Горючее для двигателя ракеты называется. Как работают ракетные двигатели? Анамезон, антивещество, метастабильный гелий пока оставлю за кадром

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

(ФГБОУ ВПО)

«Астраханский государственный технический университет»(АГТУ)

«Институт морских технологий, энергетики и транспорта» (ИМТЭиТ)

Кафедра «Теплоэнергетика»(ТЭН)


Курсовая работа

по дисциплине «Топливо»

на тему «Ракетные топлива»


Выполнил

студент группы ТЕТ-21

Приказчиков А.А.

Рецензенты:

студенты группы ТЕТ-21

Путятин С.С., Жидков С.М.

Преподаватель:

д.х.н., профессор Рябухин Ю.И.


Астрахань- 2012



1. Историческая справка

Основные виды ракетного топлива

1 Жидкие ракетные топлива

1.1 Окислители

1.2 Горючее

1.3 Сравнение наиболее распространённых жидких ракетных топлив

2 Твёрдые ракетные топлива

2.1 Ракетные пороха

2.2 Смесевые ракетные топлива

Список литературы


. Историческая справка


Ракеты на твёрдом топливе появились гораздо раньше, чем ракеты с жидкостными ракетными двигателями (ЖРД). Последние настолько стали привычными для нас, что мы забываем о том, когда они стали использоваться для покорения космоса и в боевых действиях воюющих сторон. А это случилось всего каких-то 50 лет назад. До этого твёрдотопливные ракеты, или ракеты с пороховыми двигателями, на протяжении нескольких веков успешно эксплуатировались и применялись в войсках. На возможность использования жидкостей, в том числе жидких водорода H2 и кислорода O2, в качестве топлива для ракет указывал К. Э. Циолковский <#"justify">2. ОСНОВНЫЕ ВИДЫ РАКЕТНОГО ТОПЛИВА


Выбор ракетного топлива зависит от многих факторов. Идеального топлива нет, у каждого есть свои плюсы и минусы. Такие факторы, как цена, удельный импульс, скорость горения, функция зависимости скорости горения от давления, безопасность и технологичность изготовления и другие могут влиять на выбор топлива.


2.1 ЖИДКИЕ РАКЕТНЫЕ ТОПЛИВА


Окислитель и горючее двухкомпонентных топлив содержатся в отдельных ёмкостях - баках и при помощи различных устройств раздельно подаются в камеру двигателя для сжигания. Двухкомпонентные жидкие топлива в настоящее время имеют самое широкое применение, так как они обеспечивают самую наибольшую удельную тягу двигателя, легко позволяют регулировать величину и направление тяги в полете, а также выключать двигатель и запускать его повторно. Недостаток этих топлив - сложное устройство двигателя с большим числом деталей и узлов со сложной системой управления и регулирования.

К самовоспламеняющимся относят такие двухкомпонентные топлива, горение которых начинается само по себе при смешении окислителя и горючего в камере двигателя.

Несамовоспламеняющиеся топлива для начала горения при запуске двигателей требуют применения дополнительных средств зажигания. Самовоспламеняющиеся топлива обеспечивают более надёжный запуск двигателя и устойчивую его работу.

Жидкие однокомпонентные топлива представляют собой заранее приготовленную несамовоспламеняющуюся смесь окислителя и горючего в необходимом для горения соотношении или такое жидкое вещество, которое при определённых условиях разлагается с выделением теплоты и образованием газов. Однокомпонентные топлива размещаются на ракете в одном баке и по одной линии подаются в камеру сгорания через форсунки.

Преимуществом таких топлив перед двухкомпонентными является упрощение конструкции двигателя , поскольку необходима только одна линия системы подачи. Но широкого применения эти топлива в ЖРД не получили, так как они не могут обеспечить необходимую удельную тягу. Те однокомпонентные топлива, которые позволяют получить достаточную удельную тягу, непригодны для использования из-за большой склонности к самопроизвольному взрыву. Однокомпонентные топлива опасны также для применения их с целью охлаждения камеры сгорания. Эти топлива употребляются большей частью только для вспомогательных целей: для двигателей малых тяг, которые применяются с целью управления и стабилизации летательных аппаратов, а так же для вращения турбин турбонасосных агрегатов ЖРД.


Таблица 1. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания 100 кгс / см2, на срезе сопла 1 кгс / см2).

Окисли-тельГорючееТепло-творность топлива*, ккал / кгПлот-ность*, г / см2Темпера-тура в камере сгорания, КУдельный импульс в пустоте, секАзотная кислота (98 %)Керосин14601,362980313ТГ-0214901,323000310Анилин (80 %) + фурфуриловый спирт (20 %)14201,393050313Жидкий кислородСпирт (94 %)20200,393300255Водород20200,323250391Керосин22001,043755335НДМГ 22001,023670344Гидразин22301,073446346Аммиак22000,843070323АТКеросин15501,273516309НДМГ22001,203469318Гидразин22301,233287322Жидкий фторВодород23000,624707412Гидразин22301,314775370

В двухкомпонентных топливах для полного сгорания обоих компонентов на каждую единицу массы одного из них требуется строго определённое количество другого. Так, для сжигания 1 кг керосина необходимо 15 кг воздуха, или 5,5 кг азотной кислоты, или 3,4 кг жидкого кислорода. В практически выполненных ЖРД окислитель подаётся в камеру в несколько меньшем количестве , чем требуется для полного сгорания.

Оказывается, в этом случае получается наибольшее значение удельной тяги. Причина заключается в том, что при уменьшении расхода окислителя несколько изменяется состав продуктов сгорания. Вследствие этого снижается процесс теплового распада молекул газов - продуктов сгорания - на атомы и ионы, который происходит с большим поглощением теплоты и бесполезным уносом её за пределы сопла, а также улучшаются условия превращения энергии в сопле.

Для эксплуатации жидкостных ракет большое значение имеет температура кипения топлива. Все компоненты топлива делятся на высококипящие и низкокипящие .

К высококипящим относятся окислители и горючие, которые могут содержаться в жидком состоянии при обычных температурах эксплуатации ракет (до +150 0C) под атмосферным или повышенным давлением, остальные относятся к низкокипящим .


2.1.1 Окислители

В жидкостных ракетах количество окислителя по массе превышает количество горючего в среднем в 3-6 раз, а масса топлива в 9 раз больше массы конструкции двигателя.

Свойства топлива во многом зависят от характера окислителя . Например, по важнейшей характеристике - удельной тяге - топливо «жидкий кислород и керосин», отличаются от топлива «азотная кислота и керосин» примерно на 15 %.

Из низкокипящих окислителей наибольшее применение в распространённых двигателях имеет жидкий кислород . Изучается возможность использования жидкого фтора , его соединений с кислородом и озона .

Из высококипящих широко применяются азотная кислота и её смеси с четырёхокисью азота . Может применяться четырёхоксид азота , пероксид водорода . Исследуются соединения фтора с хлором и тетранитрометаном .

Рассмотрим некоторые виды окислителей.

1. ЖИДКИЙ КИСЛОРОД (O 2 ). Представляет собой подвижную жидкость голубоватого цвета несколько тяжелее воды.

Особенности : кислород является одним из наиболее мощных окислителей , так как его молекула не содержит атомов, не участвующих в процессе окисления, как это имеет место, например в азотной кислоте. Топлива более эффективные чем с кислородом могут быть получены только с озоном , фтором или фторидом кислорода .

Основное свойство , определяющее особенности работы с жидким кислородом , заключается в его низкой температуре кипения . Из-за этого он очень быстро испаряется, что вызывает его большие потери при хранении и заправке ракеты. Бак ракеты заправляется жидким кислородом непосредственно перед запуском ракеты. Потери на испарении при заправке составляют до 50 %, а при содержании в ракете до 3 % в час. Жидкий кислород хранится и транспортируется в специальных ёмкостях - танках из металла с обеспечением хорошей тепловой изоляции.

Жидкий кислород не ядовит . Кратковременно соприкосновение его в небольших количествах с открытыми участками тела человека неопасно: образующийся газообразный слой не допускает обмораживания кожи.

Жидкий кислород - один из наиболее дешёвых окислителей , что объясняется простотой производства и обилием сырья. В составе воды он составляет 89 % по массе, а в воздухе - 23 %. Обычно получают кислород из воздуха, путём сжижения и отделения в жидком виде от азота и других газов земной атмосферы.

2. АЗОТНАЯ КИСЛОТА (HNO 3 ) . Химически чистая 100 % азотная кислота является бесцветной легкоподвижной тяжёлой жидкостью, сильно дымящей в воздухе.

Особенности : 100 % азотная кислота неустойчива и легко разлагается на воду, кислород и оксиды азота .

HNO 3 - Мощный окислитель , поскольку в её молекуле содержится

% кислорода . При окислении различных горючих она разлагается на воду, кислород и азот . От всех широко используемых окислителей она выгодно отличается большим удельным весом . Вследствие высокой теплоёмкости она может быть использована в качестве охлаждающего компонента камеры ЖРД.

При обычных условиях эксплуатации азотная кислота - жидкость, что является одним из её преимуществ. Ракеты, в которых она используется в качестве окислителя, могут длительное время храниться заправленными , в постоянной готовности к пуску. К недостаткам в эксплуатации относится значительное повышение давления в герметически закрытых ёмкостях с азотной кислотой, вследствие процесса её разложения. Главный недостаток азотной кислоты - высокая коррозийная активность по отношению к большинству материалов. Агрессивность азотной кислоты значительно усложняет обращение с ней. Хранение и транспортировка её производится с использованием специальных ёмкостей.

