

Нахождение кажущейся скорости вращения Солнца представляет собой более трудную задачу.  

Схема взаимодействия космических лучвй с атмосферой.| Амплитуда анизотро. пин космических лучей в зависимости от энергии в интервале. ЮМ - Ю вВ.  

Земли соответствует периоду вращения Солнца и обусловлена асимметрией потока магн. Эффект Форбуша представляет собой кратковрем. КЛ (на - 50 % в межпланетном пространстве и до 25 - 30 % на поверхности Земли), обычно связанное с геомагн. Этот эффект вызывается рассеянием ГКЛ магн. Солнце, когда поля оказываются у Земли и как бы закрывают ее от КЛ.  

На деле для определения вращения Солнца по индикаторам требуется, во-первых, чтобы эти квазистационарные явления были равномерно распределены по поверхности жидкости и, во-вторых, не обладали заметным собственным движением относительно окружающей их среды.  

Что же до внутренних скоростей вращения Солнца и маломассивных звезд главной последовательности, то с точки зрения теоретика положение также весьма плачевно (ср. Возможно, конечно, что эти звезды подходят к главной последовательности с ядром, вращающимся гораздо быстрее внешних слоев.  


Наблюдается другая взаимосвязь с 27-дневным циклом вращения Солнца и особенно со столетними изменениями в излучении. Были показаны также отклонения, возникающие из-за взрывов на Солнце; они наблюдались с однодневным или двухдневным опозданием, которое требовалось для того, чтобы корпускулы достигли земной атмосферы. Наиболее значительные медленные отклонения связаны с 11-летним циклом солнечных пятен; эти отклонения достигают такой величины, что обусловливают экстремумы структурных параметров атмосферы Земли. Джонсон вычислил пределы отклонений некоторых структурных пармет-ров, соответствующих максимуму и минимуму солнечных пятен. На рис. 6.3 показаны колебания плотности по Джонсону. Для высот ниже 200 км не получено такой статистической плотности измерений, какую дают спутники для больших высот, исключение составляет область ниже 32 км, которую исследует метеорология. Вертикальное зондирование ракетами дает развертку параметров относительно высоты, однако оно производится редко, так что осуществление временной корреляции затруднительно.  

Итак, хотя для объяснения скорости вращения Солнца предлагалось много теорий, ни одна из схем пока не стала общепринятой как правильная по своей сути. Безусловно, наиболее многообещающими являются модели, в основу которых положено нелинейное взаимодействие между вращением и конвекцией.  

Асимметрия картин по временной частоте является мерой вращения Солнца на некоторой глубине, где формируются эти колебания. Таким образом, исследователи Солнца определили сравнительно прямым методом параметр, критический для работы солнечного динамо и для внутренней структуры Солнца и других звезд.  

В течение двухсот с лишним лет проблеме вращения Солнца не уделялось практически никакого внимания, и дальнейшее мало-мальски заметное продвижение произошло лишь в 1850 - х годах. В это время богатый английский любитель астрономии Ричард Кэррингтон (1826 - 1875) и немецкий астроном Густав Шперер (1822 - 1895) предприняли длинную серию наблюдений видимого движения солнечных пятен. Независимо друг от друга они подтвердили, что видимая внешняя оболочка Солнца вращается не как твердое тело, т.е. период ее вращения изменяется в зависимости от гелиоцентрической широты. Они показали, что период вращения минимален на экваторе и постепенно увеличивается к полюсам. С поправкой на годичное обращение Земли вокруг Солнца Кэррингтон получил средний период вращения на солнечном экваторе 24 % сут.  


Кстати, по движению этих пятен было обнаружено вращение Солнца.