Трансформаторное масло вес. Определение вязкости трансформаторного масла

Зависимость поглощения (по энергии на 1 мггц для различных интенсивностей ультразвука от расстояния до излучателя (дистиллированная вода.  

В этой же связи стоит тот экспериментальный факт, что с уменьшением вязкости трансформаторного масла при его нагревании коэффициент поглощения не уменьшается (как это должно было бы быть для волн малой амплитуды), а увеличивается.  

Что касается изменения вязкости масел при низких температурах1, то, как следует из табл. 11, заимствованной из той же работы, резкое увеличение вязкости трансформаторного масла наблюдается уже при температурах ниже минус 30 С, а для турбинного Л при температуре минус 5 С.  

Для применения в силовых трансформаторах в СССР используют в основном совтол-10, представляющий собой смесь 90 % пента-хлордифенила и 10 % трихлорбензола, который имеет в рабочем интервале температур вязкость, близкую к вязкости трансформаторного масла. Однако по своим вязкостно-температурным свойствам совтол-10 значительно уступает гексолу, представляющему собой смесь 20 % пентахлордифенила и 80 % гексахлорбутадиена. Гек-сол не застывает при температуре до - 60 С и меньше подвержен влиянию загрязнений.  

Были проведены две серии опытов. Вязкость трансформаторного масла снижали добавлением в него растворителя - керосина и растворением в нем природного газа.  

Вязкость трансформаторного масла строго нормируется. Трансформаторное масло, поступающее на предприятия, тщательно сушат в специальных установках и многократно фильтруют. Пробивное напряжение масла перед заливкой в трансформатор должно быть не менее 50 кВ при расстоянии между двумя электродами в стандартном пробойнике 2 5 мм.  


В большинстве случаев для этой цели используется сухое трансформаторное масло (ГОСТ 982 - 56), обладающее хорошими электроизоляционными свойствами. Вязкость трансформаторного масла невелика, вследствие чего его конвекция и циркуляция обеспечивают хорошее охлаждение аппаратуры, что особенно важно для приборов с нагревающимися в процессе работы элементами. Масло также защищает аппаратуру от атмосферных влияний и от вредного действия химически агрессивной среды.  

Основным достоинством трансформаторного масла являются его высокие изоляционные свойства и способность предохранить от коррозии охлаждаемый тракт. Однако вязкость трансформаторного масла значительно выше вязкости воды. Поэтому для создания циркуляции масла, по эффективности соизмеримой с циркуляцией воды, требуются большие диаметры трубопроводов и более высокий напор. Давление масла в трубопроводе ограничено 3 - 4 кгс / см2, так как из-за хорошей смачиваемости металлических поверхностей, оно при больших давлениях способно просачиваться сквозь незначительные неплотности, практически всегда имеющие место в сочленениях трубопроводов.  

В технических нормах в качестве одного из параметров, характеризующих данное масло, указывается значение v20, однако на фиг. Поэтому вязкость очищенного трансформаторного масла при 20 С определим приближенно, используя, например, формулу (I, 56) Гросса.  

Эффективность теплоотвода. / - кремнийорганической жидкостью большой вязкости. 2 - трансформаторным маслом. 3, 4 и 5 - фторорганиче-скими жидкостями (С4Р9 зМ, CSF16O и C6F120.| Применение холодильной установки для охлаждения трансформатора.  

Это может быть особенно ценным для трансформаторов предельных мощностей, которые иначе были бы нетранспортабельными. Нужно отметить, что вязкость трансформаторного масла возрастает при понижении температуры, поэтому коэффициент теплоотдачи от обмоток к маслу будет ниже, чем в обычных системах масляных трансформаторов.  

Если полость статора заполнена трансформаторным маслом, то во время пуска в зимнее время необходимо создать минимальную нагрузку или, если это допустимо, произвести пуск в режиме холостого хода и продолжать работу электродвигателя в этом режиме для прогрева всего объема масла до 15 - 20 С без подачи охлаждающей жидкости в систему охлаждения. Это необходимо по той причине, что вязкость трансформаторного масла при низких температурах велика и циркуляция его по всему контуру будет затруднена, что может привести к местным перегревам и к обугливанию изоляции обмотки даже в том случае, когда температура масла в точках замера еще не достигнет предельных значений.  