Недостатки : азотная кислота обладает ядовитыми свойствами. Попадание её на кожу человека вызывает появление болезненных, долго незаживающих язв. Вредны для здоровья также пары азотной кислоты . Они превосходят по ядовитости угарный газ в 10 раз.

Стоимость азотной кислоты невелика. Основной метод получения азотной кислоты заключался в окислении аммиака кислородом воздуха в присутствии платины и растворении получившихся оксидов азота в воде.


N2 + 2 O2 => 2 NO2


. ТЕТРАОКСИД ДИАЗОТА (N 2 O 4 ) . Представляет собой при обычной температуре жёлтую жидкость.

Особенности : с увеличением температуры распадается на диоксид азота , окрашенный в красно-бурый цвет, так называемый «бурый газ».

Является несколько более эффективным окислителем , чем азотная кислота . Топлива на её основе имеют удельную тягу примерно на 5 % больше, чем азотнокислотные.

Недостатки : по отношению к материалам тетраоксид диазота значительно менее агрессивен , чем азотная кислота , но не менее ядовит .

Главный недостаток - низкая температура кипения и высокая температура затвердевания , что резко уменьшает возможность её использования в ракетных топливах в чистом виде. Условия её применения улучшаются в смесях с другими оксидами азота .

4. ПЕРОКСИД ВОДОРОДА (H 2 O 2 ). Бесцветная прозрачная тяжёлая жидкость.

Особенности: пероксид водорода является нестойким химическим соединением, легко разлагающимся на воду и кислород . Склонность к разложению возрастает с ростом концентрации. При разложении выделяется значительное количество тепла.

Наибольшее распространение получили водные растворы 80 % и 90 % концентрации пероксида водорода. Химической стойкости растворов и безопасности работы с ними можно добиться введением веществ-стабилизаторов . К ним относятся фосфорная , уксусная и щавелевая кислоты . Обязательное условие стабилизации пероксида водорода - чистота . Незначительные примеси и загрязнения резко ускоряют её разложение и даже могут привести к взрыву.

По сравнению с азотной кислотой пероксид водорода обладает малой коррозийной активностью , но некоторые металлы он окисляет.

Недостатки : пероксид водорода пожаро- и взрывоопасен. Органические вещества при соприкосновении с ним легко загораются. При температуре +175 0C он взрывается. Попадание его на кожу вызывает тяжёлые ожоги .

В настоящее время пероксид водорода мало применяется, т. к. топлива на его основе дают сравнительно невысокую тягу.

5. ЖИДКИЙ ФТОР (F 2 ). Представляет собой тяжёлую жидкость ярко-жёлтого цвета.

Особенности: фтор обладает лучшими окислительными свойствами , чем кислород . Из всех химических элементов он наиболее активен , вступая в соединения почти со всеми окисляющимися веществами при обычной комнатной температуре. При этом часто происходит воспламенение. Даже кислород окисляется фтором , сгорая в его атмосфере.

Из-за своей исключительно высокой химической активности фтор со всеми горючими образует самовоспламеняющиеся топлива . Однако фторные топлива дают более высокую удельную тягу, чем кислородные , только при условии, если горючее богато водородом . Горючие содержащие много углерода , образуют со фтором значительно менее эффективные топлива.

Недостатки : фтор очень ядовит . Он сильно разъедает кожу, глаза, дыхательные пути. В ракетной технике он пока используется только в опытных двигателях.


2.1.2 Горючее

В качестве горючего в жидких топливах применяются в основном вещества, в которых окисляемыми атомами химических элементов являются атомы углерода и водорода . В природе существует чрезвычайно большое количество химических соединений этих элементов. Большинство из них относятся к органическим веществам.

В настоящее время в ракетной технике используется много разнообразного горючего. Несмотря на то, что горючее составляет только 15-25 % от массы топлива, его правильный выбор имеет большое значение . Только при удачном сочетании окислителя и горючего могут быть удовлетворены если не все, то хотя бы важнейшие требования к топливу. Большинство видов ракетного горючего являются высококипящими. Их общий недостаток - невысокий удельный вес , в полтора-два раза меньший, чем у окислителей.

На практике в качестве ракетного горючего чаще всего применяется углеводород , являющийся продуктом переработки нефти (керосины), амины , аммиак, гидразин и его производные.

Рассмотрим некоторые виды горючего.

1. УГЛЕВОДОРОДЫ (нефтепродукты) представляют собой смеси химических соединений углерода с водородом . Их энергетические показатели ниже, чем у водорода , но выше, чем у углерода . Наибольшее применение имеет керосин .

Особенности керосина: он представляет собой лёгкую жидкость с высокой температурой кипения, обладающую большой стойкостью против разложения при нагревании. Керосин не является веществом строго определённого состава с однозначной химической формулой, из-за чего невозможно точно определить его свойства. В зависимости от месторождения нефти состав и свойства керосина могут меняться. Ракетный керосин имеет в своём составе повышенное содержание таких углеводородов , которые дают меньше отложений при охлаждении двигателя.

Недостатки керосина: он не воспламеняется при соприкосновении с обычными окислителями, поэтому необходим специальный источник зажигания .

Керосин широко применяется в ракетных топливах с жидким кислородом , азотнокислотными окислителями и пероксидом водорода .

2. АМИНЫ - соединения, которые получаются, если в молекуле аммиака один, два или три атома водорода заменить углеводородными группами . В ракетной технике нашли применение: триэтиламин , анилин , ксилидин и др.

Особенность : амины бурно взаимодействуют с азотной кислотой и тетраоксидом диазота , приводящие к самовоспламенению. По эффективности горючее на основе аминов близко к керосину. Способность аминов вызывать коррозию металлов невелика . Они хранятся и транспортируются в ёмкостях из обычных чёрных металлов.

Недостатки: у аминов значительно большая стоимость по сравнению с керосином, а так же ядовитость , которая проявляется как при вдыхании паров, так и при попадании на кожу.

Для улучшения физико-химических свойств, амины используются в качестве горючего в смеси с другими веществами, в том числе и с другими аминами .

Горючее на основе аминов нашло применение в самовоспламеняющихся топливах с азотной кислотой, четырёхоксидом азота и их смесями.

3. ГИДРАЗИН . При горении гидразина в реакции окисления участвуют только атомы водорода , а азот выделяется в свободном виде, увеличивая количество газа.

Гидразин представляет собой бесцветную прозрачную жидкость (примерно в том же диапазоне температур, что и вода) и имеет аммиачный запах. Обычно применяется в смесях с другими веществами .

Особенности: гидразин является эффективным горючим . Этому способствует то, что его молекула образуется с поглощением теплоты, которая в процессе горения выделяется дополнительно к теплоте окисления. Другое его положительное свойство - большой удельный вес .

Недостатки: гидразин имеет высокую температуру затвердевания , что представляет большое неудобство в эксплуатации. Его пары при нагревании и ударах взрываются. При воздействии кислорода воздуха он окисляется. Гидразин коррозийно активен . Стойкими по отношению к нему являются алюминий и его сплавы, нержавеющие стали, полиэтилен, полифторэтилен, фторопласт . Гидразин ядовит , раздражающе действует на слизистую оболочку глаз и может вызывать временную слепоту.

4. НЕСИММЕТРИЧНЫЙ ДИМЕТИЛГИДРАЗИН представляет собой бесцветную прозрачную жидкость с резким запахом.

Особенности : по сравнению с гидразином он существенно удобнее в эксплуатации, так как остаётся жидкостью в большем интервале температур. Обладает хорошей стойкостью при нагревании. В отличие от гидразина его пары не взрываются от внешнего воздействия. Главная особенность - высокая химическая активность. Он легко окисляется кислородом воздуха, а с углекислой кислотой образует соли, выпадающие в осадок.

Недостатки : диметилгидразин (по сравнению с гидразином) обладает худшей эффективностью как горючее, поскольку в его молекуле кроме атомов водорода содержатся менее эффективные атомы углерода. Самовоспламеняется на воздухе при температуре 250 0С, смеси паров диметилгидразина с воздухом легко взрываются, и он ядовит .


2.1.3 Сравнение наиболее распространённых жидких ракетных топлив

. Топлива на основе жидкого кислорода обеспечивают наибольшую удельную тягу из всех применяемых в настоящее время ракетных топлив. Их основной недостаток - низкая температура кипения окислителя. Это затрудняет использование их в боевых ракетах, которые должны длительное время находиться в готовности к пуску.

С жидким кислородом могут применяться такие горючие как керосин, несимметричный диметилгидразин , аммиак . Особое место занимает топливо кислород + водород , которое обеспечивает удельную тягу на 30-40 % большую, чем другие распространённые топлива. Это топливо более всего подходит для использования в больших ракетах.

2. Топлива на основе азотной кислоты в смеси 20-30 % оксидов азота значительно уступают кислородным топливам по удельной тяге , но обладают преимуществом по удельному весу . Кроме того, эти топлива являются высококипящими длительнохранимыми веществами, что позволяет держать боевые ракеты в полностью снаряженном и заправленном виде длительное время.

Азотнокислотные окислители обладают хорошими охлаждающими свойствами . Но вследствие сравнительно невысоких температур в камере сгорания охлаждение двигателей средних и больших тяг может быть обеспечено горючим, хотя в составе топлива его содержится меньше, чем окислителя.

Такие горючие как смесь аминов , несимметричный диметилгидразин и некоторые другие вещества образуют с азотнокислотными окислителями самовоспламеняющиеся топлива . Керосин и другие углеводороды требуют принудительного зажигания .

