Принцип работы гту тэц. Газотурбинные установки с утилизацией тепловой энергии

Газотурбинная теплоэлектроцентраль (ГТ ТЭЦ или ГТУ-ТЭЦ ) - теплосиловая установка, служащая для совместного производства электрической энергии в газотурбинной установке и тепловой энергии в котле-утилизаторе .

Устройство ГТ ТЭЦ

Единичный агрегат ГТ ТЭЦ состоит из газотурбинного двигателя , электрогенератора и котла-утилизатора . При работе газовой турбины образующаяся механическая энергия идёт на вращение генератора и выработку электроэнергии, а неиспользованная тепловая - для подогрева теплоносителя в котле. Комплексное использование энергии топлива для электрогенерации и отопления позволяет, как и для всякой ТЭЦ в сравнении с чисто электрической станцией, увеличить суммарный КПД установки примерно с 30 до 90 %.

Оптимальная частота вращения газовой турбины превышает необходимую для непосредственной выработки тока промышленной частоты, поэтому в составе электрогененрирующей части агрегата присутствует либо понижающий механический редуктор , либо статический электронный преобразователь частоты .

В оборудование ГТ ТЭЦ также входят система газоподготовки (осушение, механическая очистка, буферное хранение), электрический распределительный узел, устройства охлаждения генераторов, система автоматического управления и др.

Преимущества и недостатки ГТ ТЭЦ

Преимущества

  • В сравнении с паротурбинными тепловыми электростанциями ГТ ТЭЦ требуют меньших суммарных капитальных затрат при возведении, более просты в обслуживании. Они не имеют котлов высокого давления, не требуют специальных охлаждающих устройств для сброса избыточной тепловой энергии, мощность на единицу массы у них значительно выше. В то же время мощность единичного агрегата ГТ ТЭЦ ограничена более тяжёлыми условиями работы турбины. ГТ ТЭЦ не может использовать тяжёлое и твёрдое топливо, возможности оптимизации процесса сгорания на паровой ТЭЦ шире.
  • В сравнении с крупными газопоршневыми станциями ГТ ТЭЦ отличается гораздо большим ресурсом, но при этом дороже и требует более квалифицированного обслуживания. Газовая турбина менее требовательна к горючим качествам газа, чем поршневая машина, и более экологически чиста.

Недостатки

  • По соотношению вырабатываемой электрической энергии к тепловой ГТ ТЭЦ, как правило, проигрывает другим типам станций.
  • К недостаткам ГТ-ТЭЦ можно отнести высокую шумность. Шум вблизи станции может достигать 110 дБ, что сравнимо с шумом от самолёта. В отсутствие шумоизоляции, шум от станции распространяется на расстояние 3 км, с шумоизоляцией около от 1,5 до 2 км.

Область применения

Строительство ГТ ТЭЦ оправдано в случае необходимости быстрого введения локальных генерирующих и отопительных мощностей при минимизации начальных затрат: увеличение мощности или реконструкция сетей масштаба микрорайона, посёлка, небольшого города, основание новых населённых пунктов, особенно в сложных для строительства условиях. Всё, что необходимо для работы станции - лишь наличие стабильного газоснабжения; крайне желателен достаточный спрос на тепловую энергию.

Совершенствование технологии газотурбинных агрегатов удешевляет их производство и эксплуатацию и значительно продляет ресурс. Применение бесконтактных подшипников (магнитных , газодинамических), совершенствование материалов, работающих в пламени, снижение тепловой напряжённости крупных турбин позволяет добиться наработки 60-150 тыс.ч. до замены основных изнашивающихся деталей и межсервисного интервала порядка года. В настоящее время (2010-е) разработаны и серийно выпускаются как мощные тихоходные (6 тыс.об/мин) энергетические турбины для капитальных стационарных ГТ ТЭЦ, так и компактные турбоагрегаты с высокой частотой вращения (около 100 тыс. об/мин) и высокочастотными генераторами в законченном «контейнерном» исполнении, также в той или иной мере пригодные в качестве основного источника энергоснабжения населённого пункта.

Технологическое совершенство современных газотурбинных агрегатов в известной мере снимает барьер, заставивший на заре электроэнергетики ввести в турбогенератор «лишнюю» паровую ступень. Всё это вместе с увеличением спроса на локальные мощности способствует распространению ГТ ТЭЦ из газоносных районов с суровым климатом и сложными условиями строительства во всё более обширные умеренные области, где при дешёвом газоснабжении ощущается возрастающий недостаток электроэнергии, а наращивание мощности централизованных сетей нецелесообразно по экономическим или организационным соображениям.

