Изготовление конфет в домашних условиях как бизнес. Свой бизнес: производство конфет

Кислород представляет собой газ, который составляет не только значительную часть атмосферного воздуха, земной коры и питьевой воды, но и более чем 65% массы тела человека, тем самым представляя собой важнейший химический элемент в организме человека. В настоящий момент кислород является одним из наиболее широко используемых веществ благодаря своим химическим и физическим свойствам, нашедший применение практически во всех областях жизнедеятельности человека.

Для промышленного использования производство технического кислорода выполняется 2 методами:

  1. Разделением воздуха – мембранный, криогенный и адсорбционный методы;
  2. Из воды – методом электролиза.

Оборудование для производства кислорода представляет собой специальное устройство, предназначенное для производства кислорода методом отделения его от других компонентов воздуха. Осуществляется данная процедура различными методами, и в частности:

  • физическая адсорбция, короткоцикловая КЦА;
  • вакуумная, короткоцикловая ВКЦА;
  • криогенное и мембранное разделение.

Сегодня кислородные установки пользуются самым широким применением во множестве технологических процессов, практически во всех существующих отраслях современной промышленности, а также в медицине и в агросельскохозяйственном комплексе. Наиболее полезными в медицине и промышленности считаются его окислительные свойства, а также его способность поддерживать процесс горения в течение долгого времени. Тут следует вспомнить результаты исследований палеонтологов, которые обнаружили, что во времена Каменноугольного периода (Карбон) воздух содержал не 21% кислорода, а 81%!

Воздух мог взорваться на ровном месте, а от удара молнии выгорали площади, равные территории современной Канады! Наибольшим спросом кислородные установки пользуются в процессах металлообработки, и в частности – резки, сварки и пайки металла. В химической, нефтехимической и нефтегазовой отрасли кислород в больших объемах применяется в качестве окислителя необходимого для выполнения химических реакций.

Адсорбционная технология

Адсорбционная технология предусматривает, что в кислородных установках применяется явление селективной гетерогенной адсорбции кислорода из воздуха посредством твердого адсорбента. Данные кислородные установки характеризуются высоким уровнем надежности, простотой в устройстве и эксплуатации, а также высокими технико-экономическими показателями.

Влияние температуры и давления

В наши дни методы получения газообразного кислорода из воздуха посредством технологии адсорбции, доведены практически до совершенства. Функционирование инновационных кислородных установок основано на том, что адсорбентом газа напрямую зависит от уровня температуры и парциального давления компонента газа, тем самым предоставляя возможность, за счет изменения уровня температуры и давления, регулировать процессы поглощения газа и регенерацию адсорбента.

Технология короткоцикловой адсорбции КЦА

Оборудование для производства кислорода функционирует таким образом, что достаточно легко адсорбируемые составляющие газовой смеси поглощаются адсорбентом, в то время как их неадсорбируемые или слабо адсорбируемые аналоги проходят через специальную установку.

На сегодняшний день наибольшей популярностью пользуются 3 метода организации безнагревного циклического процесса адсорбционного разделения воздуха:

  1. Вакуумные;
  2. Напорные;
  3. Смешанные.

Напорный метод получения кислорода предусматривает, что извлечение кислорода из воздуха будет осуществляться под давлением уровнем выше атмосферного, а непосредственно стадия регенерации адсорбента будет проходить при атмосферном давлении.

Вакуумный метод получения кислорода предусматривает, что извлечение кислорода будет осуществляться при атмосферном давлении, а регенерация адсорбента при отрицательном.

Смешанный метод получения кислорода предусматривает извлечение кислорода путем сочетания изменения уровня давления от положительного до отрицательного уровня.

Мембранная технология

Метод разделения газовых сред посредством мембранных кислородных установок заключается в разнице в скоростях проникновения различных компонентов газовой смеси через наполнитель мембраны. Процедура разделения определяется разницей в парциальных давлениях различных сторон мембраны.

Принцип работы мембранного картриджа

Инновационные газоразделительные мембраны, в отличие от старых аналогов, представляют собой уже не плоскую пластинку или пленку, а полое волокно. Для мембранного метода разделения газов применяют поволоконные мембраны, состоящие из пористого полимерного волокна с нанесением на внешнюю поверхность газоразделительного слоя. Визуально поволоконная мембрана изготавливается в виде картриджа цилиндрической формы, представляющего собой катушку, обмотанную специальным образом полимерным волокном. Само пористое волокно обладает сложной ассиметричной структурой и более высокой плотностью по мере сокращения расстояния до внешней поверхности волокна.