3. Топлива на основе четырёхоксида азота дают несколько большую удельную тягу , чем азотнокислотные, но имеют пониженный удельный вес . Несмотря на такой эксплуатационный недостаток, как высокая температура затвердевания окислителя , они находят применение в ракетах дальнего действия. Такие топлива заменили кислородное топливо, т. к. дают возможность хранить ракету в заправленном состоянии, готовой к запуску.

Преимуществом топлива на основе четырёхоксида азота является также самовоспламеняемость .


2.2 Твёрдые ракетные топлива


По внешнему виду все заряды твёрдого топлива представляют собой плотные твёрдые тела главным образом тёмных цветов. Ракетные пороха обычно имеют тёмно-коричневый цвет и внешне похожи на роговидное вещество. Если они содержат добавки (в виде сажи, например), то цвет их бывает чёрным. Смесевые топлива бывают чёрного и чёрно-серого цвета в зависимости от цвета горючего и добавок, и обычно подобны сильно завулканизированной резине, но менее эластичны и более хрупки.

Твёрдые топлива практически безопасны как по воздействию на организм человека, так и по отношению к различным конструкционным материалам. При хранении в обычных условиях они не выделяют агрессивных веществ . Ракетные пороха из-за летучих свойств растворителя - нитроглицерина (рис.1) - способны вызывать кратковременные не очень сильные головные боли.


Рис.1. Структурная формула нитроглицерина


2.2.1 Ракетные пороха

Ракетные пороха представляют собой сложные многокомпонентные системы, в которых каждому веществу отведена своя роль с целью получения заданных свойств того или иного вида пороха. Основным компонентом порохов являются нитраты целлюлозы, которые при сгорании выделяют наибольшее количество тепловой энергии. Они же определяют и физико-химические свойства пороха. Рассмотрим некоторые составные части порохов.

1. НИТРАТЫ ЦЕЛЛЮЛОЗЫ , или нитроклетчатка, получаются обработкой целлюлозы смесью азотной и серной кислот. Такая обработка называется нитрацией . Исходный материал - целлюлоза (клетчатка) - широко распространённое в природе вещество, из которого почти целиком состоят лён, пенька, хлопок и др.

Нитраты целлюлозы представляют собой рыхлую массу. Они легко воспламеняются даже от слабой искры. Горение происходит за счёт кислорода, содержащегося в нитрогруппах, и подвода кислорода извне не требуется . Однако непосредственно использование нитроцеллюлозы в качестве ракетного топлива исключается, так как из неё невозможно изготовить заряд, горящий по строго определённому закону. Даже после сильного прессования она имеет множество пор. Горение её происходит не только снаружи но и внутри, т. к. горючий газ проникает по порам внутрь. Вследствие этого может произойти взрыв , способный разрушить двигатель. Для предотвращения этого производят пластификацию нитроцеллюлозы , т. е. приготавливают из неё твёрдый раствор однородного состава, без пор.

2. РАСТВОРИТЕЛИ-ПЛАСТИФИКАТОРЫ нитроцеллюлозы - нитроглицерин , нитрогликоль и некоторые другие вещества. Они являются вторым основным компонентом порохов как по массе, так и по запасу энергии. Их часто называют труднолетучими растворителями , так как они не удаляются из раствора в процессе производства, а полностью остаются в составе пороха.

НИТРОГЛИЦЕРИН - вещество, образующееся при нитрации трёхатомного спирта глицерина - смесью азотной и серной кислот . Представляет собой бесцветную маслообразную жидкость.

Нитроглицерин - мощное взрывчатое вещество . Он легко взрывается при ударе или трении. Горение его происходит за счёт кислорода, содержащегося в нитрогруппах. Поскольку кислорода в его молекуле имеется в избытке, то часть кислорода идёт на дополнительное окисление нитроцеллюлозы, что приводит к общему увеличению запаса энергии твёрдого топлива. С увеличением содержания нитроглицерина в порохах растут не только их энергетические показатели , но и взрывоопасность и чувствительность к удару . Ракетные пороха с большим содержанием нитроглицерина обеспечивают высокую удельную тягу.

Для пластификации нитроцеллюлозы с целью облегчения технологии производства, увеличения сроков и допустимой температуры хранения зарядов применяют и другие растворители.

НИТРОГЛИКОЛЬ как взрывчатое вещество, менее чувствительно к механическим воздействиям . Его получают нитрацией этиленгликоля . Запас кислорода в его молекуле меньше, чем в молекуле нитроглицерина , поэтому применение в качестве растворителя ухудшает энергетические показатели порохов.

Кроме нитроглицерина и нитрогликоля иногда применяется такой растворитель нитроцеллюлозы , как нитрогуанидин .

3. ДОПОЛНИТЕЛЬНЫЕ ПЛАСТИФИКАТОРЫ и вещества, регулирующие энергетические свойства топлива, хорошо совмещаются с основными растворителями. Они не содержат совсем, или содержат очень мало активного кислорода и потому вводятся в состав порохов в небольших количествах, чтобы не снижать их энергетические характеристики. К ним относятся такие вещества, как динитролуол ,дибутилфталат , диэтилфталат .

4. СТАБИЛИЗАТОРЫ вводятся в состав порохов для повышения их химической стойкости. При хранении порохов происходит разложение нитроцеллюлозы с образованием оксидов азота , которые ускоряют её дальнейшее разложение, делая её взрывоопасной. Стабилизаторы замедляют разложение нитроцеллюлозы , соединяясь с выделяющимися оксидами азота , они связывают их, превращая в химически малоактивные вещества.

5. ВЕЩЕСТВА, УЛУЧШАЮЩИЕ ГОРЕНИЕ ПОРОХОВ , обеспечивают ускорение , замедление или стабилизацию процесса сгорания в камере твёрдотопливных ракетных двигателей. К ним относится большое число солей или оксидов различных металлов (олова Sn , марганца Mn , цинка Zn , хрома Cr , свинца Pb , титана Ti , калия K , бария Ba и т. д.).

6. ТЕХНОЛОГИЧЕСКИЕ ДОБАВКИ ? вещества, облегчающие процесс изготовления пороха, вводятся в наиболее ответственных операциях для снижения трения и нагрузок на машины . Они играют роль смазок как внутри топливной массы, так и между массой и инструментом. Для этого применяются мел, уменьшающий внутреннее трение, вазелин и трансформаторное масло, графит , стеарат свинца и другие вещества,снижающие давление при прессовании. Вводятся они в малом количестве.

Производство ракетных порохов ведётся по сложной технологической схеме с применением высоких температур и давления . В задачу производства входит изготовление твёрдых однородных пороховых зарядов, отвечающих ряду жёстких требований, из большого числа веществ, разнородных по химическим и физическим свойствам, а также агрегатному состоянию.


2.2.2 Смесевые ракетные топлива

Смесевые топлива по сравнению с порохами, по составу значительно проще. Они включают в себя два-три, редко четыре компонента. Рассмотрим некоторые из них.

1. В КАЧЕСТВЕ ОКИСЛИТЕЛЕЙ СМЕСЕВЫХ ТОПЛИВ используются, как правило, соли неорганических кислот - азотной и хлорной . Их особенность - большой процент кислорода в молекуле . Все они по массе примерно наполовину состоят из кислорода. В обычных условиях они обладают химической стойкостью, но при сильном нагревании способны распадаться с выделением свободного кислорода. Все твёрдые окислители имеют в своём составе, помимо кислорода , атомы химических элементов, способные к окислению. Поэтому при разложении этих окислителей часть кислорода оказывается связанной с этими элементами и свободного кислорода выделяется значительно меньше, чем имеется в молекуле.

Самым распространённым окислителем твёрдых топлив является ПЕРХЛОРАТ АММОНИЯ . Эта соль представляет собой белый (бесцветный) кристаллический порошок, и разлагается она при нагревании выше 150 0С. На воздухе незначительно увлажняется. Чувствителен к удару и трению, особенно при наличии органических примесей. Может гореть без горючего и взрываться. При горении не выделяет твёрдых веществ, но в его продуктах сгорания содержится агрессивный и довольно ядовитый газ - хлористый водород (HCl), который при наличии влаги образует с ней соляную кислоту. Преимущества перхлората аммония состоят в том, что он обладает невысокой температурой разложения и разлагается только на газообразные продукты с небольшой молекулярной массой, обладает малой гигроскопичностью, доступен, дёшев.

Другим окислителем является ПЕРХЛОРАТ КАЛИЯ . Эта соль разлагается при температуре выше 440 0С, на воздухе не увлажняется (негигроскопична), не горит и не взрывается. Весь кислород, содержащийся в её составе, является активным. При сгорании она выделяет твёрдое вещество - хлорид калия, который создаёт плотное дымовое облако. Наличие хлорида калия в продуктах сгорания резко ухудшает свойства ракетных топлив, т. е. условия перехода тепловой энергии в кинетическую в сопле ракетного двигателя.

Ещё один широко используемый окислитель - НИТРАТ АММОНИЯ (аммиачная селитра), используется также как азотное удобрение. Представляет собой бесцветный (белый) кристаллический порошок. Разлагается при температуре 243 0С. Способен гореть и взрываться. При сгорании выделяется большое количество только газообразных продуктов. Смеси с органическими веществами способны самовозгораться, поэтому хранение ракетных топлив на его основе представляет серьёзную проблему. Имеет ядовитые свойства.