Эксплуатация электродвигателей, полость статора у которых заполнена трансформаторным маслом или для отвода тепла используется водяное охлаждение, в зимнее время на открытых площадках или в неотапливаемых помещениях имеет ряд отличительных особенностей. Это обусловлено тем, что при низких температурах вязкость трансформаторного масла повышается, а вода может замерзнуть в системе охлаждения, если не принять надлежащих мер предосторожности.  

Снижение вязкости при заданной температуре вспышки достигается сужением фракционного состава; внедрение этого мероприятия ограничено, так как при этом уменьшается выход масла. В последние годы за рубежом намечается тенденция снижения вязкости трансформаторных масел даже при условии некоторого понижения температуры вспышки.  

Вязкость трансформаторного масла является важным физиче­ским параметром, определяет процесс теплоотдачи обмоток и магнитопроводов в трансформаторах и дугогасящую способность выклю­чателей Для хорошей циркуляции масла в трансформаторах, улучшающей охлаждение обмоток и магнитопроводов, необходимы масла с малой вязкостью. В свою очередь у масла, как и других жидких диэлектри­ков, вязкость сильно возрастает при понижении температуры. При температу­ре 20°С вязкость трансформаторного масла должна быть не более 4,2°Э и не выше 2°Э при температуре 50°С.

Для измерения условной вязкости – ВУ масла применяется вискозиметр Энглера, схема которого показана на рис. 3. Латунный сосуд – 2 помещен внутрь металлического сосуда 1 так, чтобы между ними имелось пространство, заполненное водой. Оба сосуда в центре имеют отверстия, сквозь которые пропущена калиброванная трубка – 3

Схема вискозиметра Энглера.

с диа­метром внутреннего отверстия 2-3 мм. Это отверстие закрывается пробкой - 4. Латунный сосуд за­полняется испытуемой жидкостью по указательные штифты – 5. Одно­временное касание маслом всех трех остриев служит признаком правильной установки на столе, неточность установки выправляют установочными винтами на ножках прибора. Наружный сосуд 1 служит водяной баней, отку­да нагретая на электрической плитке вода равномерно передает тепло маслу. Воду перемешивают мешалкой. Благодаря значитель­ной теплоемкости воды не происходит резких колебаний температу­ры масла во время испытаний.

Перед испытаниями трансформаторного масла вискозиметр Энглера должен быть тщательно промыт и просушен. Вставив пробку - 4 в калиброванную трубку - 3 и установив под сливным отверстием мерную колбу с отметкой на узком горлышке объема в 200мл, заливают масло в латунный сосуд. Закрыв крышку, нагревают воду, перемешивая ее мешалкой - 5. Когда установится требуемая температура масла, что отмечается термометром – Т 2, сливают в колбу масло до отметки-200 мл. При этом пену во внимание не принимают. Время вытекания этого объема масла засекают секундомером.

Вязкостью масла в градусах Энглера называется отношение времени истечения 200 миллилитров масла, нагретого до температуры 50 0 С, к времени истечения такого же объема дистиллированной воды при температуре 20 0 С.

Время истечения 200 мл. воды при температуре 20 0 С называют водным числом прибора.

Наряду с условной вязкостью различают динамическую и кине­матическую. Динамическая вязкость -η вычисляется по формуле:

, Па. с,

где f – сила в (Н), действующая на твердый шарик.

Эта сила равна весу твердого шарика за вычетом (на основании закона Архимеда) веса жидкости объема шарика; r, - радиус шарика, мм; V - скорость движения шарика, м/с;

,

где k - поправочный коэффициент, учитывающий влияние стенок сосуда; r, - радиус сосуда, м; l. - высота сосуда, м; ν - кинематическая вязкость,м/с вычисляется по формуле:

,

где ρ - плотность испытуемой жидкости, кг/м 3 . Кинематическую вязкость часто измеряют в стоксах (Ст) = 10 -4 м 2 /с.