Использование пористых подложек с ассиметричной структурой обеспечивает разделения газов при высоком уровне давления, вплоть до 6,5МПа, с учетом того, что толщина газоразделительного слоя мембраны не превышает 0,1мкм, и тем самым обеспечивает высокий уровень проницаемости газов через полимерную мембрану. Существующий в современных реалиях уровень развития технологий обеспечивает изготовление полимерных материалов, обладающих высоким уровнем селективности во время осуществления разделения различных газов, тем самым обеспечивая высокий уровень чистоты газообразных продуктов.

Оборудование для производства кислорода включает в себя:

  • Специальный инновационный мембранный модуль;
  • Корпус каркасного типа;
  • Сменный мембранный картридж.

Следует отметить, что плотность укладки волокон в картридже составляет от 500 до 700м 2 полимерного волокна на 1м 3 картриджа, тем самым обеспечивая максимальную минимизацию габаритов инновационных кислородных установок.

Кислородная и вакуумная технологии

Высокий уровень проницаемости вещества мембраны по кислороду, значительно превосходящий уровень азота, требует специального конструкторского решения относительно проектирования мембранных кислородных комплексов. На сегодняшний день существуют 2 принципиально различных технологии производства кислорода посредством мембран:

  1. Компрессорная;
  2. Вакуумная.

Компрессорный метод предусматривает подачу воздуха под избыточным давлением в волоконное пространство с выходом кислорода из мембраны под небольшим уровнем избыточного давления, которое в случае необходимости может дожиматься специальным компрессором до необходимого уровня.

Вакуумный метод предусматривает, что для создания разности парциальных давлений в кислородной установке будет использоваться специальный вакуумный насос.

Преимущества мембранных и адсорбционных промышленных кислородных установок:

  • Возможность полной автоматизации оборудования;
  • Быстрый запуск и остановка оборудования;
  • Исключение необходимости контроля оператором за функционированием оборудования;
  • Высокий уровень чистоты получаемого кислорода;
  • Небольшие размеры и масса оборудования;
  • Увеличенный рабочий ресурс оборудования;
  • Отсутствие специальных технических требований к помещению, предназначенному для установки оборудования.

Недостатки мембранных и адсорбционных промышленных кислородных установок:

  • Ограниченный уровень производительности оборудования;
  • Сравнительно небольшой уровень чистоты получаемого кислорода, составляющий не более 50% для мембранных установок и 95% – для вакуумных установок.

Криогенная технология. Принцип разделения воздушных газов

В основе криогенной технологии разделения воздуха изначально заложена методика ректификации, происходящей при низких температурах.

В чем суть этой методики? Все компоненты воздуха (а их более тысячи) имеют совершенно различную температуру кипения. По составу они также сильно различаются, а временами бывают и противоположны, что не может не сказаться на равновесии жидких и паровых смесей. Таким образом, в процессе разделения воздуха посредством криогенных температур между находящимися в контакте компонентами (состоящими из газов воздуха), паровой и жидкой фазой осуществляется тепло– и массообмен. В результате этих процессов паровая фаза насыщается низкокипящим компонентом, имеющим более низкую температуру, а жидкая фаза – высококипящим компонентом. Вследствие чего поднимающийся по ректификационной колонке вверх пар, насыщается азотом, представляющим собой низкокипящий компонент, а стекающая по колонке вниз жидкость – кислородом.

Преимущества

На данный момент криогенный метод является самым эффективным в плане высокого коэффициента извлечения кислорода и обеспечения самого высокого уровня чистоты продуктов разделения. Необходимо учесть и то, что криогенный метод обеспечивает получение сразу нескольких продуктов разделения, как в газообразном, так и в жидком состоянии.

Недостатки

Основным недостатком криогенных кислородных установок является более длительный пусковой период, в отличие от вакуумных и мембранных аналогов. Это делает данное оборудование для производства кислорода рентабельным быстро окупаемым… в огромных, мощных концернах с постоянными инвесторами и крупным пакетом акций. Более мелким производствам такие установки принесут убыток и разорение.

Введение




в) доменное производство;

д) прокатное производство.