Приведёнными примерами не исчерпывается перечень возможных окислителей твёрдотопливных ракетных двигателей, в качестве которых могут использоваться, например, перхлораты лития , нитрозила и нитрония , динитрат гидразина и др.

2. ГОРЮЧЕ-СВЯЗУЮЩИЕ ВЕЩЕСТВА смесевых топлив - это высокомолекулярные органические соединения, или полимеры . Полимерами называются такие соединения, молекулы которых состоят из очень большого числа элементарных звеньев одинаковой структуры. Элементарные звенья соединяются между собой в длинные цепи линейного или разветвлённого строения. Свойства полимера зависят от химического строения элементарных звеньев, их количества и взаимного расположения.

Многие твёрдые полимеры получают из жидких веществ - мономеров , молекулы которых состоят из сравнительно небольшого числа атомов. Мономеры способны самопроизвольно соединяться в длинные цепи - полимеры? этот процесс называется полимеризацией .

Для ускорения полимеризации, или отверждения, применяются некоторые специальные вещества, называемые инициаторами , или отвердителями .

Многие высокомолекулярные соединения способны хорошо смешиваться и склеиваться с порошками (с кристаллическим окислителем и металлическим порошком), а затем превращаться в твёрдую монолитную массу после полимеризации. При нагревании некоторые полимеры размягчаются, становятся вязкотекущими, и в таком виде могут смешиваться с наполнителями , прочно удерживая их . При этом их можно заливать в формы и получать топливные заряды заданных размеров и форм .

Для применения в качестве горюче-связующих веществ удовлетворительными свойствами обладают синтетические соединения типа каучуков , смол и пластмасс , а также тяжёлые нефтепродукты - асфальт и битум . Состав и свойства нефтепродуктов колеблются в очень широких пределах, а нужные механические свойства сохраняются только в небольшом интервале температур. Поэтому чаще употребляются синтетические вещества , имеющие более постоянный состав и лучшие механические свойства. На практике применяют каучуки - ПОЛИУРЕТАНОВЫЙ , БУТАДИЕНОВЫЙ и ПОЛИСУЛЬФИДНЫЙ , смолы - ПОЛИЭФИРНУЮ , ЭПОКСИДНУЮ И КАРБАМИДНУЮ , а также некоторые пластмассы, в состав которых входят атомы азота , кислорода , серы или хлора .

Основные недостатки полимерных смол и пластмасс как горюче-связующих веществ - малая эластичность и повышенная хрупкость при низких температурах . От этих недостатков в основном свободны синтетические каучуки.

3. ПОРОШКООБРАЗНЫЕ МЕТАЛЛЫ могут вводиться в состав смесевых топлив в качестве дополнительного горючего компонента. Для этого пригодны металлические бериллий , литий , алюминий , магний , а так же некоторые их соединения. В результате введения указанных металлов происходит повышение запаса энергии топлива, т. е. увеличивается удельная тяга двигателей. Кроме того, металлические добавки повышают удельный вес топлива , что улучшает характеристики двигателя и ракеты в целом. При этом следует учитывать, что чем больше содержание металлсодержащего горючего, тем выше температура продуктов их сгорания. Почти все современные смесевые топлива содержат в качестве компонентов металлы.

Наиболее эффективным металлическим горючим является БЕРИЛЛИЙ , однако перспективы применения бериллия очень ограничены, потому что его запасы незначительны , а продукты сгорания весьма ядовиты . Следующий по эффективности металл - ЛИТИЙ . Его применение тормозится очень низкой температурой плавления (+186 0С) и самовоспламенением на воздухе в расплавленном состоянии. Самым распространённым и наиболее дешёвым металлическим горючим является АЛЮМИНИЙ . Применение тонко измельчённого порошка алюминия в смесевых топливах не только повышает удельную тягу двигателей, но и улучшает надёжность их запуска и увеличивает стабильность горения топлива. МАГНИЙ применяется редко, так как он в топливах даёт малую удельную тягу.

Кроме чистых металлов изучается применение в качестве дополнительных горючих веществ их соединений с водородом (гидридов).

4. КАТАЛИЗАТОРЫ И ДРУГИЕ ДОБАВКИ вводятся в смесевые топлива в небольших количествах для улучшения процесса горения (сажа, соли некоторых металлов), придания топливу пластичных свойств (растительные, минеральные и синтетические масла), улучшения стойкости при хранении и стабильности состава (диэтилфталат , этилцентралит ), облегчения технологии производства.

Технология изготовления зарядов из смесевых топлив включает смешение компонентов топлива, отливку и отверждение. В общем процесс изготовления смесевых топлив проще, чем порохов, однако при изготовлении крупногабаритных зарядов приходится преодолевать большие технологические трудности.


Список литературы

ракетное топливо горючее окислитель

Использованные электронные ресурсы:

1. «Ракетные топлива современных межконтинентальных баллистических ракет».

. А.В. Карпенко «Из истории твёрдотопливных ракет».

. Википедия (свободная энциклопедия).