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100-150° С, нагреваемая отбираемым из турбины паром. Пар из парового котла поступает по паропроводу в турбину где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины и соединенного с ним ротора генератора. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электроэнергии и производству и отпуску теплоэнергии.

Газотурбинные установки (ГТУ) состоят из трех основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. Воздух из атмосферы поступает в компрессор, приводимый в действие пусковым двигателем, и сжимается. Далее под давлением его подают в камеру сгорания, куда одновременно подводится топливным насосом жидкое или газообразное топливо. Для того чтобы снизить температуру газа до приемлемого уровня (750-770° С), в камеру сгорания подают в 3,5-4,5 раза больше воздуха, чем нужно для сгорания топлива. В камере сгорания он разделяется на два потока: один поток поступает внутрь жаровой трубы и обеспечивает полное сгорание топлива, а второй обтекает жаровую трубу снаружи и, подмешиваясь к продуктам сгорания, снижает их температуру. После камеры сгорания газы поступают в газовую турбину, находящуюся на одном валу с компрессором и генератором. Там они, расширяясь (примерно до атмосферного давления), совершают работу, вращая вал турбины, и затем выбрасываются через дымовую трубу. Мощность газовой турбины значительно меньше мощности паровой турбины и в настоящее время КПД около 30%.

Парогазовые установки (ПГУ) представляют собой сочетание паротурбинной (ПТУ) и газотурбинной (ГТУ) установок. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД по сравнению с отдельно взятыми ПТУ и ГТУ. Кроме того, при таком объединении достигается ряд конструктивных преимуществ, приводящих к удешевлению установки. Распространение получили два типа ПГУ: с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла. Высоконапорный котел работает на газовом или очищенном жидком топливе. Дымовые газы, выходящие из котла с высокой температурой и избыточным давлением, направляются в газовую турбину, на одном валу с которой находятся компрессор и генератор. Компрессор нагнетает воздух в топочную камеру котла. Пар из высоконапорного котла направляется к конденсационной турбине, на одном валу с которой находится генератор. Отработавший в турбине пар переходит в конденсатор и после конденсации насосом подается снова в котел. Выхлопные газы турбины подводятся к экономайзеру для подогрева питательной воды котла. В такой схеме не требуется дымосос для удаления отходящих газов высоконапорного котла, функцию дутьевого насоса выполняет компрессор. КПД установки в целом достигает 42-43%. В другой схеме парогазовой установки осуществляется использование теплоты отработавших газов турбины в котле. Возможность сброса отработавших газов турбины в топочную камеру котла основывается на том, что в камере сгорания ГТУ топливо (газ) сжигают с большим избытком воздуха и содержание кислорода в выхлопных газах (16-18%) является достаточным для сжигания основной массы топлива.



29. АЭС: устройство, типы реакторов, параметры, режимные характеристики.

АЭС относятся к тепловым ЭС, т.к. в их устройстве есть тепловыделители, теплоноситель и генератор эл. тока – турбина.

АЭС могут быть конденсационными, теплофикационными (АТЭЦ), атомные станции теплоснабжения (АСТ).

Ядерные реакторы классифицируются по различным признакам:

1. по уровню энергии нейтронов:

На тепловых нейтронах

На быстрых нейтронах

2. по виду замедлителя нейтронов: водными, тяжеловодными, графитовыми.

3. по виду теплоносителя: водными, тяжеловодными, газовыми, жидко металлическими

4. по числу контуров: одно-, двух-, трех- контурные

В современных реакторах для деления ядер исходного топлива используются в основном тепловые нейтроны. Все они имеют прежде всего так называемую активную зону , в которую загружается ядерное топливо, содержащее уран 235 замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем, выполненным обычно из того же материала, что и замедлитель.

За отражателем снаружи реактора размещается бетонная защита от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней из карбамида бора. Такие стержни называютрегулирующими или компенсирующими. В процессе деления ядра выделяется большое количество теплоты, которая отводиться теплоносителем в теплообменник парогенератора , где она превращается в рабочее тело – пар. Пар поступает в турбину и вращает ее ротор, вал которого соединен с валом генератора . Отработавший в турбине пар попадает в конденсатор , после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется.

Для функционирования промышленных и хозяйственных объектов, находящихся на значительном удалении от централизованных линий электропередачи, применяются электрогенерирующие установки малой энергетики. Они могут функционировать на различных видах топлива. Наибольшее распространение получили газотурбинные электростанции благодаря высокому КПД, способности генерировать тепловую энергию и ряду других особенностей.

Принцип действия

Основу газотурбинной электростанции (ГТЭС) составляет - силовая установка, работающая на энергии сгорания газообразного топлива, механически связанная с электрогенераторами и объединенная с ними в единую систему. Газотурбинная установка является самым мощным двигателем внутреннего сгорания. Ее удельная мощность может составлять 6 кВт/кг.

В отличие от других типов силовых установок, в ГТД все процессы происходят в потоке постоянно движущегося газа. Сжатый компрессорами атмосферный воздух вместе с топливом поступает в камеру сгорания. Смесь воспламеняется с выделением большого количества продуктов сгорания под высоким давлением, которые давят на лопасти, вращают их, а вместе с ними и электрогенераторы.

Мощность газотурбинной электростанции варьируется от 20 киловатт до нескольких сотен мегаватт. В качестве топлива может использоваться любой горючий материал, который можно диспергировать (тонко измельчить) и представить в газообразном виде.

Преимущества ГТЭС

Важным преимуществом газотурбинных электростанций является возможность одновременного использования двух видов энергии - электрической и тепловой. Причем количество тепла, отдаваемое потребителю, в два-три раза больше, чем количество вырабатываемого электричества. Когенерация (процесс выработки двух типов энергии) становится возможной при установке специального котла утилизатора на выхлопе турбины.

Используя газотурбинные электростанции, удается создать автономные энергетические комплексы, которые способны разрешить одновременно несколько задач:

  1. Обеспечить электроэнергией частные и промышленные объекты.
  2. Утилизировать побочный газ при нефтедобыче.
  3. Обогреть технические помещения и жилые корпуса побочным теплом.

Все это позволяет в значительной мере снизить затраты на обеспечение предприятия, создать оптимальные условия для работы персонала и сконцентрировать материальные средства и капитал на расширении производства и решении других, более важных задач.

Особенности газотурбинных электростанций

Одной из главных особенностей ГТЭС является способность функционирования практически на любом виде топлива. Как уже отмечалось ранее, для работы газотурбинные электростанции могут использовать горючее, которое можно диспергировать. В качестве такого могут выступать бензин, мазут, нефть, природный газ, спирт и даже измельченный уголь.

В конструкции ГТЭС практически отсутствуют движущиеся элементы. Единственная подвижная деталь, которая объединяет ротор генератора, колеса турбины и компресс, может быть подвешена при помощи газодинамического подшипника. В результате этого износ рабочих узлов будет сведен к минимуму, что существенным образом скажется на долговечности установки.

Одновременно с этим увеличивается и период межсервисного обслуживания до 60 тыс. часов беспрерывной работы или до 7 лет эксплуатации. Газотурбинные электростанции нельзя использовать в качестве резервных источников энергии, ибо в момент пуска особенно интенсивно изнашиваются детали. Количество запусков установок ограничено 300 в год.

Мобильные ГТЭС

Особое место в промышленной сфере занимают мобильные газотурбинные установки. В отличие от обычных ГТЭС они обладают меньшими габаритами и массой, оборудуются на передвижной платформе и оснащаются электронными системами управления. Как правило, такие комплексы используются для восстановления подачи электроэнергии на объект.

Мобильная газотурбинная электростанция развертывается на площадках с твердым покрытием, обеспечивающих устойчивое положение. К ней подводится топливопровод, а в непосредственной близости устанавливается Время развертывания зависит от типа установки, но обычно не превышает 8-12 часов.

Мощность мобильных установок варьируется от 5 до 25 МВт. При этом КПД передвижных ГТЭС начинает расти от 35%. Как и стационарные электростанции, также выделяют тепловую энергию. Но вместе с этим создают меньше расходов, связанных с эксплуатацией и пусконаладочными работами.

Парогазовые электростанции

Парогазовую установку можно назвать модификацией ГТЭС. Как и газотурбинные установки электростанций, подобные генераторы используют энергию сгорания диспергированного топлива. Но проходя через турбину, газообразные продукты отдают лишь часть своей энергии и выбрасываются в атмосферу в нагретом состоянии. Парогазовые установки используют это тепло.

