Параметры определяющие мощность реактора. Измерение ядерно-физических параметров реакторов

Мощность реактора. Диапазоны мощности

Наименование параметра Значение
Тема статьи: Мощность реактора. Диапазоны мощности
Рубрика (тематическая категория) Математика

Во время эксплуатации ядерного реактора должна обеспечиваться работоспособность активной зоны в течение кампании ядерного реактора, что обусловлено нахождением значений критериев теплотехнической надежности АЗ в допустимых проектных пределах. Работоспособность активной зоны практически обеспечивается надежностью ТВЭЛов - наиболее ответственных конструкционных узлов ЯР.

В течение всœей кампании работоспособность ТВЭЛов обеспечивается созданием таких условий, которые бы исключали эксплуатационные причины повреждения и разгерметизации ТВЭЛов и повышения активности теплоносителя выше установленной нормы. Во время эксплуатации ядерного реактора нельзя допускать перегрева ТВЭЛов из-за непредвиденного возрастания мощности ЯР, изменения распределœения энерговыделœения в активной зоне, ухудшения охлаждения ТВЭЛов, отклонения от норм химического состава теплоносителя. Для этого оператору крайне важно:

Строго поддерживать в пределах допустимой скорость изменения мощности и температуры при пуске, разогреве, на энергетическом уровне, при остановке и во время расхолаживания ЯР;

Соблюдать температурный режим активной зоны (допустимые температуры на входе и выходе ЯР, в ТК);

Ограничивать мощность при возникновении перекосов энерговыделœения, обусловленных непредвиденным расположением КР, ксеноновыми волнами и др.;

Не допускать разбаланса между энерговыделœением и теплосъемом при изменении циркуляции теплоносителя;

Обеспечивать нормальный режим расхолаживания после плановых н аварийных остановок ЯР.

Главное условие надежной работы активной зоны в течение кампании – поддержание полного баланса между:

а) мощностью, выделяющейся в топливе, которая создает тепловой поток q F с поверхности ТВЭЛов F ТВЭЛ:

q F =N p /F ТВЭЛ, Вт/м 2 ;

б) мощностью, переходящей от ТВЭЛов к теплоносителю

N p =a F ТВЭЛ (t об –t т);

в) мощностью, отводимой теплоносителœем от активной зоны

N p =G с p (t вых –t вх),

где a – коэффициент теплоотдачи от поверхности оболочки ТВЭЛа, имеющей температуру t об к теплоносителю, имеющему температуру t т; t вых, t вх – температура теплоносителя на выходе из реактора и на входе в реактор, G 1к – расход теплоносителя первого контура через реактор, с p – теплоемкость теплоносителя.

Отклонение N, t, G, P и других параметров первого и второго контуров от заданных для данного режима работы влечет за собой нарушение теплового баланса в активной зоне, что может привести к очень серьезным последствиям. Особенно опасны кризисы теплообмена первого и второго рода.

При больших мощностях на наиболее энергонапряженных участках ТК температура оболочки ТВЭЛов может достигать температуры насыщения теплоносителя при данном давлении и превышать ее. В этих местах: начинается поверхностное пузырьковое кипение при недогреве общего потока теплоносителя до кипения. Сегодня пузырьковое кипение допускается во многих ЯР, оно интенсифицирует теплосъем и не вызывает особых опасений, хотя на границах участка с пузырьковым кипением, будет наблюдаться неустойчивый режим, сопровождаемый колебаниями температуры поверхности ТВЭЛов и, следовательно, колебаниями термических напряжений.

В случае поверхностного кипения опасность представляет увеличение теплового потока (мощности), когда в недогретой до кипения воде скорость образования пузырьков на поверхности ТВЭЛа превысит скорость их удаления и образуется устойчивая паровая пленка, имеющая низкий коэффициент теплопередачи. Наступает так называемый кризис первого рода: тепловой поток достигает критического значения, при котором на поверхности ТВЭЛов образуется паровая пленка, (пленочное кипение), температура ТВЭЛа резко возрастает - он начинает плавиться. Чтобы не допустить пленочного кипения, крайне важно так организовать теплосъем, чтобы в самом напряженном ТВЭЛе существовал запас по критической тепловой нагрузке:

, (8.27)

где q кр – критический тепловой поток, Вт/м 2 ; k v – объёмный коэффициент неравномерности; – средний тепловой поток, ВТ/м 2 .