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Ракетное топливо

НЕМНОГО ТЕОРИИ Из школьного курса физики (закон сохранения количества движения) известно, что если от покоящегося тела массой М отделится масса m со скоростью V то оставшаяся часть тела массой М-m будет двигаться со скоростью m/(M-m) x V в противоположном направлении. Значит, чем больше отбрасываемая масса и ее скорость,тем большую ско- рость приобретет оставшаяся часть массы т.е. тем больше будет сила приводящая ее в движение. Для работы ракетного двигателя (РД), как и любого реактивного, необходим источник энергии (топливо), рабочее тело (РТ) которое обеспечивает аккумулирование энергии источника ее перенос и преобразование) ,устройство в котором энергия пере- дается РТ и устройство в котором внутренняя энергия РТ преобразуется в кинетичес- кую энергию струи газов и передается ракете в виде силы тяги. Известны химические и нехимические топлива: у первых (жидкостные ракетные дви- гатели - ЖРД и ракетные двигатели твердого топлива - РДТТ) необходимая для работы двигателя энергия выделяется в результате химических реакций, а образующиеся при этом газообразные продукты служат рабочим телом, у вторых для нагрева рабочего тела используются другие источники энергии (например ядерная энергия). Эффективность РД, как и эффективность топлива измеряется его удельным импуль- сом. Удельный импульс тяги (удельная тяга), определяемый как отношение силы тяги к секундному массовому расходу рабочего тела. Для ЖРД и РДТТ расход рабочего тела совпадает с расходом топлива и удельный импульс является величиной обратной удель- ному расходу топлива. Удельный импульс характеризует эффективность РД - чем он больше тем меньше топлива (в общем случае - рабочего тела) расходуется на создание единицы тяги. В системе СИ удельный импульс измеряется в м/сек и практически сов- падает по величине со скоростью реактивной струи. В технической системе единиц (другое ее наименование МКГСС что значит: Метр - КилоГрамм Силы - Секунда), широко применявшейся в СССР, килограмм массы был производной единицей и определялся как масса которой сила в 1 кгс сообщает ускорение 1 м/сек за сек. Она называлась «техническая единица массы» и составляла 9,81 кг. Такая единица была неудобной, поэтому вместо массы использовали вес, вместо плотности - удельный вес и т.д. В ракетной технике при расчете удельного импульса также использовали не массовый а весовой расход топлива. В результате уделный импульс (в системе МКГСС) измерялся в секундах (по величине он в 9,81 раз меньше удельного «массового» импульса). Величина удельного импульса РД обратно пропорциональна квадратному корню мо- лекулярной массы рабочего тела и прямо пропорциональна квадратному корню из зна- чения температуры рабочего тела перед соплом. Температура рабочего тела определя- ется теплотворной способностью топлива. Максимальное ее значение для пары берил- лий+кислород составляет 7200 ккап/кг. что ограничивает величину максимального удельного импульса ЖРД величиной не более 500 сек. Величина удельного импульса зависит от термического коэффициента полезного действия РД - отношения кинетичес- кой энергии, сообщенной в двигателе рабочему телу, ко всей теплотворной способ- ности топлива. Преобразование теплотворной способности топлива в кинетическую энергию истекающей струи в двигателе происходит с потерями поскольку часть тепла уносится с истекающим рабочим телом, часть из-за неполного сгорания топлива не выделяется вовсе. Наиболее высокий удельный импульс имеют электрореактианые дви- гатели. У плазменного ЭРД он доходит до 29000 сек. Максимальный импульс серийных российских двигателей РД-107 составляет 314 сек, Характеристики РД на 90% определяются применяемым топливом. Ракетное топливо - вещество (одно или несколько), представляющих собой источник энергии и РТ для РД. Оно должно удовлетворять следующим основным требованиям: иметь высокий уд.импульс, высокую плотность, требуемое агрегатное состояние компонентов в условиях эксплуа- тации, должно быть стабильным, безопасным в обращении, нетоксичным, совместимым с конструкционными материалами, иметь сырьевые ресурсы и др. Большинство существу- ющих РД работает на химическом топливе. Основная энергетическая характеристика (уд. импульс) определяется количеством выделившейся теплоты (теплотворностью топлива) и химическим составом продуктов реакции, от которого зависит полнота преобразования тепловой энергии в кинетическую энергию потока (чем ниже молекулярная масса, тем выше уд.импульс). По числу раздельно хранимых компонентов химические ракетные топ- лива делятся на одно-(унитарные), двух-, трёх- и многокомпонентные, по агрегатному состоянию компонентов - на жидкие, твёрдые, гибридные, псевдожидкие, желеобразные. Однокомпонентные топлива - соединения типа гидразина N 2 H 4 , перекиси водорода Н 2 О 2 в камере РД распадаются с выделением большого количества теплоты и газообразных продуктов, обладают невысокими энергетическими свойствамивами. Например 100%-я перекись водорода имеет уд.импульс 145с. и применяется как вспомогательные топлива для систем управления и ориентации, приводов турбонасосов РД. Гелеобразные топлива - обычно загущенное солями высокомолекулярных органических кислот или специальными добавками горючее (реже окислитель). Повышение уд.импульса ракетных топлив дости- гается добавлением порошков металлов (Al и др.). Например "Сатурн-5" сжигает за время полета 36т. алюминиевого порошка. Наибольшее применение получили 2-х компо- нентные жидкие и твёрдые топлива. ЖИДКОЕ ТОПЛИВО Двухкомпонентное жидкое топливо состоит из окислителя и горючего. К жидким топливам предъявляются следующие специфические требования: возможно более широкий температурный интервал жидкого состояния, пригодность, по крайней мере, одного из компонентов для охлаждения жидкостного РД (термическая стабильность, высокие тем- пература кипения и теплоёмкость), возможность получения из основных компонентов генераторного газа высокой работоспособности, минимальная вязкость компонентов и малая зависимость её от температуры. Для улучшения характеристик в состав топлива вводятся различные присадки (металлы, например Be и Al для повышения уд.импульса, ингибиторы коррозии, стабилизаторы, активаторы воспламенения, вещества понижающие температуру замерзания). В качестве горючего используются керосин (лигроино-кероси- новые и керосино-газойлевые нефтяные фракции с диапазоном кипения 150-315°С), жид- кий водород, жидкий метан (CH 4), спирты (этиловый, фурфуриловый); гидразин (N 2 H 4), и его производные (диметилгидразин), жидкий аммиак (NH 3), анилин, метил-, диметил- и триметиламины и т.д. В качестве окислителя применяют: жидкий кислород, концентри- рованную азотную кислоту (HNO 3), азотный тетраксид (N 2 O 4), тетранитроме- тан; жидкие фтор, хлор и их соединения с кислородом и др. При подаче в камеру сго- рания компоненты топлива могут самовоспламеняться (конц.азотная кислота с анилином, азотный тетроксид с гидразином и др.)или нет. Применение самовоспламеняющихся топ- лив упрощает конструкцию РД и позволяет наиболее просто осуществлять многоразовые запуски. Максимальный уд.импульс имеют пары водород-фтор(412с), водород-кислород (391с). С точки зрения химии идеальный окислитель – жидкий кислород. Он использо- вался в первых балистических ракетх ФАУ,ее американских и советских копиях. Но его температура кипения (-183 0 С) не устраивала военных. Требуемый диапазон рабочих температур от –55 0 С до +55 0 С. Азотная кислота –другой очевидный окислитель для ЖРД больше устраивала военных. Она имеет высокую плотность,невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасна. Главное ее преимущество перед жидким кис- лородом в высокой температуре кипения, а следовательно в возможности неограниченно долго храниться без всякой теплоизоляции. Но азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой – атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвы- чайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали мед- ленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества,всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержаве- ющей стали в десять раз. Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Это газ бурого цвета, с резким запахом. При охлаждении ниже 21 0 С он сжижается при этом образуется четырехокись азота (N 2 O 4), или азотный тетраксид (АТ). При атмосферном давлении АТ кипит при температуре +21 0 С, а при –11 0 С замер- зает. Газ состоит в основном из молекул NO 2 , жидкость из смеси NO 2 и N 2 O 4 , а в твердом веществе остаются одни только молекулы тетроксида. Кроме всего прочего добавка АТ в кислоту связывает попадающую в окислитель воду, что уменьшает корро- зионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного АТ. Эту концентрацию использовали американцы для своих бое- вых ракет. Наши для получения максимального уд. импульса использовали 27% раствор АТ. Такой окислитель получил обозначение АК-27. Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Пер- вым широко использовавшимся горючим был спирт(этиловый), применявшийся на первых советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2). Кроме низких энергетических показателей военных очевидно не устраивала низкая стойкость личного состава к «от- равлению» таким горючим. Военных больше всего устраивал продукт перегонки нефти,но проблема была в том, что такое топливо не самовоспламеняется при контакте с азот- ной кислотой. Этот недостаток обошли применением пускового горючего. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250» (в СССР оно именовалось ТГ-02). Лучше всего воспламеняются с азот- ной кислотой вещества,имеющие в составе, кроме углерода и водорода еще азот. Таким веществом, обладающим высокими энргетическими характеристиками, был гидразин (N 2 H 4). По физическим свойствам он очень похож на воду (плотность на несколько процентов больше, температура замерзания +1,5 0 С, кипения +113 0 С, вязкость и все прочее – как у воды). Но военных не устраивала высокая температура замерзания (выше,чем у воды). В СССР был разработан способ получения несимметричного диметилгидразина (НДМГ), а американцы использовали более простой процесс получения монометилгидразин. Обе эти жидкости, были чрезвычайно ядовиты зато менее взрывоопасны, меньше впитывали водя- ные пары, были термически более стойкими чем гидразин. Но вот температура кипения и плотность по сравнению с гидразином понизились. Несмотря на некоторые недостатки новое топливо вполне устраивало и конструкторов, и военных. НДМГ имеет и другое, «несекретное» название - «гептил». «Аэрозин-50» использовавшийся американцами на своих жидкостных ракетах представляет собой смесь гидразина и НДМГ, что было след- ствием изобретения технологического процесса,в котором они получались одновременно. После того как баллистические ракеты стали размещаться в шахтах, в герметичном контейнере с системой термостатирования требования к диапазону рабочих температур ракетного топлива были снижены. В результате от азотной кислоты отказались,перейдя на чистый АТ так же получивший несекретное наименование – «амил». Давление наддува в баках повышало температуру кипения до приемлемой величины. Коррозия баков и тру- бопроводов с при использовании АТ уменьшилась настолько, что стало возможным хра- нить ракету заправленной на протяжении всего срока боевого дежурства. Первыми раке- тами использующими в качестве окислителя АТ стали УР-100 и тяжелая Р-36. Они могли стоять заправленными до 10 лет подряд. Основные характеристики двухкомпонентных жидких топлив при оптимальном соотношении компонентов (давление в камере сгорания, 100 кгс/см2, на срезе сопла 1 кгс/см2) Окислитель Горючее Теплотвор- Плотность Температура Уд.импульс ность топлива*, г /см 2 * в камере в пустоте, ккал/кг сгорания, К сек Азотная Керосин 1460 1,36 2980 313 к-та (98%) ТГ-02 1490 1,32 3000 310 Анилин(80%)+ фурфуриловый 1420 1.39 3050 313 спирт (20%) Кислород Спирт(94%) 2020 0,39 3300 255 (Жидкий) Водород ж. 0,32 3250 391 Керосин 2200 1,04 3755 335 НДМГ 2200 1,02 3670 344 Гидразин 1,07 3446 346 Аммиак ж. 0,84 3070 323 АТ Керосин 1550 1,27 3516 309 НДМГ 1,195 3469 318 Гидразин 1,23 3287 322 Фтор Водород ж. 0,62 4707 412 (жидкий) Гидразин 2230 1,31 4775 370 * отношение суммарной массы окислителя и горючего к их объёму. ТВЕРДОЕ ТОПЛИВО Твердое топливо подразделяется на баллиститное прессованные - нитроглицерино- вые пороха) представляющее собой гомогенную смесь компонентов (в современных мощных РД не применяется) и смесевое представляющее собой гетерогенные смеси окис- лителя, горючего-связующего (способствующего образованию монолитного топливного блока) и различных добавок (пластификатора, порошки металлов и их гидридов, отвер- дителя и т.д.). Твердотопливные заряды изготавливаются в виде канальных шашек, горящих по внешней либо внутренней поверхности. Основные специфические требования, предъявляемые к твёрдым топливам: равномерность распределения компонентов и, след- овательно, постоянство физико-химических и энергетических свойств в блоке, устой- чивость и закономерность горения в камере РД, а также комплекс физико-механических свойств, обеспечивающих работоспособность двигателя в условиях перегрузок, пере- менной температуры, вибраций. По уд.импульсу (около 200с.) твёрдое топливо усту- пает жидкому, т.к. из-за химической несовместимости не всегда удаётся использовать в составе твёрдого топлива энергетически эффективные компоненты. Недостатком твер- дого топлива является подверженость "старению" (необратимому изменению свойств вследствие происходящих в полимерах химических и физических процессов). Американские ракетчики быстро отказались от жидкого топлива и для боевых ракет предпочли твердое смесевое,работы по созданию которого в США проводились еще с середины 40-х годов, что позволило уже в 1962г. принять на вооружение первую твердотопливную МБР «Минитмен-1». В нашей стране широкомасштабные исследования начались со значительным опозданием. Постановлением от 20 ноября 1959г. предусмат- ривалось создание трёхступенчатой ракеты РТ-1 с твердотопливными ракетными двига- телями (РДТТ) и дальностью 2500км. Поскольку к тому моменту практически отсутство- вали научная, технологическая и производственная базы по смесевым зарядам альтерна- тивы использованию баллиститных твердых топлив не было. Максимально допустимый по технологии диаметр пороховых шашек изготавливаемых методом проходного прессования не превышал 800мм. Поэтому двигатели каждой ступени имели пакетную компоновку из 4 и 2 блоков у первой и второй ступеней соответственно. Вкладной пороховой заряд горел по внутреннему цилиндрическому каналу, торцам и поверхности 4-х продольных щелей, расположенных в передней части заряда. Такая форма поверхности горения обес- печивала необходимую диаграмму давления в двигателе. Ракета имела неудовлетвори- тельные характеристики так, при стартовой массе 29.5т. "Минитмен-1" имел предель- ную дальность 9300км, а у РТ-1 эти характеристики составляли, соответственно 34т. и 2400км. Основной причиной отставания ракеты РТ-1 являлось использование баллист- ного пороха. Для создания МБР на твердом топливе, по своим характеристикам прибли- жающейся к "Минитмен-1", было необходимо использование смесевых топлив, обеспечи- вающих более высокие энергетические и лучшие массовые характеристики двигателей и ракеты в целом. В апреле 1961г. вышло Постановление Правительства о разработке МБР на твердом топливе - РТ-2, было проведено установочное совещание и подготовлена программа "Нейлон-С" по разработке смесевых топлив с уд.импульсом 235с. Эти топ- лива должны были обеспечить возможность изготовления зарядов массой до 40т. мето- дом литья в корпус двигателя. В конце 1968г. ракета была принята на вооружение, но требовала дальнейшего совершенствования. Так, смесевое топливо формовалось в отдельных прессформах, затем заряд вкладывался в корпус, а зазор между зарядом и корпусом заливался связующим веществом. Это создавало определенные трудности при изготовлении двигателя. Ракета РТ-2П, имела твёрдое топливо ПАЛ-17/7 на основе бутил-каучука, обладающего высокой пластичностью, не имеющего заметного старения и растрескивания в процессе хранения, при этом топливо заливалось прямо в корпус дви- гателя, затем производилась его полимеризация и формование необходимых поверхнос- тей горения заряда. По своим летно-техническим характеристикам РТ-2П приближалась к ракете "Минитмен-3". Первыми нашли широкое применение в РДТТ смесевые топлива на основе перхлората калия и полисульфида. Значительное увеличение уд. импульса РДТТ произошло после того, как вместо перхлората калия стал применяться перхлорат аммония, а вместо полисульфидных - полиурстаноеые, а затем полибутадиеновые и другие каучуки, и в состав топлива было введено дополнительное горючее - порошкообразный алюминий. Почти все современные РДТТ содержат заряды, изготовленные из перхлората аммония, алюминия и полимеров бутадиена (СН 2 =СН-СН=СН 2). Готовый заряд имеет вид твердой резины или пластика. Его подвергают тщательному контролю на сплошность и однород- ность массы, прочное сцепление топлива с корпусом и т.д. Трещины и поры в заряде, как и отслоения от корпуса, недопустимы так как могут привести к нерасчетному уве- личению тяги РДТТ (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Характерный состав смесевого топлива, используемого в современных мощных РДТТ: окислителя (как правило перхлорат аммония NH 4 C1O 4) 60-70%, горючего- связующего (бутилкаучук, нитрильные каучуки, полибутадиены) 10-15%, пластификатора 5-10%, металла (порошки Al,Be,Mg и их гидриды) 10-20%, отвердителя 0,5-2,0% и ката- лизатора горения 0,1-1,0%.(окись железа) В современных космических РДТТ сравнительно редко применяется и модифицирован- ное двухосновное, или смесевое двухосновное топливо. По составу оно является проме- жуточным между обычным баллистным двухосновным (двухосновные пороха – бездымные пороха в которых два основных компонента: нитроцеллюлоза - чаще всего в виде пирок- силина, и нелетучий растворитель – чаще всего нитроглицерин) топливом и смесевым. Двухосновное смесевое топливо содержит обычно кристаллический перхлорат аммония (окислитель) и порошкообразный алюминий (горючее), связанные при помощи нитроцел- люлозно-нитроглицерииовой смеси. Вот типичный состав модифицированного двухоснов- ного топлива: перхлорат аммония -20,4%, алюминий - 21,1%, нитроцеллюлоза - 21,9%, нитроглицерин - 29,0%, триацетин (растворитель) - 5,1%, стабилизаторы - 2,5%. При той же плотности, что и смесевое полибутадиеновоё топливо, модифицированное двух- основное характеризуется несколько большим удельным импульсом. Недостатками же его являются более высокая температура горения, большая стоимость, повышенная взры- воопасность (склонность к детонации). С целью увеличения удельного импульса как в смесевые, так и в модифицированные двухосновные топлива могут вводиться сильно взрывчатые кристаллические окислители например гексоген. ГИБРИДНОЕ ТОПЛИВО В гибридном топливе компоненты находятся в различных агрегатных состояниях. Горючим могут служить: отвержденные нефтепродукты, N 2 H 4 , полимеры и их смеси с порошками - Al, Be, BeH 2 , LiH 2 , окислителями - HNO 3 , N 2 O 4 , H 2 O 2 ,FC1O 3 , C1F 3 , О 2 ,F 2 , OF 2 . По удельному импульсу эти топлива занимают промежуточное положение между жид- кими и твёрдыми. Максимальный уд.импульс имеют топлива: BeH 2 -F 2 (395с), ВеН 2 -Н 2 О 2 (375с), ВеН 2 -О 2 (371с). В основе гибридного топлива, разработанного Стэнфордским университом и NASA, лежит парафин. Он нетоксичен и является экологи- чески чистым (при сгорании образует только углекислый газ и воду) его тяга регули- руется в широких пределах, возможен и повторный запуск. Двигатель имеет довольно простое устройство, сквозь парафиновую трубу, расположенную в камере сгорания, прокачивается окислитель (газообразный кислород), при зажигании и дальнейшем разо- греве поверхностный слой топлива испаряется, поддерживая горение. Разработчикам удалось добиться высокой скорости горения и таким образом решить основную проблему, тормозившую ранее использование подобных двигателей в космических ракетах. Хорошие перспективы может иметь применение металлического горючего. Одним из наиболее под- ходящих для этой цели металлов является литий. При сгорании 1 кг. этого металла выделяется в 4,5 раза больше энергии чем при окислении керосин жидким кислородом. Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51-68% металлического лития.