В конструкции парогазовых электрогенераторов имеется паросиловая установка, которая располагается в торцевой части турбины. В ней находится вода, которая закипает от нагретых продуктов сгорания. Образуется огромное количество пара, которое вращает турбину и приводит дополнительный генератор в действие.

Газотурбинные и парогазовые электростанции могут применяться во всех отраслях промышленности, однако второй вид генераторов предпочтительнее, ибо их КПД составляет более 60%.

Сферы применения ГТЭС

Использование газотурбинных установок целесообразно для удаленных от централизованных линий электроснабжения потребителей, а также для сезонно функционирующих объектов. В таком случае затраты на обеспечение предприятия электричеством будут ниже, чем на подключение к ЛЭП.

Крупногабаритные ГТЭС целесообразно использовать вместо тепловых электростанций в том случае, если имеется дешевый источник топлива. Такая ситуация характерна для нефтегазоносных районов Севера. При этом удается сэкономить и на обогреве помещений.

В последнее время мобильная газотурбинная электростанция стала широко применяться и в городских условиях благодаря низкому уровню производимого шума, вибрации и токсичности выхлопных газов. Ее целесообразно использовать в случаях, когда подключение к энергосети города затруднено или стоимость последней слишком высока.

Область применения:

1) Для выработки электрической и тепловой энергии.

2) Транспортные (двигатели самолетов, судов, железнодорожных локомотивов, танков).

3) Приводные ГТУ: для привода мощных нагнетателей воздуха (компрессоры, воздуходувки, насосы, на газоперекачке).

4) Энерготехнологические ГТУ: используются в технологических схемах крупных предприятий для приводов компрессоров, обеспечивающих рабочий процесс и работающих за счет расширения газов, образующихся в сомом технологическом процессе.

ПТУ  сложнее и дороже

ГТУ – маневреннее, быстрее пуск. Пуск ГТУ осуществляется за несколько минут, паросиловой установки – до нескольких часов).

1. ГТУ используют для снятия пиковых нагрузок (КПД низкий).

2. Благодаря низкой стоимости на газ, в последнее время повышен интерес у конечных потребителей энергии к созданию ГТУ (собственных) для обеспечения предприятий энергоресурсами.

3. Использование ГТУ (замкнутых), работающих в паре с атомными реакторами (для охлаждения применяют гелий).

Принципиальная схема гту.

Цикл ГТУ.

2 д , 4 д  потери в проточной части.

12 сжатие воздуха в компрессоре (адиабатное);

23 изобарный подвод теплоты в камере сгорания;

34 адиабатное расширение продуктов сгорания в ГТ;

41 изобарное охлаждение продуктов сгорания в атмосфере.

степень повышения давления в компрессоре.

Р 1  давление окружающей среды только для разомкнутых схем.

Чем π выше, тем выше η t . .

Температура Т 3 ограничена пределом жаростойкости металла ГТ (1400°С – для авиационной турбины, или 900°С – в среднем).

Замкнутая схема.

Недостаток схемы : большое количество элементов, работающих при высокой температуре, что повышает стоимость установки (дорогие материалы).

Т 4 > Т 1 Т ос Т 4 =400÷450°С

В открытой схеме выбрасываемые газы имеют высокий тепловой потенциал.

Из-за потерь при определенной степени сжатия π работа компрессора может быть больше работы ГТ.

В реальной установке наибольшая эффективность достигается при определенной (оптимальной) степени повышенного давления в компрессоре π опт .

Значение π опт определяется температурой рабочего тела на выходе из камеры сгорания и относительными внутренними КПД компрессора и турбины.

Методы повышения КПД ГТУ.

1) Использование теплоты уходящих газов.

Регенеративный подогрев сжатого воздуха продуктами сгорания ГТ.

Т 4 > Т 1

температура воздуха на выходе из РП

Уменьшается количество подводимой теплоты в КС; уменьшается количество теплоты, выбрасываемое в окружающую среду, следовательно, эффективность возрастает.

Т 6 2

, Р 4 1 , Р 2 3

π > 1, следовательно, чем ниже π , тем больше выгода от регенерации теплоты.

При увеличении π :
и;

с увеличением Т 3 :
;

при определенной π:

2) Промежуточное охлаждение воздуха в компрессоре.

уменьшение работы на сжатие воздуха компрессором при промежуточном охлаждении воздуха, сжимаемого компрессором.