Требования по выполнению режимов труда и отдыха.

1.3.1. Режим труда и отдыха апратчиков производится согласно графику, «4-х бригадный 2-х сменный при непрерывной производственной неделе с 12-ти часовыми сменами, утвержденному директором по персоналу и общим вопросам.

1.3.2. Вступление на дежурство и уход с дежурства аппаратчика производится по утвержденному графику. Меняться дежурством только с разрешения администрации отделения.

1.3.3. Для приемки смены нужно явиться на рабочее место не менее чем за 30 минут до начала дежурства.

1.3.4. В случае невыхода на работу сменщика необходимо сообщить сменному мастеру участка разделения воздуха. Уход с дежурства в данном случае, до сдачи смены, запрещается.

1.3.5. Сдачу дежурства разрешает начальник смены.

1.3.6. Во всех случаях приемка смены производится после разрешения сменного мастера участка разделения воздуха.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ.

Требования к использованию средств защиты работников.

2.3.1. Аппаратчик должен работать в спецо­дежде, застегнутой на все пуговицы. На одежде не должно быть развеваю­щихся частей, которые могут быть захвачены движущимися (вращающимися) частями механизмов. Засучивать рукава спецодежды запрещается.

При нахождении в помещениях с действующим энергетическим оборудо­ванием, камерах, каналах, тоннелях и в ремонтной зоне аппаратчик должен надевать застегнутую подбородным ремнем за­щитную каску. Волосы должны убираться под каску.

2.3.2. При выходе в рабочую зону с повышенным уровнем шума необходимо пользоваться берушами.

2.3.3. При авариях в газовом хозяйстве необходимо использовать газозащитную аппаратуру (ГЗА) – кислородные изолирующие противогазы.

2.3.4. При обслуживании мазутных форсунок пользоваться светозащитными очками.

2.3.5. При производстве работ по продувке водоуказательных колонок и при проверке СПУ, если аппаратчик выполняет обязанности обходчика, использовать защитные очки или прозрачную маску для лица.

2.3.6. При производстве одноразовых работ по уборке рабочей зоны, покраске закрепленного оборудования пользоваться респираторами и защитными очками.

2.3.7. Производство всех видов работ, кроме уборки вращающихся механизмов, производить в рукавицах.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПО ОКОНЧАНИИ РАБОТЫ.

Порядок безопасного отключения, остановки, разборки, очистки и смазки оборудования, приспособлений, машин, механизмов и аппаратуры, а при непрерывном процессе – порядок передачи их по смене, порядок сдачи рабочего места.

3.1.1. Аппаратчик по окончании работы обязан произвести тща­тельную уборку рабочего места.

3.1.2. Проверить состояние техники безопасности и противопожарное состояние рабочего места.

3.1.3. Привести в порядок инструмент, инвентарь, приспособления и сложить в специально отведенные места.

Порядок сдачи рабочего места, в том числе порядок и безопасные меры по удалению опасных и вредных веществ и материалов из рабочей зоны, а также меры по удалению и обезвреживанию отходов производства, являющихся источниками опасных и вредных производственных факторов.

3.2.1. Аппаратчик обязан дать сменщику полные сведения о состоянии и режиме работы оборудования, обо всех не­исправностях, неполадках, имевших место во время смены.

Дать все замечания по технике безопасности, принятых мерах по ус­транению замечаний.

3.2.2. Аппаратчик оформляет сдачу смены росписью в суточной ведомости.

3.2.3. Использованная ветошь складируется в специальные ящики для использованной ветоши.

3.2.4. Мусор и бытовые отходы, строительные отходы, лом черных металлов убираются в контейнеры с соответствующей маркировкой.

Ректификация воздуха.

Ректификация – разделение смесей на составляющие вещества в результате взаимодействия потоков жидкости и пара, которые обычно движутся навстречу друг другу.

Рис.3


Библиографический список

1. Д.Л. Глизманенко “Получение Кислорода”. Изд. 5-е М.”Химия” 1972, 752с., 46табл;

2. http://www2.spiraxsarco.com/esc/SSW_Properties.aspx?country_id=ru&lang_id=rus

3. http://docs.cntd.ru/document/1200080702

Введение

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислорода 20,95 % и азота 78,09 %, остальное – аргон 0,93%, криптон 1,14 , ксенон 8,6 и другие инертные газы, углекислый газ и пр. Содержание водяных паров в воздухе может меняться в широких пределах в зависимости от температуры и степени насыщения. Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении – 194,5 °С). Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13 °С) температур кипения жидких азота (– 196 °С) и кислорода (– 183 °С).