Для измерения вязкости кроме вискозиметра Энглера ис­пользуют шариковые вискозиметры, ротационные, пластовискозиметры, электроротационные и капиллярные.

Шариковые вискозиметры основаны на измерении скорости по­гружении стального шарика в испытуемой жидкости.

Ротационные вискозиметры конструктивно состоят из двух ци­линдров: наружного неподвижного и внутреннего, вращающегося во­круг вертикальной оси под действием определенной силы. Про­странство между ними заполнено испытуемой жидкостью. По затрате мощности на вращение внутреннего цилиндра или по степени замед­ления вращения его определяют вязкость жидкости. При определен­ном конструктивном исполнении ротационного вискозиметра можно совместить определение вязкости и удельного электрического со­противления испытуемой жидкости по току утечки между цилиндра­ми.

Пластовискозиметры способны, наряду с вязкостью, опреде­лять предел прочности.

Электроротационные вискозиметры позволяют непосредственно отсчитывать величину вязкости по шкале измерительного прибора.

Капилярные вискозиметры служат для измерения кинемати­ческой вязкости.

От кинематической вязкости (м 2 /с) к условной вязкости (°Э) можно перейти, используя таблицу 2.

Таблица 2

Кинематическая вязкость Град Э Кинематическая вязкость Град Э Кинематическая вязкость Град Э
м 2 /с сСт ВУ м 2 /с сСт ВУ м 2 /с сСт ВУ
0.000001 1.00 1.00 0.000024 24.0 3.43 0.000054 54.0 7.33
0.000002 2.00 1.10 0.000025 25.0 3.56 0.000055 55.0 7.47
0.000003 3.00 1.20 0.000026 26.0 3.68 0.000056 56.0 7.60
0.000004 4.00 1.29 0.000027 27.0 3.81 0.000057 57.0 7.73
0.0000045 4.5 1.34 0.000028 28.0 3.95 0.000058 58.0 7.86
0.000005 5.0 1.39 0.000029 29.0 4.07 0.000059 59.0 8.00
0.0000055 5.5 1.43 0.000030 30.0 4.20 0.000060 60.0 8.13
0.000006 6.0 1.48 0.000031 31.0 4.33 0.000061 61.0 8.26
0.0000065 6.5 1.53 0.000032 32.0 4.46 0.000062 62.0 8.40
0.000007 7.0 1.57 0.000033 33.0 4.59 0.000063 63.0 8.53
0.0000075 7.5 1.62 0.000034 34.0 4.72 0.000064 64.0 8.66
0.000008 8.0 1.67 0.000035 35.0 4.85 0.000065 65.0 8.80
0.0000085 8.5 1.62 0.000036 36.0 4.98 0.000066 66.0 8.93
0.000009 9.0 1.76 0.000037 37.0 5.11 0.000067 67.0 9.06
0.0000095 9.5 1.81 0.000038 38.0 5.24 0.000068 68.0 9.20
0.000010 10.0 1.86 0.000039 39.0 5.37 0.000069 69.0 9.34
0.000015 15.0 2.37 0.000045 45.0 6.16 0.000075 75.0 10.15
0.000020 20.0 2.95 0.000050 50.0 6.81 . 0.000080 80.0 10.8


При > 8 . 10 –5 м 2 /с (80 сСт) переход от одной системы к другой производится по формуле.

25.1 Контроль качества трансформаторных масел при приеме и хранении
Поступающая на энергопредприятие партия трансформаторного масла должна быть подвергнута лабораторным испытаниям в соответствии с требованиями раздела 5.14 Правил технической эксплуатации электрических станций и сетей Российской Федерации (РД 34.20.501-95).
Нормативные значения показателей качества для свежего масла в зависимости от его марки приводятся в табл. 25.1. Таблица составлена на основании требований действующих ГОСТ и ТУ к качеству свежих трансформаторных масел на момент разработки настоящего документа.