(адиабатный) изоэнтропный (относительный) КПД компрессора.

полезная работа компрессора ГТУ с промежуточным охлаждением воздеха.

>

3) Промежуточный подогрев газов в ГТ

η t –относительный КПД турбины (адиабатный)

Р 3 = Р 2 ; Р 4 = Р 1

увеличение работы расширения продуктов сгорания в турбине за счет промышленного перегрева этих газов.

ПОВ – промежуточный охладитель воздуха;

ПП  промежуточный подогреватель продуктов сгорания.

Т 1 =300К

Т 3 =973К

увеличилась в 1,8 раз (на 80%).

Если иувеличить на 2%, тоувеличится на 14%.

Полезная мощность

расход газа через турбину;

расход газа через компрессор.

–расход теплоты с топливом в КС.

N эл = N пол ·η эм

Условия отпуска теплоты от газотурбинной ТЭЦ имеют следующие особенности:

                Продолжительность сгорания на выходе из ГТУ составляют t=400-500°С,то достаточно для нагрева теплоносителей, в т.ч. пару, для отпуска тепловой энергии внешним потребителям.

                Выработка тепловой энергии в виде пара или горячей воды производится за счет теплоты полностью отработавших в ГТ продуктов сгорания, поэтому:

Температурный уровень отпускаемой теплоты не влияет на тепловую экономичность ГТ.

Мощность газотурбинного двигателя ГТУ при любой величине отпуска тепловой энергии остается постоянным (электрическая и тепловая нагрузка не связаны).

К.т.н. П.А. Березинец, зав. лаборатории парогазовых установок, ОАО «ВТИ», г. Москва

Газотурбинные надстройки отопительных котельных

Появление на отечественном рынке энергетических газотурбинных установок (ГТУ) малой и средней мощности с неплохими экономическими показателями (КПД, габаритные размеры, стоимость) дает возможность реализовать комбинированную выработку тепла и электроэнергии в отопительных и промышленных теплоисточниках, использующих газообразное топливо.

При реконструкции отопительных котельных с использованием газотурбинных надстроек возникают следующие проблемы:

Вывод генерируемой электроэнергии (без этого об использовании ГТУ не может быть и речи);

Изыскание площади для размещения ГТУ (при отсутствии свободных площадей или неприемлемости других технических решений для размещения ГТУ использование их также невозможно);

Ограничение потребления природного газа (если разрешено потребление природного газа в количестве, достаточном только для обеспечения максимальной или более низкой тепловой нагрузки, то диапазон покрываемой ГТУ нагрузки сужается);

Необходимость повышения давления природного газа для ГТУ.

Модернизация отопительных котельных может выполняться двумя способами.

1. Посредством установки модулей ГТУ-ГПСВ (ГПСВ - газовый подогреватель сетевой воды) и интегрированием их в тепловую схему котельной. Фактически это расширение котельной, т.к. располагаемая тепловая мощность при этом увеличивается. Режим эксплуатации существующей части котельной в этом случае изменится из базового на пиковый. Выбор суммарной мощности модулей должен осуществляться при оптимальном коэффициенте теплофикации.

2. Посредством надстройки действующих водогрейных котлов газотурбинными установками. При этом способе необходимо согласование характеристик ГТУ и котлов. Это касается в первую очередь расхода выхлопных газов ГТУ, рас-

хода газов через водогрейные котлы и производительности дымососов. Возможны три схемы сопряжения ГТУ и водогрейного котла (рис. 1).

Первая - сбросная сбалансированная схема (рис. 1а), при которой весь расход выхлопных газов направляется в горелки водогрейного котла. Дополнительное топливо в водогрейном котле сжигается за счет воздуха, имеющегося в выхлопных газах ГТУ. При недостатке в них воздуха может быть использован дутьевой вентилятор. При отключении ГТУ сохраняется возможность работы котла на дутьевых вентиляторах. Перевод котла из комбинированного режима (с ГТУ) в автономный (с дутьевыми вентиляторами) наиболее просто осуществляется при остановленных ГТУ и котле переключением плотных газовых клапанов или заглушек.

Вторая - сбросная несбалансированная схема, когда расход выхлопных газов ГТУ превышает допустимый расход газов через котел.

За ГТУ можно установить ГПСВ, в котором выхлопные газы охлаждаются до температуры уходящих газов водогрейного котла. Необходимое для сжигания топлива количество газов направляется в горелки котла, а остальная часть выбрасывается в дымовую трубу. Сетевая вода нагревается в ГПСВ и водогрейном котле (рис. 1б). Тепловая нагрузка регулируется изменением расхода топлива в горелки водогрейного котла и необходимого для его сжигания расхода газов после ГПСВ.

В третьей схеме избыточная часть расхода выхлопных газов после ГТУ сбрасывается в ГПСВ, включенный параллельно водогрейному котлу (рис. 1в). Регулирование тепловой нагрузки осуществляется изменением расхода топлива в котле.

Для реализации последних двух схем необходимы дополнительные затраты на сооружение ГПСВ. Если не требуется увеличение тепловой мощности котельной, то в первую очередь должна рассматриваться сбалансированная схема.

Для иллюстрации использования ГТУ рассмотрим типичную районную отопительную котельную, оснащенную двумя котлами КВГМ-100, среднемесячная тепловая нагрузка которых в течение года представлена на рис. 2. График продолжительности действия тепловых нагрузок котельной и соответствующий ему график мощности ГТУ показан на рис. 3.

Котельная имеет возможность расширения за счет имеющихся свободных площадей и демонтажа неиспользуемого оборудования. На территории котельной есть место для размещения электротехнического оборудования, обеспечивающего передачу электроэнергии в энергосистему. Лимит потребления природного газа используется на 50%, т.к. расширение котельной остановлено из-за снижения темпов жилищного строительства. Избыточное давление природного газа, поступающего на территорию котельной, составляет 0,15 МПа, т.е. для работы ГТУ требуется установка дожимных компрессоров. Таким образом, котельная полностью удовлетворяет перечисленным условиям размещения в ней ГТУ. Показатели работы котельной, выполненной по сбалансированной схеме с использованием ГТУ различной мощности, представлены в табл. 1. В расчетах были приняты следующие температурные графики тепловой сети: зимний - 70/150 ОС, летний - 35/70 ОС.

При стоимости установленной газотурбинной мощности 600 долл. США/кВт фактический срок погашения 100% кредита (12 млн долл. США) на установку первой ГТУ составит 4 года. Однако для привлечения инвесторов следует ориентироваться на фактический срок погашения кредита до 2 лет, что также возможно, но при условии, если стоимость установленной мощности составляет менее 400 долл. США/кВт.

Таким образом, если в отопительной котельной имеются необходимые условия, то установка ГТУ с использованием сбалансированной или несбалансированной сбросной схемы может обеспечить существенный экономический эффект.

Газотурбинные и парогазовые ТЭЦ

Опыт разработки ГТУ-ТЭЦ показывает, что, не уступая паросиловым ТЭЦ по технико-экономическим показателям, ГТУ-ТЭЦ значительно дешевле по капитальным затратам, проще по устройству и эксплуатации.

Россия обладает значительным опытом освоения ГТУ-ТЭЦ. Первая такая установка была сооружена в 1971 г. для теплоснабжения г. Якутска. На этой ТЭЦ в настоящее время эксплуатируются четыре ГТУ типа ГТЭ-35 и две типа ГТЭ-45 производства ОАО «Турбоатом». Тепло выхлопных газов утилизируется в газовых подогревателях сетевой воды. Суммарная электрическая мощность станции составляет 230 МВт, максимальная тепловая нагрузка, отпускаемая электростанцией, превышает 300 Гкал/ч.

Главная проблема при использовании ГТУ-ТЭЦ - определение оптимальной доли газотурбинной мощности в отпускаемой тепловой мощности и числа часов ее использования. Если ГТУ-ТЭЦ работает на потребителя с постоянной круглосуточной тепловой нагрузкой, то максимальная выгода владельцу обеспечивается в том случае, если все тепло отпускается от газотурбинных установок. Если же в течение года тепловая нагрузка изменяется значительно, ГТУ будет использоваться существенно меньшее число часов, что в свою очередь будет повышать себестоимость электроэнергии.

Основную роль при решении этой задачи играют технико-экономические показатели ГТУ и ее мощность. Совершенно очевидно, что если КПД ГТУ в автономном режиме сравним с КПД паросиловой ТЭЦ в конденсационном режиме, то преимущество ГТУ-ТЭЦ неоспоримо в любом случае.