В активной зоне современных энергетических ЯР на быстрых нейтронах тепловые потоки с поверхности ТВЭЛов достигают 2,5×10 6 Вт/м 2 и выше, для тепловых ЯР они примерно в 2 раза меньше.

Кризис второго рода может возникнуть и при малых тепловых потоках, но при наличии объёмного кипения, что возможно, к примеру, в случае снижения давления в контуре, уменьшении расхода теплоносителя. При омывании ТВЭЛа пароводяной средой с большим паросодержанием теплоотдача от поверхности осуществляется через жидкую пристеночную пленку. В момент достижения определœенного (граничного) паросодержания жидкая пленка начинает высыхать, а температура поверхности ТВЭЛа расти, достигая недопустимых значений. Чтобы исключить кризис второго рода, крайне важно, прежде всœего, не допускать объёмного кипения теплоносителя и граничного паросодержания в активной зоне.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, основным фактором, приводящим к возникновению нарушений температурного режима активной зоны является величина тепловой мощности реактора и скорость ее изменения в переходных режимах. Вследствие этого во время эксплуатации должен быть организован непрерывный контроль за мощностью реактора.

Как известно, мощность реактора определяется энерговыделœением в его активной зоне. В свою очередь, как показано в гл.3, энерговыделœение зависит от количества делœений ядер топлива, а, следовательно, от плотности потока тепловых нейтронов, вызывающих это делœение. Количество выделяющегося тепла в единице объёма активной зоны описывается следующими выражением:

, (8.28)

где – средняя удельная мощность (энергонапряженность) активной зоны, ᴛ.ᴇ. мощность в единице объёма, кВТ/см 3 ;

– средняя плотность потока тепловых нейтронов, нейтр/см 2 с;

– макроскопическое эффективное поперечное сечение делœения 235 U, 1/см.

На основании соотношения (5.28) мощность реактора определяется как

, (8.29)

где V аз – объём активной зоны, см 3 .

В выражении (8.29) числитель определяет количество делœений в активной зоне реактора, происходящих в единицу времени, а знаменатель – количество делœений ядер топлива в секунду, соответствующее мощности 1 кВт. Напомним, что поток тепловых нейтронов и энерговыделœение распределяются в активной зоне неравномерно, что ставит рабочие каналы в неравные теплотехнические условия, снижая тем самым возможности реактора.

Поскольку N p ~Ф (кВт),то измерение плотности потока нейтронов в реакторе используют для оперативного контроля так называемой нейтронной мощности реактора и функционирования аварийной защиты реактора.

Важной особенностью ядерного реактора является то, что изменение плотности нейтронов в нем идет практически без запаздывания за изменением реактивности. Этим определяются требования к системе измерений плотности нейтронов и периода реактора - она должна быть практически безынерционна. В качестве датчиков системы измерения, удовлетворяющих указанным требованиям, используются нейтронные детекторы. Οʜᴎ одновременно служат датчиками для определœения плотности нейтронов и периода реактора, связанного с реактивностью обратной пропорциональностью. Мгновенное значение периода T и скорость изменения плотности нейтронов dn/dt связаны зависимостью

, (8.30)

где п - плотность нейтронов, а Т - период реактора.

При эксплуатации реактора измеряются как средняя плотность нейтронов по всœей активной зоне, так и локальные значения. При измерении средней плотности нейтронов детекторы выносятся за пределы активной зоны, а для определœения локальных значений они размещаются непосредственно в активной зоне. Связь между сигналом нейтронных детекторов и уровнем плотности нейтронов определяется предварительной градуировкой.

Учитывая зависимость отплотности потока нейтронов используются различные способы градуировки. В области низких значений плотности нейтронов, при так называемых нулевых мощностях, когда подогрев теплоносителя практически, отсутствует широко используется способ, основанный на активации металлических фольᴦ. Он состоит в том, что в активную зону вводятся тонкие металлические фольги или проволочки, которые облучаются потоком нейтронов строго определœенное время. После их извлечения измеряется наведенная активность, пропорциональная интегральному потоку нейтронов в том месте, где размещалась фольга. Связь активности фольги с потоком нейтронов определяется сравнением со специальным калибровочным источником нейтронов.