25.1.1 Контроль трансформаторного масла после транспортирования

Из транспортной емкости отбирается проба масла в соответствии с требованиями ГОСТ 2517-85. Проба трансформаторного масла подвергается лабораторным испытаниям по показателям качества 2, 3, 4, 11, 12, 14, 18 из табл. 25.1.

Показатели качества 2, 3, 4, 14, 18 определяются до слива масла из транспортной емкости, а 11 и 12 можно определять после слива масла.

Показатель 6 должен дополнительно определяться только для специальных арктических масел.

25.1.2 Контроль трансформаторного масла, слитого в резервуары

Трансформаторное масло, слитое в резервуары маслохозяйства, подвергается лабораторным испытаниям по показателям качества 2, 3, 4, 18 из табл. 25.1 сразу после его приема из транспортной емкости.

25.1.3 Контроль трансформаторного масла, находящегося на хранении

Находящееся на хранении масло испытывается по показателям качества 2, 3, 4, 5, 11, 12, 14, 18 из табл. 25.1 с периодичностью не реже 1 раза в 4 года.

25.1.4. Расширение объема контроля

Показатели качества масла из табл. 25.1, не указанные в пп. 25.1.1-25.1.3, определяются в случае необходимости, по решению технического руководителя энергопредприятия.

25.2 Контроль качества трансформаторных масел при их заливке

В электрооборудование

25.2.1 Требования к свежему трансформаторному маслу

Свежие трансформаторные масла, подготовленные к заливке в новое электрооборудование, должны удовлетворять требованиям табл. 25.2.

25.2.2 Требования к регенерированным и очищенным маслам

Регенерированные и (или) очищенные эксплуатационные масла, а также их смеси со свежими маслами, подготовленные к заливке в электрооборудование после ремонта, должны удовлетворять требованиям табл. 25.3.

25.3 Контроль качества трансформаторных масел при их эксплуатации

В электрооборудовании

25.3.1 Объем и периодичность испытаний

Объем и периодичность проведения испытаний масла указаны в разделах на конкретные виды электрооборудования, нормативные значения показателей качества приводятся в табл. 25.4.

На основании полученных результатов лабораторных испытаний масла определяют области его эксплуатации:

Область "нормального состояния масла" (интервал от предельно допустимых значений после заливки масла в электрооборудование, приведенных в табл. 25.2, столбец 4, и до значений, ограничивающих область нормального состояния масла в эксплуатации, приведенных в табл. 25.4, столбец 3), когда состояние качества масла гарантирует надежную работу электрооборудования и при этом достаточно минимально необходимого контроля показателей 1-3 из табл. 25.4 (сокращенный анализ);

Область "риска" (интервал от значений, ограничивающих область нормального состояния масла, приведенных в табл. 25.4, столбец 3, до предельно допустимых значений показателей качества масла в эксплуатации, приведенных в табл. 25.4, столбец 4), когда ухудшение даже одного показателя качества масла приводит к снижению надежности работы электрооборудования и требуется более учащенный и расширенный контроль для прогнозирования срока его службы и (или) принятия специальных мер по восстановлению эксплуатационных свойств масла с целью предотвращения его замены и вывода электрооборудования в ремонт.

Таблица 25.1

Показатели качества свежих отечественных трансформаторных масел

Показатель

Марки масел и номера нормативных документов

ТУ
38.101.1025-85

ТУ
38.401.978-93

ТУ
38.401.58107-94

ТУ
38.401.5849-92

ТУ
38.401.830-90

ГОСТ 10121-76

ТУ 38.401.1033-95

ТУ 38.101.1271-89

ТУ
38.401.927-92

стандарта на метод испытаний

1. Вязкость кинематическая, мм/с (ССт), не более при:

2. Кислотное число, мг КОН на 1 г масла, не более

ГОСТ 5985-79

3. Температура вспышки в закрытом тигле, °С, не ниже

ГОСТ 6356-75

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

ГОСТ 6307-75

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

ГОСТ 6370-83

6. Температура застывания, °С, не выше

ГОСТ 20287-91

7. Зольность, %, не более

ГОСТ 1461-75

8. Натровая проба, оптическая плотность, баллы, не более

ГОСТ 19296-73

9. Прозрачность при 5°С

Прозрачно

Прозрачно

Прозрачно

ГОСТ 982-80, п. 5.3

10. Испытание коррозионного воздействия на пластинки из меди марки M1 или М2 по ГОСТ 859-78

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

Выдерживает

ГОСТ 2917-76

11. Тангенс угла диэлектрических потерь, %, не более при 90°С

ГОСТ 6581-75

12. Стабильность против окисления:

Масса летучих кислот, мг КОН на 1 г масла, не более

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Отсутствие

Кислотное число окисленного масла, мг КОН на 1 г масла, не более

13. Стабильность против окисления, метод МЭК, индукционный период, ч, не менее

МЭК 1125(В)-92

14. Плотность при 20°С, кг/м3, не более

ГОСТ 3900-85

15. Цвет на колориметре ЦНТ, единицы ЦНТ, не более

ГОСТ 20284-74

ГОСТ 19121-73

РД 34.43.105-89

18. Внешний вид

Чистое, прозрачное, свободное от видимых загрязнений, воды, частиц, волокон

Визуальный контроль

___________________

___________________
* при 40°С,
** при -40°С.

(Измененная редакция, Изм. № 2)


Таблица 25.2

Требования к качеству свежих масел, подготовленных к заливке
в новое электрооборудование

Примечание

после заливки в электрооборудование

6581-75, кВ, не менее

Электрооборудование:
до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

Электрооборудование:
до 220 кВ включительно

свыше 220 кВ

При применении арктического масла (АГК) или масла для выключателей (МВТ) значение данного показателя определяется стандартом на марку масла по табл. 25.1

ГОСТ 1547-84 (качественно)

Отсутствие

Отсутствие

Отсутствие (11)

Отсутствие (12)

6. Тангенс угла диэлектрических потерь при 90°С по ГОСТ 6581-75, %,

Силовые и

не более*

Электрооборудование всех видов и классов напряжений

Отсутствие

Отсутствие

При арбитражном контроле определение данного показателя следует проводить по стандарту МЭК 666-79 или (и) РД 34.43.208-95

9. Температура застывания, ГОСТ 20287-91, °С, не выше

11. Стабильность против окисления по ГОСТ 981-75:

Силовые и измерительные трансформаторы от 110 до 220 кВ включительно

Условия процесса: 120°С, 14 ч, 200 мл/мин О2

кислотное число окисленного масла, мг КОН/г масла, не более;

Силовые и измерительные трансформаторы свыше 220 до 750 кВ включительно, маслонаполненные вводы 110 кВ и выше

В соответствии с требованиями стандарта на конкретную марку масла, допущенного к применению в данном оборудовании

Для свежего масла допускается определение по стандарту МЭК 474-74 или 1125(В)-92

* Допускается применять для заливки силовых трансформаторов до 500 кВ включительно трансформаторное масло ТКп по ТУ-38.101.980-81 и до 220 кВ включительно масло ТКп по ТУ 38.401.5849-92, а также их смеси с другими свежими маслами, если значение tgd при 90°С не будет превышать 2,2% до заливки и 2,6% после заливки и кислотного числа не более 0,02 мг КОН/г, при полном соответствии остальных показателей качества требованиям таблицы.

Таблица 25.3

Требования к качеству регенерированных и очищенных масел, подготовленных к заливке
в электрооборудование после его ремонта1)

Показатель качества масла и номер стандарта на метод испытания

Предельно допустимое значение показателя качества масла

Примечание

предназначенного к заливке в электрооборудование

после заливки в электро-
оборудование

1. Пробивное напряжение по ГОСТ

Электрооборудование:

6581-75, кВ, не менее2)

до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

2. Кислотное число по ГОСТ 5985-79, мг КОН/г масла, не более

Измерительные трансформаторы до 220 кВ включительно

3. Температура вспышки в закрытом тигле, по ГОСТ 6356-75, °С, не ниже

Силовые трансформаторы до 220 кВ включительно

При применении арктического масла (АГК) или масла для выключателей (МВТ) значение данного

показателя определяется стандартом на марку масла по табл. 25.1

Трансформаторы с пленочной или азотной защитой, герметичные измерительные трансформаторы

Допускается определение данного показателя методом Карла Фишера или хроматографическим методом по РД 34.43.107-95

Силовые и измерительные трансформаторы без специальных защит масла

по ГОСТ 1547-842) (качественно)

Электрооборудование, при отсутствии требований предприятий-изготовителей по количественному определению данного показателя

Отсутствие

Отсутствие

Электрооборудование до 220 кВ включительно

Отсутствие (11)

Отсутствие (12)

РТМ 34.70.653-83, %, не более (класс чистоты по ГОСТ 17216-71, не более)

Электрооборудование свыше 220 до 750 кВ включительно

6. Тангенс угла диэлектрических потерь при 90°C по ГОСТ 6581-75, %,

Силовые трансформаторы до 220 кВ включительно

Проба масла дополнительной обработке не подвергается

Измерительные трансформаторы до 220 кВ включительно

Силовые и измерительные трансформаторы св. 220 до 500 кВ включительно

Силовые и измерительные трансформаторы св. 500 до 750 кВ включительно

Электрооборудование всех видов и классов напряжения

Отсутствие

Отсутствие

Силовые трансформаторы до 220 кВ включительно

При арбитражном контроле определение данного показателя

4-метилфенол или ионол), по РД 34.43.105-89, % массы, не менее

Силовые и измерительные трансформаторы до 750 кВ включительно

следует проводить по стандарту МЭК 666-79 или (и) РД 34.43.208-95

9. Температура застывания по ГОСТ 20287-91, °С, не выше

Электрооборудование, заливаемое арктическим маслом

Трансформаторы с пленочной защитой

11. Стабильность против окисления по ГОСТ 981-753)

Силовые и измерительные трансформаторы свыше 220 до 750 кВ включительно

Условия процесса: 130°С, 30 ч, 50 мл/мин О2

кислотное число окисленного масла, мг КОН/г масла, не более

массовая доля осадка, %, не более

Отсутствие

Электрооборудование:

73, %, не более

до 220 кВ включительно

св. 220 до 500 кВ включительно

св. 500 до 750 кВ включительно

_____________________
1) Применение регенерированных и очищенных эксплуатационных масел для заливки высоковольтных вводов после ремонта не допускается, данное электрооборудование заливается после ремонта свежими маслами, отвечающими требованиям табл. 25.2.
2) В масляных выключателях допускается применять регенерированные или очищенные эксплуатационные масла, а также их смеси со свежими маслами, если они удовлетворяют требованиям настоящей таблицы (пп. 1 и 4) и имеют класс промышленной чистоты не более 12 (ГОСТ 17216-71).
3) В случае необходимости по решению технического руководителя предприятия допускается залив регенерированного и очищенного эксплуатационного трансформаторного масла в силовые и измерительные трансформаторы до 500 кВ включительно, если стабильность против окисления будет соответствовать норме на масло ТКп (см. табл. 25.1), а остальные показатели качества будут удовлетворять требованиям настоящей таблицы.

Таблица 25.4

Требования к качеству эксплуатационных масел

Показатель качества масла и номер

Значение показателя качества масла

Примечание

стандарта на метод испытания

ограничивающее область нормального состояния

предельно допустимое

1. Пробивное напряжение по ГОСТ

Электрооборудование:

6581-75, кВ, не менее

до 15 кВ включительно

до 35 кВ включительно

от 60 до 150 кВ включительно

от 220 до 500 кВ включительно

2. Кислотное число по ГОСТ 5985-79, мг КОН/г масла, не более

3. Температура вспышки в закрытом тигле по ГОСТ 6356-75, °С, не ниже

Силовые и измерительные трансформаторы, негерметичные маслонаполненные вводы

Снижение более чем на 5°С в сравнении с предыдущим анализом

Трансформаторы с пленочной или азотной защитой, герметичные маслонаполненные вводы, герметичные измерительные трансформаторы

Допускается определение данного показателя методом Карла Фишера или хроматогра-

Силовые и измерительные трансформаторы без специальных защит масла, негерметичные маслонаполненные вводы

фическим методом по РД 34.43.107-95

по ГОСТ 1547-84 (качественно)

Электрооборудование, при отсутствии требований предприятий-изготовителей по количественному определению данного показателя

Отсутствие

Отсутствие

ГОСТ 6370-83, % (класс чистоты по ГОСТ 17216-71, не более);

Электрооборудование до 220 кВ включительно

Отсутствие (13)

Отсутствие (13)

РТМ 34.70.653-83, %, не более (класс чистоты по ГОСТ 17216-71, не более)

Электрооборудование свыше 220 до 750 кВ включительно

6. Тангенс угла диэлектрических потерь по ГОСТ 6581-75, %, не более,

Силовые и измерительные трансформаторы, высоковольтные вводы:

Проба масла дополнительной обработке не подвергается

при температуре 70°С/90°С

110-150 кВ включительно

Норма tgd при 70°С

220-500 кВ включительно

факультативна

Силовые трансформаторы, герметичные высоковольтные вводы, герметичные измерительные трансформаторы до 750 кВ включительно

Негерметичные высоковольтные вводы и измерительные трансформаторы до 500 кВ включительно

Трансформаторы без специальных защит масла, негерметичные маслонаполненные вводы свыше 110 кВ

Силовые и измерительные трансформаторы, негерметичные высоковольтные вводы, свыше 110 кВ

Определение данного показателя производится по РД 34.43.105-89

Трансформаторы с пленочной защитой, герметичные маслонаполненные вводы

Допускается определение хроматографическим методом по РД 34.43.107-95

Трансформаторы и вводы свыше 110 кВ

Определение данного показателя производится хроматографическими методами по РД 34.43.206-94 или
РД 34.51.304-94

_________________
* Показатель 11 рекомендуется определять в случае обнаружения в трансформаторном масле значительных количеств СО и СО2 хроматографическим анализом растворенных газов, которые свидетельствуют о возможных дефектах и процессах разрушения твердой изоляции.

(Измененная редакция, Изм. № 1)

25.3.2 Расширенные испытания трансформаторного масла

Необходимость расширения объема испытаний показателей качества масел и (или) учащения периодичности контроля определяется решением технического руководителя энергопредприятия.

25.3.3 Требования к трансформаторным маслам, доливаемым в электрооборудование

Трансформаторные масла, доливаемые в электрооборудование в процессе его эксплуатации, должны удовлетворять требованиям табл. 25.4, столбец 3.

Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 - 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.

Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением . Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.

Температура застывания трансформаторного масла - от -45°С и ниже, это важно для обеспечения его подвижности в низкотемпературных условиях эксплуатации. Эффективному отводу тепла способствует наиболее низкая вязкость масла даже при температурах от 90 до 150°С в случае вспышек. Для разных марок масел эта температура может быть 150°С, 135°С, 125°С, 90°С, не ниже.

Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.

Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой - ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.

Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.

Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.

Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».




Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств - вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.




Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм2/с.




Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу "Объем и нормы испытаний электрооборудования" (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды - 0,001% массы.

Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ - не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.


Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.

Условия окисления (метод определения стабильности - по ГОСТу 981-75)






Температура застывания масла определяется при испытаниях, когда пробирку с загустевшим маслом наклоняют на 45°, и масло остается на том же уровне в течение минуты. Для свежих масел эта температура не должна быть ниже -45°С.

Данный параметр имеет ключевое значение для . Тем не менее, в разных климатических зонах требования к температуре застывания различны. Например, в южных регионах допускается применять трансформаторное масло с температурой застывания -35°С.