Электрический КПД современных ГТУ составляет 34-37%. Он близок или даже выше КПД паротурбинных установок ТЭЦ докритического давления, работающих в конденсационном режиме. Выработка тепла не снижает этого КПД в отличие от паротурбинных установок, где электрическая мощность и КПД вследствие отборов пара на теплофикацию (особенно промышленных, при высоком давлении) значительно уменьшаются.

Для увеличения выработки тепла в периоды максимальных нагрузок могут использоваться основные котлы-утилизаторы ГТУ, которые для этого оснащаются горелками для сжигания дополнительного топлива. Дополнительное сжигание топлива, однако, так же как и уменьшение тепловой нагрузки (недоиспользование тепла отработавших в ГТУ газов), снижает эффективность ГТУ-ТЭЦ. Даже с учетом этого ГТУ наиболее привлекательны для промышленных ТЭЦ со значительной долей стабильной паровой нагрузкой, хотя экономически ГТУ-ТЭЦ могут быть выгодными и при резко переменном графике тепловой и электрической нагрузки.

Наиболее эффективным вариантом модернизации ТЭЦ является использование бинарных парогазовых установок. При такой схеме каждая ГТУ работает на свой котел-утилизатор, в котором генерируется и перегревается пар, поступающий, например, в общий коллектор и из него в имеющиеся паровые турбины.

Схема котла для ПГУ-ТЭЦ может быть упрощена путем замены контуров низкого и среднего давления газоводяным подогревателем сетевой воды. Выработка тепла в этом случае осуществляется за счет отборов пара из паровой турбины и в газоводяном подогревателе.

Сравнительная эффективность газотурбинных и парогазовых ТЭЦ с ГТУ средней мощности (70 МВт), используемых для покрытия одной и той же заданной тепловой нагрузки, характеризуется данными, приведенными в табл. 2. Расчеты выполнялись с учетом срока использования -40 лет, при мировых ценах на топливо, оборудование, электроэнергию и тепло. Результаты свидетельствуют, что все варианты ТЭЦ при разумных тарифах и ценах на топливо эффективны. Наилучшие финансово-экономические показатели имеют ГТУ-ТЭЦ и ПГУ-ТЭЦ с турбинами типа Т.

Газотурбинные установки с котлам-утилизаторами лучше всего располагать в новом главном корпусе на площадке действующей ТЭЦ. В этом случае старые котлы и часть паровых турбин могут сохраняться в резерве для покрытия пиковых нагрузок или использоваться при перерывах в газоснабжении (т.к. в котлах в качестве резервного топлива может использоваться мазут).

На многих ТЭЦ возможна пристройка блока ГТУ - котел-утилизатор со стороны временного торца главного корпуса, ввод его в действие и подключение к паровому коллектору, создание резерва паровой мощности и последующая поочередная замена энергетических котлов и паровых турбин на ГТУ и котлы-утилизаторы.

Различные варианты использования ГТУ и ПГУ на ТЭЦ могут получить широкое распространение. На ТЭЦ мощностью более 200 МВт (эл.), в топливном балансе которых природный газ занимает 90% или более, эксплуатируется около 300 паровых турбин мощностью 60-110 МВт. Часть из них можно и целесообразно заменить газовыми. При этом наибольшая выгода может быть получена, если такая замена будет осуществлена с увеличением электрической мощности ТЭЦ (при постоянной тепловой нагрузке оптимально увеличение мощности в 2-2,5 раза).

Заключение

Трудности, возникающие при техническом перевооружении котельных и ТЭЦ с использованием газотурбинных и парогазовых технологий, в основном связаны: со стесненностью площадок, необходимостью вывода увеличенной мощности и обеспечения надежной круглогодичной подачи природного газа (или резервирования дизельным топливом), минимизацией капитальных вложений.

На ТЭЦ возможны газотурбинные надстройки различных типов. При сравнительно небольшой единичной паропроизводительности котлов старых ТЭЦ для этой цели можно использовать ГТУ мощностью 15-30 МВт с расходами газов 65-100 кг/с. Надстройки увеличивают выработку электроэнергии на тепловом потреблении. Их эффективность по финансово-экономическим показателям необходимо оценивать в каждом конкретном случае.

Выгода от внедрения газотурбинных и парогазовых технологий для технического перевооружения ТЭЦ будет максимальной в том случае, если будут использованы газовые турбины отечественного производства.

При благоприятном решении организационно-технических и хозяйственных вопросов, связанных с внедрением ГТУ в энергетику, их использование позволит в 1,5-2 раза снизить издержки на производство электроэнергии и тепла.