Ракетные Двигатели

Реферат выполнила

Ученица 9Б класса

Кожасова Индира


введение. 2

назначение и виды ракетных двигателей. 2

Термохимические ракетные двигатели. 3

Ядерные ракетные двигатели. 6

другие виды ракетных двигателей. 8

Электрические ракетные двигатели. 9

Использованная литература. 10

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот.

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

По виду применяемого топлива (рабочего тела) ракетные двигатели подразделяются на:

Твердотопливные

Жидкостные

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород. Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет.

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества.

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400 с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны.

Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя долго держать снаряженной ракету, двигатель которой использует в качестве окислителя жидкий кислород. Заправлять кислородный бак такой ракеты приходится непосредственно перед запуском. Если такое возможно для космических и других ракет гражданского назначения, то для военных ракет, которые требуется поддерживать в готовности к немедленному запуску в течение длительного времени такое неприемлемо. Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся» окислителем. Этим объясняется её прочное положение в ракетной технике, особенно военной, несмотря на существенно меньшую силу тяги, которую она обеспечивает.

Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах.

Советский ученый Ф.А. Цандер еще в тридцатые годы в своих трудах предложил использовать в межпланетных полетах в качестве горючего легкие металлы, из которых будет изготовлен космический корабль – литий, бериллий, алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может.

Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ.

Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию.

В целом твердотопливные ракетные двигатели на имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества.

Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.

У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость.

В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода.

Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер.

Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210 Ро она равна 5*10 8 КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг.

К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте.

В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235 U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210 Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233 U, 235 U, 238 U, 239 Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с.

В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу.

Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах.

Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна.

Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей:

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*10 11 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром.

В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с.

Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ).

1. Советский энциклопедический словарь

2. С.П. Уманский. Космонавтика сегодня и завтра. Кн. Для учащихся.

Главная Энциклопедия Словари Подробнее

Ракетное топливо (РТ)

Вещество или совокупность веществ, являющихся источником энергии и рабочего тела для создания реактивной силы в ракетном двигателе (РД). По виду источника энергии различают химические и ядерные РТ. Наибольшее практическое применение для РД межконтинентальных баллистических ракет (МБР), используемых в РВСН, получили химические РТ, являющиеся одновременно источником энергии, выделяемой за счет экзотермических реакций горения, и источником рабочего тела, в качестве которого выступают продукты сгорания топлива. Химические РТ по агрегатному состоянию разделяются на жидкие (ЖРТ), твердые (ТРТ) и смешанного агрегатного состава.