В зависимости от условий эксплуатации оборудования, нормативы могут варьироваться, возможны в некоторых пределах отступления. Так, например, арктические сорта трансформаторного масла не должны застывать при температуре выше -60°С, а температура вспышки снижается до -100°С (температура вспышки - температура, при которой нагретое масло производит пары, становящиеся легко воспламеняемыми при перемешивании с воздухом).

Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).

Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м×К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К).

С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.

Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость - в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.

Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.


Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.

Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет - регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:

    Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;

    Избегание рабочего перегрева масла;

    Периодические чистки;

    Непрерывная фильтрация масла;

    Введение антиокислителей.

Высокие температуры, реакции масла с проводниками и диэлектриками, - все это способствует окислению, которое и призвана предотвращать антиокислительная присадка, о которой упоминалось в начале. Но регулярная очистка все равно требуется. Качественная очистка масла возвращает его в пригодное для использования состояние.

Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).

Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.

При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки. В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.

Характеристики трансформаторного масла.

В связи с тем, что характеристики трансформаторного масла в процессе эксплуатации ухудшаются, его качество приходится периодически проверять. Такие проверки осуществляют обычно один раз в три года, делая сокращенный анализ масла.

Основными характеристиками трансформаторного масла являются:

  • Кислотное число , определяет количество едкого калия (в миллиграммах), которое требуется для нейтрализации всех свободных кислот. Кислотное число характеризует степень старения (окисления) трансформаторного масла.
  • Реакция водной вытяжки , характеризует наличие в масле нерастворимых кислот и щелочей. В годном для эксплуатации трансформаторе реакция водной вытяжки должна быть нейтральна. Кислоты оказывают разрушительное действие на материалы, из которых изготовлен трансформатор (вызывают коррозию металла трансформатора, разрушают изоляцию его обмоток).
  • Температура вспышки масла не должна быть ниже установленных значений во избежание воспламенения масла при повышении температуры, вызванном перегрузкой трансформатора. Для обычных трансформаторных масел значение температуры вспышки лежит в диапазоне 130-150 °С.
  • Содержание механических примесей . Примеси появляются в результате растворения красок, лаков и изоляции; в виде угля который образуется при электрической дуге. Механические примеси в масле могут содержаться в виде осадка или в взвешенном состоянии и вызывают перекрытие между изолированными друг от друга элементами, понижают электрическую прочность масла.
  • Электрическая прочность определяется пробивным напряжением трансформаторного масла. Пробивное напряжение свежего сухого масла должно быть не ниже 30 кВ. Снижение значения пробивного напряжения говорит о наличии примесей в масле (волокна, воздух, вода и т.д.)
  • Тангенс угла диэлектрических потерь характеризует изоляционные свойства трансформаторного масла (показывает насколько масло хороший диэлектрик). Загрязнение и старение трансформаторного масла в процессе его эксплуатации ведет к повышению диэлектрических потерь в масле.
  • Влагосодержание в трансформаторном масле характеризует интенсивность старения изоляции под воздействием значительных температур (т.е. говорит о систематических перегрузках трансформатора), а также свидетельствует о нарушении герметичности трансформатора.
  • Вязкость характеризует подвижность масла и должна быть небольшой, для того чтобы масло хорошо циркулировало и отводило тепло.
  • Температура застывания масла . При низкой температуре окружающей среды повышается вязкость масла и ухудшается его циркуляция, что приводит к перегреву и ускорению старения изоляции, а также может привести к повреждению подвижных элементов конструкции трансформатора (РПН, масляный насос). По нормам температура застывания масла трансформаторов должна быть не выше – 45° С.
  • Цвет . Свежее масло имеет обычно светло-желтый цвет. В процессе эксплуатации масло темнеет и приобретает темно-коричневую окраску. Изменение цвета масла происходит под влиянием его нагрева и загрязнения смолами и осадками.
  • Кроме перечисленных существуют и другие характеристики трансформаторных масел: плотность, газосодержание, стабильность, температура самовоспламенения и т.д.