Применение кислорода способствует прогрессу во многих областях техники, повышению производительности труда в промышленности, увели­чению выработки продукции, улучшению ее качества и снижению себестоимости.

В нашей стране большое количество домен, мартеновских печей и конверторов переведено на работу с применением кислорода, что позволяет получать дополнительно десятки миллионов тонн чугуна и стали. Значительные количества кислорода и азота рас­ходуются также в химической промышленности для производства удобрений и органических продуктов из новых источников сырья – природных и нефтяных газов.

Были созданы научно – иссле­довательские и проектные институты кислородной промышленно­сти, заводы по изготовлению воздухоразделительных установок, построены мощные кислородные станции на крупнейших металлур­гических и химических комбинатах, машиностроительных пред­приятиях; введены в строй районные заводы для производства то­варного газообразного и жидкого кислорода, азота, аргона; освоено серийное производство новых мощных установок для получения технологического и технического кислорода, чистого азота и редких газов.

В 2009 году на Новолипецком металлургическом комбинате (НЛМК) введена в промышленную эксплуатацию воздухоразделительная установка с комплексным извлечением продуктов разделения воздуха немецкой фирмы Linde.

Новолипецкий металлургический комбинат занимает первое место в России, среди предприятий по производству стали и проката. Производственные мощности компании считаются одними из самых технологически оснащенных в стране. Компания специализируется на производстве листового проката широкого сортамента.

НЛМК расположен в центре европейской части России, городе Липецке, вблизи крупнейшего железно – рудного бассейна Европы – Курской магнитной аномалии. Комбинат находится в регионе с наиболее развитой в России транспортной сетью и имеет стратегически выгодное местоположение для потребителей. Компания имеет удобный доступ к экспортным рынкам, выходы к портам на Балтийском и Черном морях.

НЛМК – предприятие полного металлургического цикла. В состав производственных мощностей входят горно – обогатительное, агломерационное, коксохимическое производство, доменное производство, сталеплавильное производство, производство горячекатаного и холоднокатаного проката, проката с цинковым и полимерным покрытием. Компания имеет наиболее современную производственную базу в российской металлургии. Производство всей стали осуществляется кислородно - конвертерным способом с разливкой на машинах непрерывного литья заготовок

НЛМК производит 14% российской стали, 24% плоского проката. Компания является крупнейшим в Европе производителем электротехнических сталей. НЛМК крупнейший в России производитель товарных слябов и один из крупнейших производителей штрипсов (заготовки для производства труб).

Кислородный цех входит в состав Энергетического производства на ряду с Теплоэлектроцентралью (ТЭЦ), Центром электроснабжения (ЦЭлС), Газовым цехом, Теплосиловым цехом (ТСЦ), Цехом водоснабжения (ЦВС), Цехом технологической диспетчеризации (ЦТД), Энергоремонтным цехом (ЭнРЦ), Электроремонтным цехом (ЭлРЦ).

Новолипецкий металлургический комбинат является предприятием с полным металлургическим циклом, а это значит, что на промышленной площадке комбината располагаются все производства, необходимые для того, чтобы железная руда, пройдя все технологические этапы, превратилась в конечный продукт – холоднокатаный прокат.

Общая схема производства включает:

а) агломерационное производство;

б) коксохимическое производство;

в) доменное производство;

г) сталеплавильное производство;

д) прокатное производство.

Практически все перечисленные производственные процессы связаны с потреблением кислорода.


Структура Кислородного цеха ПАО «НЛМК»


В дореволюционное время наша страна располагала 21 импортной кислородной установкой общей производительностью 530 кислорода в час. Первая отечественная кислородная установка производительностью 100 м3/час была изготовлена в 1932 г. Московским автогенным заводом.
В тридцатых годах в России был освоен выпуск стационарных установок производительностью 30 м3/час, установок жидкого кислорода производительностью 250 л/час, автомобильных установок жидкого кислорода производительностью 7 л/час. а в предвоенные годы были спроектированы, изготовлены и введены в эксплуатацию первые крупные установки, позволившие получать с каждого агрегата по 5000 м3/час воздуха, обогащенного кислородом до 60%.
Мощность всех установок по Советскому Союзу, построенных в послевоенный период, к 1960 г. намечено довести до 460 тыс. м3/час. Реализация этой программы позволит нашей стране выйти на первое место в мире по объему и технике производства кислорода, а также по количеству кислорода, применяемого в металлургии.
Уместно отметить, что ФРГ производит 350 000 м3/час кислорода, а общая производительность кислородных станций США в 1952 г. оценивалась в 200-250 тыс. м3/час, включая 4 установки фирмы «Стесси Дрессер» мощностью по 29 тыс. м3/час каждая, которые в дальнейшем были законсервированы вследствие их неработоспособности. В настоящее время, по литературным данным, в США эксплуатируются агрегаты производительностью до 5000 м3/час.
В России успешно завершена работа по созданию новых эффективных типов кислородных установок и тем обеспечена возможность широкого промышленного применения кислорода в ведущих отраслях производства.
Советским ученым и инженерам принадлежит приоритет получения кислорода методом разделения составных частей воздуха - глубоким охлаждением; это направление является в настоящее время основным в создании крупных кислородных и азотных установок как у нас, так и за границей. В частности, все мощные станции, сооружаемые для интенсификации процессов в нашей черной и цветной металлургии, будут работать по этому методу, основанному на различной температуре кипения жидкого кислорода (-182,9°) и жидкого азота (-195,8°). Процесс получения кислорода состоит в получении жидкого воздуха сжатием атмосферного воздуха компрессорами, последующего его расширения с отдачей производимой при этом работы в детандерах, ректификации с разделением на кислород и азот, причем первый может быть выдан в виде газа или жидкости.
При обогащении воздуха кислородом считается нецелесообразным получение сравнительно чистого, дорогого кислорода в связи с неизбежным при высокой степени компрессии уменьшением производительности установки. Но получение кислорода чистотою ниже 90% также считается нецелесообразным, так как в этом случае значительно увеличиваются размеры и стоимость оборудования установок. Изменение стоимости кислорода с увеличением степени его чистоты ориентировочно характеризуется следующими данными:

В России создана кислородная установка БР-1 производительностью 12-18 тыс. м3/час кислорода. Такой агрегат смонтирован на Ново-Тульском металлургическом заводе и действует безотказно, заменяя в отдельные периоды шесть установок типа КТ-3600 и КТ-2400. Он расходует на 60% меньше энергии, чем агрегат американской фирмы «Стесси Дрессер», и на 30% меньше, чем агрегаты фирмы «Линде»; штат обслуживающего персонала БР-1 в 5 раз, а расход металла на 40% меньше по сравнению с лучшими заграничными установками.

Установки БР-1 и БР-3 создали надежную базу для широкого внедрения кислорода в различные отрасли народного хозяйства и явились основой для дальнейшего проектирования еще более мощных агрегатов производительностью 30-50 и даже 100 тыс. кислорода в час.
Тенденция разработки и освоения все более крупных установок по выработке кислорода обусловлена тем, что удельные (на 1 м3) капитальные затраты и себестоимость продукции резко понижаются с повышением производительности агрегата. Считается, что при увеличении производительности установки в 3 раза удельные капиталовложения сокращаются в 1,5 раза, а себестоимость продукта - кислорода, аргона - снижается примерно в 1,4 раза (рис. 2 и табл. 1).

Краткая характеристика установок для получения технологического кислорода, сооружаемых в России, приведена в табл. 2.
В тех случаях, когда потребность в техническом кислороде не велика и сооружать кислородную станцию нецелесообразно, он доставляется к месту потребления в баллонах, танках, железнодорожных цистернах или, наконец, по трубопроводу с соседних станций. Известно, например, что кислород применяется в настоящее время в Швеции для интенсификации металлургических процессов на 10 заводах, в то время как кислородная станция имеется только на заводе «Домнарвет» и на небольшом заводе, где производительность кислородной установки составляет всего лишь 315 м3/час, а остальные заводы пользуются кислородом со стороны, получая его по трубопроводам, в танках и баллонах. 3 США примерно 75% всего производимого в стране кислорода поставляется в жидком виде. Транспортные танки, установленные на автомашинах, вмещают 1200 и 6000 л жидкого кислорода, что соответствует 1000 и 5100 газообразного кислорода; потери кислорода в танках составляют 0,1-0,3% в час. Железнодорожные кислородные цистерны изготовляются емкостью 10, 13,5 и 32 г жидкого кислорода; потери кислорода из цистерн составляют 3-5% в сутки.