Для градуировки нейтронных детекторов в рабочем (энергетическом) диапазоне мощностей производят определœение тепловой мощности реактора методом теплового баланса.

а) по параметрам первого контура

, (8.31)

б) по параметрам второго контура

, (8.32)

в) по расходу пара из парогенераторов

, (8.33)

где G I – расход теплоносителя первого контура, кг/с; D ПВ, D ПГ –расходы соответственно питательной воды второго контура и пара из парогенераторов, кг/с; h вых, h вх – энтальпия теплоносителя I контура на выходе из реактора и на входе в реактор, кДж/кг; h пар, h ПВ – энтальпия пара и питательной воды второго контура, кДж/кг;

При составлении уравнений теплового баланса для конкретного ЯР крайне важно также учитывать всœе входящие и выходящие из контура дополнительные потоки (расходы продувки, подпитки, утечек из контура и т.д.).

Мощность реактора. Диапазоны мощности - понятие и виды. Классификация и особенности категории "Мощность реактора. Диапазоны мощности" 2017, 2018.

Ещё раз напомним, что всё сказанное о технике управления реактором строго справедливо только для “холодного” реактора. С некоторыми оговорками закономерности переходных процессов в их “чистом” виде можно наблюдать и в реальных реакторах АЭС на относительно малых уровнях мощности (в совсем нехарактерных для энергетических реакторов режимах).

В реальных энергетических реакторах, отличающихся от “холодного” реактора наличием температурных эффектов реактивности, переходные процессы изменения мощности реактора при сообщении реактивности той или иной величины и знака имеют более сложный характер.

Анализу переходных процессов изменения тепловой мощности реактора в энергетических режимах работы реактора будет далее посвящена отдельная тема.

Сейчас же хотелось бы сосредоточить внимание на том, что “холодный” реактор как объект регулирования является объектом неустойчивым: любое, даже самое малозаметное, возмущение по реактивности положительного или отрицательного знака заставляет такой реактор либо непрерывно увеличивать его мощность, либо неуклонно снижать её до полной остановки реактора. И если бы реальный энергетический реактор был лишён уже известного нам отрицательного температурного коэффициента реактивности, он был бы именно таким неустойчивым реактором. Вы сразу можете взять на заметку после сказанного, что реальный энергетический реактор на номинальной (100%-ной) мощности всегда более устойчив, чем на меньших уровнях мощности. Это - однозначно и должно быть понятно: чем меньше уровень тепловой мощности реактора, тем ближе по свойствам этот реактор к “холодному” (а, значит, неустойчивому) реактору. И работа оператора реакторной установки в таком случае была бы нудной пыткой, приковывающей к себе всё его внимание и заставляющей постоянно балансировать органами управления и думать только о том, как бы не заглушить реактор или, того хуже, пустить его “вразнос”.

В связи с этим для конструкторов реактора есть, по крайней мере, две проблемы:

Во-первых, необходимость спроектировать реактор устойчивым в любых проектных режимах его эксплуатации в любой момент кампании, причём, устойчивым на базе внутренних свойств самого реактора, опираясь на присущие самому реактору внутренние отрицательные обратные связи, обеспечивающие процесс самоподдержания мощности реактора или, что то же, - нулевой реактивности реактора в условиях реального возникновения возмущений по реактивности;

Во-вторых, необходимость предусмотреть систему автоматического регулирования мощности реактора, освобождающую оператора от тягостных и многократно повторяющихся действий по поддержанию мощности реактора на требуемом уровне на тот случай, если в какой-то момент кампании эффективности внутренних отрицательных обратных связей окажется недостаточно для стабилизации мощности реактора.

Система автоматического регулирования (АР) обычно предусматривает одну или две группы специально выделенных для этой цели подвижных стержней-поглотителей, попеременно работающих в активной зоне. Каждый канал АР строится по принципу измерения величины разбаланса между фактическим и заданным уровнями мощности реактора, усиления сигнала этого разбаланса и направления его для воздействия на сервопривод группы АР таким образом, чтобы перемещением группы по высоте активной зоны свести разбаланс к нулю.

Принципиальная блок-схема канала АР приведена на рис.12.7.

Рис. 12.7. Принципиальная схема построения канала автоматического поддержания мощности реактора.