ЖРТ - ракетные топлива, находящиеся в жидком агрегатном состоянии в условиях эксплуатации. ЖРТ подразделяются на однокомпонентные (унитарные) и двухкомпонентные, называемые также топливами раздельной подачи. В качестве однокомпонентных ЖРТ могут рассматриваться химические вещества или их смеси, способные в определенных условиях к химическим реакциям распада или горения с выделением тепловой энергии. К таким веществам относятся, например, гидразин N2H4, пероксид водорода Н2О2, этиленоксид СН2СН2О и др. Однокомпонентные ЖРТ используются в ЖРД малой тяги, в качестве топлив для РД систем управления и ориентации, а также для газогенерирующих систем. Двухкомпонентные ЖРТ состоят из окислителя и горючего. В качестве окислителей используются вещества, содержащие преимущественно атомы окислительных элементов. К таким веществам относятся жидкие фтор F2 и кислород О2, концентрированная азотная кислота HNO3, азотный тетраоксид N2O4. Наиболее эффективными горючими ЖРТ являются жидкий водород Н2, керосин Т-1 (фракция с пределами выкипания 150...280°С), гидразин N2H4, несимметричный диметилгидразин H2NN(CH3)2 (НДМГ). В качестве горючих могут использоваться также металлы Mg, Al и их гидриды, вводимые в состав жидких горючих в виде дисперсных порошков с образованием гелей. При подаче в камеру сгорания РД компоненты ЖРТ могут самовоспламеняться (например, N2O4 + H2NN(CH3)2) или не самовоспламеняться (ж.H2+ж.О2). В последнем случае используются специальные системы воспламенения или специальные пусковые топлива. Двухкомпонентные ЖРТ используются преимущественно в маршевых двигателях ракет и их ступеней. Для придания ЖРТ комплекса требуемых свойств в компоненты топлива обычно вводят специальные присадки, способствующие, например, повышению стабильности физико-химических свойств компонентов при хранении или эксплуатации. Основным достоинством ЖРТ, определяющим целесообразность их использования, является возможность получения высокого уровня энергетических характеристик.

Например, для топлива на основе жидких О2 и Н2 при рк/pа=7/0,1 МПа реализуется удельный импульс до 3835 м/с тогда как для наиболее высокоэнергетических твердых топлив его значение не превышает 3000 м/с в сопоставимых условиях.

Компоненты ЖРТ разделяют на высококипящие и низкокипящие. Высококипящий компонент - это компонент ЖРТ, имеющий температуру кипения выше 298К при стандартных условиях. Высококипящие компоненты в интервале температур эксплуатации представляют собой жидкости. К высококипящим компонентам относятся азотнокислотные окислители, азотный тетраоксид а также целый ряд широко используемых горючих - керосин Т-1, несимметричный диметилгидразин и др.

Низкокипящий компонент - это компонент ЖРТ, имеющий температуру кипения ниже 298К при стандартных условиях. В интервале температур эксплуатации ракетной техники низкокипящие компоненты обычно находятся в газообразном состоянии. Для содержания низкокипящих компонентов в жидком состоянии используется специальное технологическое оборудование. Среди низкокипящих компонентов выделяют так называемые криогенные компоненты, имеющие температуру кипения ниже 120К. К криогенным компонентам относятся сжиженные газы: кислород, водород, фтор и др. Для уменьшения потерь на испарение и увеличения плотности возможно применение криогенного компонента в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента.

ТРТ - гомогенные или гетерогенные взрывчатые системы, способные к самостоятельному горению в широком диапазоне давлений (0,1...100 МПа) с выделением значительного количества тепла и газообразных продуктов горения. По химическому составу и способу производства подразделяются на баллиститные и смесевые. Структурно-энергетической основой баллиститов являются нитраты целлюлозы - коллоксилины с содержанием азота около 12%, пластифицированные труднолетучими активными растворителями (нитроглицерином, динитратдиэтиленгликолем) или другими жидкими нитроэфирами. В состав баллиститов могут вводиться мощные взрывчатые вещества (МВВ) - октоген или гексоген, а также входят также стабилизаторы химической стойкости, стабилизаторы горения, модификаторы горения, технологические и энергетические добавки (порошки Al, Mg или их сплавы). Баллиститы представляют собой твердые растворы, находящиеся в интервале температур эксплуатации в стеклообразном физическом состоянии.

Смесевые ТРТ это гетерогенные смеси окислителя (преимущественно перхлората аммония NH4ClO4, перхлората калия КСlO4 или нитрата аммония NH4NO3) и горючего-связующего, представляющего собой пластифицированный полимер (например, бутилкаучук, полибутадиен, полиуретан) с ингредиентами системы отверждения, технологическими и специальными добавками. В состав смесевых ТРТ для повышения их энергетических характеристик могут вводиться мощные бризантные ВВ (гексоген или октоген) в количестве до 50% и до 20% металлических горючих (Al, Mg или их гидридов). Регулирование баллистических характеристик (скорости горения и ее зависимости от различных факторов) ТРТ обычно осуществляется изменением дисперсности порошкообразных компонентов или введением в состав топлив модификаторов горения. Компоненты смесевых ТРТ обычно выполняют несколько функций: окислители являются наполнителями полимерной матрицы, обеспечивают необходимый уровень баллистических и энергомассовых характеристик; горючие, представляющие собой в большинстве случаев пластифицированные полимеры, обеспечивают монолитность твердотопливного заряда и необходимый уровень его механических характеристик; металлическое горючее предназначено для увеличения плотности топлива и повышения его энергетических возможностей.

Определенное по массе количество ТРТ, являющееся основным источником энергии и рабочего тела, имеющее заданные форму, размеры и начальную поверхность горения называется зарядом твердого топлива (ЗТТ). Применительно к РДТТ под ЗТТ понимают часть РД, обеспечивающую требуемый закон газообразования рабочего тела. По методу монтажа в камере РДТТ заряды подразделяются на вкладные, прочноскрепленные литые в корпус и литые в корпус, раскрепленные с помощью манжет.

В диапазоне температур эксплуатации смесевые ТРТ находятся в высокоэластическом состоянии. ТРТ по сравнению с ЖРТ более просты в эксплуатации, но уступают им по энергетическим характеристикам.

Топлива смешанного агрегатного состава (гибридные) представляют собой двухкомпонентные РТ, в которых компоненты, находясь в различных агрегатных состояниях, могут быть жидкими, твердыми или газообразными. Из-за сложности компоновки РД гибридные РТ используются ограниченно.

В РД МБР РВСН используются как высококипящие самовоспламеняющиеся ЖРТ (преимущественно, N2O4+H2NN(CH3)2), так и смесевые ТРТ. ЖРТ используются в РД ампулизированных ракет шахтного базирования, а ТРТ в РД ракет как шахтного, так и подвижного базирования.

Табл. 1. Основные характеристики двухкомпонентных ЖРТ при p к /p а =7/0,1 МПа

Горючее

Массовое

соотношение

окислитель: горючее

Температура

горения, К

Плотность,

кг/м 3

Удельный

импульс,

Нс/кг

Окислитель O 2

Гидразин

Окислитель N 2 O 4

Гидразин

Окислитель HNO 3

Гидразин

Окислитель Н 2 O 2

Гидразин

Табл. 2. Принципиальный состав и основные характеристики баллиститных ТРТ

Компоненты и

характеристики

Без энергетич.

добавок

С энергетическими добавками

Топливо для жидкостно-реактивного двигателя

Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.

Основным требованием, которое предъявляется к топливу для ЖРД, является высокая теплотворная способность, т. е. большое количество тепла, выделяющееся при сгорании 1 кг топлива. Чем больше теплотворная способность, тем, при прочих равных условиях, больше скорость истечения и тяга двигателя. Более правильным является сравнение различных теплив не по их калорийности, а непосредственно по скорости истечения, которую они обеспечивают в равных условиях, или, что то же самое, по удельной тяге.

Помимо этого главного свойства топлив для ЖРД к ним обычно предъявляются и некоторые другие требования. Так например, большое значение имеет удельный вес топлива, так как запас топлива на самолете или ракете обычно ограничивается не его весом, а объемом топливных баков. Поэтому чем плотнее топливо, т. е. чем больше его удельный вес, тем больше по весу войдет топлива в те же топливные баки и, следовательно, будет больше продолжительность полета. Важно также, чтобы топливо не вызывало коррозии, т. е. разъедания ржавчиной, деталей двигателя, было просто и безопасно в хранении и перевозке, не было дефицитным по источникам сырья.

Наиболее часто в настоящее время в ЖРД применяются так называемые двухкомпонентные топлива, т. е. топлива раздельной подачи. Эти топлива состоят из двух жидкостей, хранящихся в отдельных баках; одна из этих жидкостей, обычно называемая горючим, чаще всего представляет собой вещество, принадлежащее к классу углеводородов, т. е. состоит из атомов углерода и водорода, а иногда содержит и атомы иных химических элементов - кислорода, азота и других. Горючим этот компонент (составную часть) топлива называют потому, что при его сгорании, т. е. соединении с кислородом, выделяется значительное количество тепла.

Другой компонент топлива, так называемый окислитель, содержит кислород, необходимый для сгорания, т. е. окисления горючего, почему этот компонент и получил название окислителя. Окислителем может служить чистый кислород в жидком состоянии, а также озон или какой-либо кислородоноситель, т. е. вещество, содержащее кислород в химически связанном виде: например, перекись водорода, азотная кислота и другие кислородные соединения. Как известно, в воздушно-реактивных двигателях, как и в обычных двигателях внутреннего сгорания, окислителем служит кислород атмосферы.

В случае двухкомпонентного топлива обе жидкости по отдельным трубопроводам подаются в камеру сгорания, где и происходит процесс горения, т. е. окисления горючего кислородом окислителя. При этом выделяется большое количество тепла, вследствие чего газообразные продукты сгорания приобретают высокую температуру.

Наряду с двухкомпонентными топливами существуют и так называемые однокомпонентные, или унитарные, топлива, т. е. топлива, представляющие собой одну жидкость. Однокомпонентным топливом может служить либо смесь двух веществ, реагирующих лишь в определенных условиях, которые создаются в камере, либо какое-нибудь химическое вещество, при некоторых условиях, обычно в присутствии соответствующего катализатора, разлагающееся с выделением тепла. Таким однокомпонентным топливом является, например, высоко-концентрированная (крепкая) перекись водорода.

Перекись водорода в качестве однокомпонентного топлива имеет лишь ограниченное применение. Это объясняется тем, что при реакции разложения перекиси водорода с образованием паров воды и газообразного кислорода выделяется лишь сравнительно небольшое количество тепла. Вследствие этого скорость истечения оказывается относительно невысокой, практически она не превышает 1200 м/сек . Так как температура реакции разложения невелика (около 500 °C), то такую реакцию обычно называют «холодной», в отличие от реакций со сгоранием, хотя бы с той же перекисью водорода в качестве окислителя, когда температура бывает в несколько раз больше («горячие» реакции). Мы потом познакомимся со случаями использования «холодной» реакции разложения перекиси водорода.

Практически все существующие жидкостно-реактивные двигатели работают на двухкомпонентном топливе. Однокомпонентные топлива не применяются, так как при значительной теплотворной способности, большей чем 800 кал/кг , они взрывоопасны. Состав топлива, т. е. выбор определенной пары «горючее-окислитель», может быть при этом самым различным, хотя в настоящее время предпочтение отдается нескольким определенным комбинациям, получившим наиболее широкое применение. Вместе с тем производятся энергичные поиски лучших топлив для ЖРД, и в этом отношении действительно имеются огромные возможности.

Применяемые в настоящее время двухкомпонентные топлива обычно делятся на самореагирующие, или самовоспламеняющиеся, и несамореагирующие, или топлива принудительного зажигания. Самовоспламеняющееся топливо, как показывает само название, состоит из таких компонентов «горючее - окислитель», которые при смешении их в камере сгорания двигателя самовоспламеняются. Реакция горения начинается сразу же после соприкосновения обоих компонентов и идет до полного израсходования одного из них. Несамовоспламеняющееся топливо требует специальных приспособлений для воспламенения смеси, т. е. для начала реакции горения. Эти запальные приспособления - впрыск каких-нибудь самовоспламеняющихся жидкостей, различные пиротехнические запалы, для сравнительно маломощных двигателей - электрическое зажигание и другие, - необходимы, однако, только при запуске двигателя, так как затем новые порции топлива, поступающего в камеру сгорания, воспламеняются от уже существующего в камере постоянного очага горения или, как говорят, факела пламени.

В настоящее время применяются как самовоспламеняющиеся, так и несамовоспламеняющиеся топлива и отдать предпочтение какому-либо одному из этих двух видов затруднительно, так как обоим типам топлива свойственны серьезные недостатки.

Несамовоспламеняющиеся топлива представляют большую опасность в эксплоатации, так как из-за неполадок в зажигании при запуске двигателя или возможных перебоев в горении при его работе, в камере сгорания даже за доли секунды накапливаются большие количества топлива. Это топливо, представляющее собой сильно взрывчатую смесь, затем воспламеняется, что чаще всего ведет к взрыву и катастрофе.

С другой стороны, известные самовоспламеняющиеся топлива обычно менее калорийны, чем несамовоспламеняющиеся. Кроме того, они должны применяться совместно с добавочными веществами, обеспечивающими энергичное начало и дальнейшее протекание реакции горения. Эти добавочные вещества, так называемые инициирующие вещества и катализаторы, добавляемые либо к окислителю, либо к горючему, усложняют эксплоатацию топлива, так как оно становится при этом неоднородным (приходится считаться с расслаиванием и другими свойствами неоднородных жидкостей). Пожалуй, наибольшим недостатком этих топлив является пожарная опасность при их эксплоатации. При малейшей течи компонентов топлива на самолете или ракете может возникнуть пожар, так как компоненты при смешении воспламеняются.

Мы упомянем лишь о наиболее распространенных топливах. В качестве окислителя в настоящее время наиболее часто применяются жидкий кислород и азотная кислота; применялась также перекись водорода. Каждый из этих окислителей имеет свои достоинства и недостатки. Жидкий кислород обладает тем преимуществом, что является 100 %-ным окислителем, т. е. не содержит в себе балластного вещества, не принимающего участия в горении (что имеет место для других двух окислителей), вследствие чего для сгорания того же количества горючего жидкого кислорода требуется по весу меньше, чем других окислителей. Одним из недостатков кислорода является то, что он при обычной температуре, как известно, находится в газообразном состоянии, вследствие чего для сжижения его приходится охлаждать до температуры минус 183 °C и хранить в специальных сосудах, типа дьюаровских, таких, например, какие применяются в термосах. Даже в таких сосудах кислород быстро испаряется, до 5 % в день. Перекись водорода, применявшаяся в качестве окислителя, имела очень высокую концентрацию, до 90 %; производство перекиси такой концентрации сложно и было освоено только в связи с ее применением в качестве окислителя для ЖРД. Концентрированная перекись весьма неустойчива, т. е. разлагается при хранении, которое поэтому становится серьезной задачей - для этой цели применялись различные стабилизирующие присадки. Азотная кислота неудобна тем, что в водных растворах вызывает коррозию многих металлов (обычно она хранится в алюминиевых баках).

В качестве горючих в настоящее время чаще всего применяются погоны нефти - керосин и бензин, а также спирт. Теоретически идеальным горючим является жидкий водород, в особенности с жидким кислородом в качестве окислителя, но его не применяют, так как такое топливо представляет большую опасность и его трудно хранить, а также потому, что жидкий водород имеет очень небольшой удельный вес (он почти в 15 раз легче воды), вследствие чего требует очень больших топливных баков.

В настоящее время наиболее часто применяют в качестве топлива для ЖРД либо керосин или бензин с азотной кислотой, либо спирт с жидким кислородом. Скорость истечения, которую обеспечивают эти топлива в современных двигателях, колеблется в пределах 2000–2500 м/сек , причем топлива с азотной кислотой дают значения, приближающиеся к нижнему из указанных пределов.

Сгорание жидкого водорода в жидком кислороде теоретически дало бы наибольшее значение скорости истечения, равное 3500 м/сек. Однако действительное значение скорости истечения при таком сгорании значительно меньше из-за различных потерь, в частности, из-за так называемой термической диссоциации, т. е. распада продуктов сгорания, который происходит при высокой температуре в камере сгорания и связан с затратой тепла.

В связи с большей калорийностью (теплотворной способностью) жидких топлив по сравнению с порохом скорость истечения газов в ЖРД получается большей, чем в пороховых двигателях, именно 2000–2500 м/сек вместо 1500–2000 м/сек . Для сравнения укажем, что при сгорании бензина в воздухе в современных воздушно-реактивных двигателях скорость истечения продуктов горения не превышает 700–800 м/сек .

Следует отметить, что применяющиеся в настоящее время топлива для ЖРД обладают серьезными недостатками, в первую очередь недостаточной калорийностью, и потому не могут считаться удовлетворительными. Подбор новых, улучшенных топлив - одна из важнейших задач совершенствования ЖРД. Однако более неотложной задачей является разработка таких конструкций ЖРД, которые позволили бы полностью использовать как лучшие из существующих, так и новые, более совершенные, топлива. Важнейшее требование, которое при этом предъявляется двигателю, это надежная работа при очень высоких температурах, развивающихся при сгорании высококалорийных топлив.

Из книги Правила технической эксплуатации тепловых энергоустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний автора Красник Валентин Викторович

4. ТОПЛИВНОЕ ХОЗЯЙСТВО. ТВЕРДОЕ, ЖИДКОЕ И ГАЗООБРАЗНОЕ ТОПЛИВО 4.1. Общие положения Вопрос 122. Что обеспечивает учет всего топлива по количеству и качеству при его поступлении в организацию, расходовании на производство и хранении на складах и в резервуарах?Ответ. При

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

4.2. Хранение и подготовка топлива Твердое топливо Вопрос 125. Каким оборудованием оснащаются склады твердого топлива?Ответ. Оснащаются оборудованной для разгрузки топлива, укладки его в штабеля, погрузки, взвешивания, обеспечения условий хранения топлива (послойные

Из книги Ремонт японского автомобиля автора Корниенко Сергей

Жидкое топливо Вопрос 131. Какие параметры пара при сливе мазута необходимо обеспечить в паропроводах приемосливного устройства?Ответ. Необходимо обеспечить следующие параметры пара: давление 0,8–1,3 МПа (8-13 кгс/см2) с температурой не выше 250 °C.На мазутосливе (в цистернах,

Из книги Над картой Родины автора Михайлов Николай Николаевич

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

Из книги Что нас ждет, когда закончится нефть, изменится климат, и разразятся другие катастрофы автора Кунстлер Джеймс Говард

Из книги Правила технической эксплуатации тепловых энергоустановок автора Коллектив авторов

Как устроен и работает жидкостно-реактивный двигатель Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб,

Из книги Справочник по строительству и реконструкции линий электропередачи напряжением 0,4–750 кВ автора Узелков Борис

Из книги автора

Из книги автора

Из книги автора

4. ТОПЛИВНОЕ ХОЗЯЙСТВО. ТВЕРДОЕ, ЖИДКОЕ И ГАЗООБРАЗНОЕ ТОПЛИВО 4.1. Общие положения4.1.1. Эксплуатация оборудования топливного хозяйства должна обеспечивать своевременную, бесперебойную подготовку и подачу топлива в котельную. Должен обеспечиваться запас основного и

Из книги автора

6.1.1. Топливо Бензин. Для обеспечения надежной работы карбюраторных двигателей на всех режимах бензины должны обладать: высокой детонационной стойкостью; оптимальным фракционным составом; малым содержанием смоло– и нагарообразующих соединений и