Жидкий кислород, поступающий в танках или цистернах, переводят в газообразное состояние в специально сооружаемых испарительных станциях, состоящих из стационарных танков, газификаторов и приемников газообразного кислорода (газгольдеры) или газодувок для подачи кислорода непосредственно в технологический агрегат. При использовании кислорода, поступающего к месту потребления в баллонах, для удобства работы целесообразно применять рампу, к которой можно подключать, в зависимости от потребного количества кислорода, от нескольких штук до нескольких сот баллонов.

Имя:*
E-Mail:
Комментарий:

Добавить

23.03.2019

Правильное обустройство освещение во многом определяет красоту придомовой территории. Осветительных приборов для установки на улице в продаже предлагается очень много....

22.03.2019

Одна из самых больших проблем в квартире – узкие темные коридоры. Как визуально расширить « темный тоннель» и сделать его уютнее?...

22.03.2019

Со временем гидроизоляция бассейнов может обнаружить неисправности из-за постоянных внутренних и внешних сил, воздействующих на него. Хотя эти трещины часто начинаются с...

22.03.2019

Для предотвращения разрушения несущих конструкций подвальных помещений, а также для устранения активных протеканий воды выполняется профессиональная гидроизоляция...

22.03.2019

Уход за приусадебным участком довольно хлопотное занятие. Но если не уделять ему должного внимания, газон быстро превратится в поле с сорняками....

22.03.2019

Респираторы являются надежной и простой защитой дыхательных органов от опасных газов, пыли и химических паров. Данные приспособления способны защитить дыхательные органы...

20.03.2019

Чтобы составить объективное заключение, касательно возможности осуществления намеченного строительного проекта и его безопасности в существующих геологических и...

20.03.2019

Наверняка большинство людей, проживающих на территории нашего государства, слышали о такой услуге, как приём металлолома в Москве, но далеко не все осознают, насколько...


Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислорода 20,93% и азота 78,03%, остальное аргон и другие инертные газы, углекислый газ и пр. Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении составляет –194,5 о С). Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13 о С) температур кипения жидких азота (–196 о С) и кислорода (–183 о С).

Воздух, засасываемый многоступенчатым компрессором, проходитсначала через воздушный фильтр, где очищается отпыли, затем проходит последовательно ступени компрессора. За каждой ступенью компрессора давление воздуха возрастает и доводится до 50-220 ат , в зависимости отсистемы установки и стадии производства. После каждой ступени компрессора воздух проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат–декарбонизатор, заполняемый водным раствором едкого натра. Сжатый воздух из компрессора проходит осущительную батарею из баллонов, заполненных кусковым едким натром, поглощающим влагу и остатки углекислоты. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так ка замерзающие при низких температурах вода и углекислота забивают трубки кислородного аппарата и приходится останавливать установку для оттаивания и продувки.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый кислородный аппарат, где происходит охлаждение и сжитжение воздуха и его ректификация на кислород и азот. Газообразный азот чистотой 96-98% обычно не используется и из теплообменника выпускается в атмосферу. Кислород направляется в газгольдер и подается для наполнения кислородных баллонов под дпвлением до 165 ат ; 1 м 3 кислорода при 760 мм рт. ст. (1 кгс/см 2 ) и 0 о С весит 1,43 кг , а при 20 о С – 1,31 кг ; 1 л жидкого кислорода весит 1,13 кг и, испаряясь, образует 0,79 м 3 мм рт. ст ; 1 кг жидкого кислорода занимает объем 0,885 л и, испаряясь, образует

0,70 м 3 газообразного кислорода при 0 о С и 760 мм рт. ст .

Наша промышленность изготавливает кислородные установки для газопламенной обработки металлов производительностью 17-275 м 3 /ч газообразного кислорода. По ГОСТу 5583-58 технический кислород для газопламенной обработки металлов выпускается трех сортов: высший сорт, с чистотой не ниже 99,5%; 1-й сорт,с чистотой не ниже 99,2%; 2-й сорт,с чистотой не ниже 98,5% кислорода по объему.