Электрический сигнал в виде тока от детектора-измерителя нейтронной мощности реактора (группы ионизационных камер) поступает на вход усилителя канала АР (на схеме - УАР), где усиливается до нужных для операционного воздействия величин. В задающем устройстве (ЗУ) формируется токовый сигнал, пропорциональный задаваемой мощности реактора. С выходов УАР и ЗУ токовые сигналы подаются на вход суммирующего устройства (СУ), с выхода которого сигнал, пропорциональный разбалансу фактической и заданной мощностей реактора, подаётся на управляющую обмотку синхронного реверсивного электродвигателя, вращение которого с помощью механической передачи (редуктора и реечного механизма) преобразуется в поступательное перемещение группы управляющих стержней АР.
Направление движения стержней АР определяется полярностью сигнала разбаланса: если разница фактической и заданной мощности реактора ΔN р = N рфакт - N рзад положительна (то есть фактическая мощность превышает заданное её значение), то электродвигатель перемещает стержни вниз, сообщая реактору, тем самым, отрицательную реактивность, заставляющую реактор снижать уровень мощности до тех пор, пока он не уменьшится до заданной величины, результируя нулевую величину разбаланса Δ N р, при которой перемещение стержней прекратится. Если первоначальный разбаланс Δ N р оказывается величиной отрицательной, то есть фактическая мощность реактора ниже заданного уровня, привод перемещает стержни вверх, сообщая реактору положительную реактивность, приводящую к подъёму мощности реактора до заданной, после чего движение стержней останавливается.
По такому принципу строятся все токовые автоматические регуляторы мощности реакторов.

Мощность реактора определяется энерговыделением в единицу вре­мени в его активной зоне. В свою очередь, скорость энерговыделения зависит от числа делений ядер топлива и, следовательно, плотности потока тепловых нейтронов, вызывающих эти деления.

Мощность реактора связана со средней плотностью потока тепловых нейтронов соотношением:

где N - мощность реактора, кВт;

Ф т - средняя плотность потока тепло­вых нейтронов в топливе, н/(см 2 -с);

a f - эффективное сечение деления 2 3 5 U, см 2 ;

N 5 - концентрация ядер 2 35 U, см -1 ;

V - объем активной зоны, см 3 .

Кампания реактора - это время, в течение которого активная зона может работать на номинальной мощности с одной и той же загрузкой. Определяется кампания запасом реактивности и кончается при полном удалении из активной зоны борной кислоты, когда цепная реакция пре­кращается.

Способность реактора выработать за время кампании определенное количество энергии характеризует его энергоресурс (энергозапас) - Q K . Использованную часть энергоресурса называ­ют энерговыработкой реактора.

Если реактор в течение определенного времени работал на различных уровнях мощности, то его энерговыра­ботка Q выр равна сумме энерговыработок на каждом уровне мощности.

Кампанию и энергоресурс реактора иногда выражают в эффективных сутках, т. е. в сутках работы на номинальной мощности. Одни эффек­тивные сутки для ВВЭР-1000 соответствуют энерговыработке 3000*24 = 72 ГВт*сут. Для перевода энерговыработки в эффективные сутки сле­дует использовать соотношение:

Количество загруженного делящегося топлива в ядерном реакторе при его работе непрерывно уменьшается за счет деления ядер 235 U и радиационного захвата ими нейтронов. Этот процесс называют выго­ранием топлива .

Выгорание связано с энерговыработкой линейной зави­симостью:

m выг 5 = 1,23 N t

где т выг - масса выгоревшего 235 U, г; 1,23 - расход топлива в грам­мах, соответствующий энерговыработке в 1 МВт сут, с учетом потерь энергии, радиационного захвата нейтронов и деления 235 U; N - мощность реактора, МВт; t , - время работы реактора на мощности N , сут.

Основная часть расхода топлива определяется количеством разделив­шихся ядер 235 U за определенное время работы реактора на мощности. Масса разделившихся ядер в граммах за время t работы реактора на мощности N , т.е. при энерговыработке Q = Nt , равна

m 5 дел = 1,05 Nt = 1,05 Q ,

где 1,05 - масса 235 U в граммах, разделившегося при энерговыработ­ке 1 МВт сут.

В связи с выгоранием 235 U уменьшается к эф, а следовательно, реак­тивность и запас реактивности. Изменение запаса реактивности за счет выгорания - длительный процесс. Он зависит только от энерговыработки реактора.

Воспроизводство и отравление

При работе ядерного реактора постепенно исчезают ядра загружен­ного топлива и появляются новые. Среди них делящиеся ядра 239 Ри , 241 Ри . Процесс накопления последних называется воспроизводством делящегося материала.

При делении топлива образуется около 200 нук­лидов - продуктов (осколков) деления.

Некото­рые ядра, образующиеся при делении урана и плутония, имеют большие сечения поглощения тепловых нейтронов.

IIoглощение нейтронов теми из них, сечение поглощения которых очень велико, а концентрация которых сравнительно быстро достигает равновес­ной, называется отравлением реактора .

Основная масса образующихся ядер, называемая шлаками, имеет сечение поглощения тепловых нейтронов не больше, чем сечение деле­ния топлива.

В процессе накопления шлаков (при работе реактора) запас реактивности уменьшается.

Это уменьшение запаса реактивности вследствие поглощения тепловых нейтронов шлаками называется шла­кованием реактора .

Процесс шлакования так же, как и выгорания, мед­ленный, связанный только с кампанией (энергонаработкой) реактора.

При эксплуатации реактора разделить процессы выгорания и шлакова­ния невозможно.

температура теплоносителя на входе и выходе по каналам и в целом;

давление теплоносителя в характерных точках;

расход теплоносителя по каналам или в целом;

тепловая мощность реактора;

энерговыделение по объему активной зоны;

температура оболочек твэлов и других материалов;

реактивность реактора;

положение стержней регулирования и компенсации;

контроль герметичности корпуса;

герметичности оболочек твэла;

многообразный дозиметричес­кий контроль…

Специфика ядерных реакторов-оперативный контроль его тепловой мощности.

Он осуществляется: измерения по тепловому балансу ; измерение по нейтронным детекторам .

Измерение по тепловому балансу весьма инерционно, а при низких уровнях мощности оно не обеспечивает необходимой точности либо вообще невозможно, когда разность температур теплоносителя ничтожно мала. Тепловая мощность реактора практически пропорциональна плотности потока нейтронов.

Поэтому для оперативного контроля средней тепловой мощ­ности используются нейтронные детекторы, которые обладают достаточной чувствительностью и являются практически безынерционными.

Нейтронные детекторы, предназначенные для оперативного контроля средней плотности потока нейтронов, размещают обычно вне активной зоны и даже за корпусом реактора.

При таком размещении в меньшей мере сказываются локальные изменения плотности потока нейтронов в активной зоне в связи, например, с перемещением поглощающих стержней.

Вокруг реактора устанавливают большое количест­во нейтронных детекторов, что позволяет при их параллель­ном подключении свести к минимуму локальные перекосы распределения нейтронов в активной зоне.

Для контроля нейтронного потока (согласно требованиям ПБЯ) реактор должен быть оснащен каналами контроля таким образом, чтобы во всем диапазоне измерения плотности нейтронного потока в активной зоне от 10 -7 % до 120 % номинального контроль осуществлялся как минимум:

а) тремя независимыми между собой каналами измерения уровня плотности нейтронного потока с показывающими приборами;

б) тремя независимыми между собой каналами измерения скорости изменения плотности нейтронного потока.

По крайней мере два из трех каналов контроля плотности нейтронного потока должны быть оснащены записывающими устройствами.

7 Системы регулирования ядерным реактором.

Все приборы, оборудование и aппаратура контроля и управления реакторной установки входят в автоматизированную систему управления технологическим процессом.

Согласно правилам ядерной безопасности реакторных установок все системы, с помощью которых осуществляется контроль и управление реакторными установками, разделяются на системы контроля и управления и систему управления и защиты (СУЗ) .

Системы (элементы) контроля и управления

реакторной установки предназначены для контроля и управления системами нормальной эксплуатации реакторной установки и системами безопасности.

Они должны обеспечивать контроль технического состояния и безопасное управление установкой при нормальной эксплуатации, нарушениях нормальной эксплуатации и проектных авариях.

Должна быть предусмотрена также диагностика систем контроля и управления реакторной установки.

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -