1 закупки сведения закупочной деятельности. Законодательная база российской федерации

Один из главных компонентов тщательно продуманного исследования – определение выборки и что такое репрезентативная выборка. Это как в примере с тортом. Ведь не обязательно съедать весь десерт, чтобы понять его вкус? Достаточно небольшой части.

Так вот, торт – это генеральная совокупность (то есть все респонденты, которые подходят для опроса). Она может быть выражена территориально, например, лишь жители Московской области. Гендерно – только женщины. Или иметь ограничения по возрасту – россияне старше 65 лет.

Высчитать генеральную совокупность сложно: нужно иметь данные переписи населения или предварительных оценочных опросов. Поэтому обычно генеральную совокупность «прикидывают», а из полученного числа высчитывают выборочную совокупность или выборку .

Что такое репрезентативная выборка?

Выборка – это чётко определенное количество респондентов. Её структура должна максимально совпадать со структурой генеральной совокупности по основным характеристикам отбора.

Например, если потенциальные респонденты – всё население России, где 54% — это женщины, а 46% — мужчины, то выборка должна содержать точно такое же процентное соотношение. Если совпадение параметров происходит, то выборку можно назвать репрезентативной. Это значит, что неточности и ошибки в исследовании сводятся к минимуму.

Объем выборки определяется с учётом требований точности и экономичности. Эти требования обратно пропорциональны друг другу: чем больше объем выборки, тем точнее результат. При этом чем выше точность, тем соответственно больше затрат необходимо на проведение исследования. И наоборот, чем меньше выборка, тем меньше на неё затрат, тем менее точно и более случайно воспроизводятся свойства генеральной совокупности.

Поэтому для вычисления объема выбора социологами была изобретена формула и создан специальный калькулятор :

Доверительная вероятность и доверительная погрешность

Что означают термины «доверительная вероятность » и «доверительная погрешность »? Доверительная вероятность – это показатель точности измерений. А доверительная погрешность – это возможная ошибка результатов исследования. К примеру, при генеральной совокупности более 500 00 человек (допустим, проживающие в Новокузнецке) выборка будет равняться 384 человека при доверительной вероятности 95% и погрешности 5% ИЛИ (при доверительном интервале 95±5%).

Что из этого следует? При проведении 100 исследований с такой выборкой (384 человека) в 95 процентов случаев получаемые ответы по законам статистики будут находиться в пределах ±5% от исходного. И мы получим репрезентативную выборку с минимальной вероятностью статистической ошибки.

После того, как подсчет объема выборки выполнен, можно посмотреть есть ли достаточное число респондентов в демо-версии Панели Анкетолога . А как провести панельный опрос можно подробнее узнать .

Исследование обычно начинается с некоторого предположения, требую-щего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой сово-купности объектов.

Для проверки подобных предположений на фактах необходимо измерить соответствующие свойства у их носителей. Но невозможно измерить тревож-ность у всех женщин и мужчин, как невозможно измерить агрессивность у всех подростков. Поэтому при проведении исследования ограничиваются лишь относительно небольшой группой представителей соответствующих совокупностей людей.

Генеральная совокупность — это все множество объектов, в отношении ко-торого формулируется исследовательская гипотеза.

Например, все мужчины; или все женщины; или все жители какого-либо города. Генеральные совокупности, в отно-шении которых исследователь собирается сделать выводы по результатам ис-следования, могут быть по численности и более скромными, например, все первоклассники данной школы.

Таким образом, генеральная совокупность — это хотя и не бесконечное по численности, но, как правило, недоступное для сплошного исследования мно-жество потенциальных испытуемых.

Выборка или выборочная совокупность — это ограниченная по численности группа объектов (в психоло-гии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выбор-ке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

Таким образом, после того, как сформулирована гипотеза и определены соответствующие генеральные совокупности, перед исследователем возни-кает проблема организации выборки. Выборка должна быть такой, чтобы была обоснована генерализация выводов выборочного исследования — обобщение, распространение их на генеральную совокупность. Основные критерии обо-снованности выводов исследования это репрезентативность выборки и ста-тистическая достоверность (эмпирических) результатов.

Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно пол-но — с точки зрения их изменчивости в генеральной совокупности.

Конечно, полное представление об изучаемом явлении, во всем его диапа-зоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограни-чена выборка. И именно репрезентативность выборки является основным кри-терием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для ис-следователя репрезентативность выборки (Эти приемы изучаются в курсе «Экспериментальная психология»).


Первый и основной прием — это простой случайный (рандомизированный) отбор. Он предполагает обеспечение таких условий, чтобы каждый член генеральной совокупности имел равные с другими шансы попасть в выборку. Слу-чайный отбор обеспечивает возможность попадания в выборку самых разных представителей генеральной совокупности. При этом принимаются специ-альные меры, исключающие появление какой-либо закономерности при отборе. И это позволяет надеяться на то, что в конечном итоге в выборке изу-чаемое свойство будет представлено если и не во всем, то в максимально воз-можном его многообразии.

Второй способ обеспечения репрезентативности — это стратифицирован-ный случайный отбор, или отбор по свойствам генеральной совокупности. Он предполагает предварительное определение тех качеств, которые могут вли-ять на изменчивость изучаемого свойства (это может быть пол, уровень дохо-да или образования и т. д.). Затем определяется процентное соотношение чис-ленности различающихся по этих качествам групп (страт) в генеральной совокупности и обеспечивается идентичное процентное соотношение соот-ветствующих групп в выборке. Далее в каждую подгруппу выборки испытуе-мые подбираются по принципу простого случайного отбора.

Статистическая достоверность , или статистическая значимость, результа-тов исследования определяется при помощи методов статистического выво-да.

Застрахованы ли мы от принятия ошибок при принятии решений, при тех или иных выводах из результатов исследования? Конечно, нет. Ведь наши решения опираются на результаты исследования выборочной совокупности, а также на уровень наших психологических знаний. Полностью мы не застрахованы от ошибок. В статистике такие ошибки считаются допустимыми, если они имеют место не чаще чем в одном случае из 1000 (вероятность ошибки α=0,001 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,999); в одном случае из 100 (вероятность ошибки α=0,01 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,99) или в пяти случаях из 100 (вероятность ошибки α=0,05 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,95). Именно на двух последних уровнях и принято принимать решения в психологии.

Иногда, говоря о статистической достоверности, используют понятие «уровень значимости» (обозначается как α). Численные значения р и α дополняют друг друга до 1,000 — полный набор событий: либо мы сделали правильный вывод, либо мы ошиблись. Эти уровни не рассчитываются, они заданы. Уровень значимости можно понимать как некую «красную» линию», пересечение которой позволит говорить о данном событии как о неслучайном. В каждом грамотном научном отчете или публикации сделанные выводы должны сопровождаться указанием значений р или α, при которых сделаны выводы.

Методы статистического вывода подробно рассматриваются в курсе «Математической статистики». Сейчас лишь отметим, что они предъявляют определенные требования к численности, или объему выборки.

К сожалению, строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Более того, ответ на вопрос о не-обходимой и достаточной ее численности исследователь обычно получает слишком поздно — только после анализа данных уже обследованной выбор-ки. Тем не менее, можно сформулировать наиболее общие рекомендации:

1. Наибольший объем выборки необходим при разработке диагностичес-кой методики — от 200 до 1000-2500 человек.

2. Если необходимо сравнивать 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой.

3. Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30-35 человек.

4. Чем больше изменчивость изучаемого свойства , тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например, по полу, возрасту и т. д. При этом, естественно, уменьшаются возможности генерализации выводов.

Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различ-ных соотношениях — в зависимости от процедуры их организации. Независи-мые выборки характеризуются тем, что вероятность отбора любого испытуе-мого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.

В общем случае зависимые выборки предполагают попарный подбор ис-пытуемых в сравниваемые выборки, а независимые выборки — независимый отбор испытуемых.

Следует отметить, что случаи «частично зависимых» (или «частично неза-висимых») выборок недопустимы: это непредсказуемым образом нарушает их репрезентативность.

В заключение отметим, что можно выделить две парадигмы психологи-ческого исследования.

Так называемая R-методология предполагает изучение изменчивости некоторого свойства (психологического) под влиянием неко-торого воздействия, фактора либо другого свойства. Выборкой является мно-жество испытуемых.

Другой подход, Q-методология, предполагает исследо-вание изменчивости субъекта (единичного) под влиянием различных стимулов (условий, ситуаций и т. д.). Ей соответствует ситуация, когда выборкой явля-ется множество стимулов.

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях (n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.

В зависимости от методики формирования выборочной совокупности различают следующие основные виды выборки:

собственно случайную;

механическую;

типическую (стратифицированную, районированную);

серийную (гнездовую);

комбинированную;

многоступенчатую;

многофазную;

взаимопроникающую.

Собственно случайная выгборка формируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения собственно случайной выборки генеральная совокупность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном порядке отбирается достаточное число единиц.

Случайный порядок подобен жеребьевке. На практике он чаще всего применяется при использовании специальных таблиц случайных чисел. Если, например, из совокупности, содержащей 1587 единиц, следует отобрать 40 единиц, то из таблицы отбирают 40 четырехзначных чисел, которые меньше 1587.

В том случае, когда собственно случайная выборка организуется как повторная, расчет стандартной ошибки производится в соответствии с формулой (6.1). При бесповторном способе отбора формула для расчета стандартной ошибки будет:


где 1 – n / N – доля единиц генеральной совокупности, не попавших в выборку. Так как эта доля всегда меньше единицы, то ошибка при бесповторном отборе при прочих равных условиях всегда меньше, чем при повторном. Бесповторный отбор организовать легче, чем повторный, и он применяется намного чаще. Однако величину стандартной ошибки при бесповторном отборе можно определять по более простой формуле (5.1). Такая замена возможна, если доля единиц генеральной совокупности, не попавших в выборку, большая и, следовательно, величина близка к единице.

Формировать выборку в строгом соответствии с правилами случайного отбора практически очень сложно, а иногда невозможно, так как при использовании таблиц случайных чисел необходимо пронумеровать все единицы генеральной совокупности. Довольно часто генеральная совокупность такая большая, что провести подобную предварительную работу чрезвычайно сложно и нецелесообразно, поэтому на практике применяют другие виды выборок, каждая из которых не является строго случайной. Однако организуются они так, чтобы было обеспечено максимальное приближение к условиям случайного отбора.

При чисто механической выборке вся генеральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, составленного в каком-то нейтральном по отношению к изучаемому признаку порядке, например по алфавиту. Затем список единиц отбора разбивается на столько равных частей, сколько необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отбирается одна единица. Этот вид выборки не всегда может обеспечить случайный характер отбора, и полученная выборка может оказаться смещенной. Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь элемент неслучайного характера. Во-вторых, отбор из каждой части генеральной совокупности при неправильном установлении начала отсчета может также привести к ошибке смещения. Однако практически легче организовать механическую выборку, чем собственно случайную, и при проведении выборочных обследований чаще всего пользуются этим видом выборки. Стандартную ошибку при механической выборке определяют по формуле собственно случайной бесповторной выборки (6.2).

Типическая (районированная, стратифицированная) выборка преследует две цели:

обеспечить представительство в выборке соответствующих типических групп генеральной совокупности по интересующим исследователя признакам;

увеличить точность результатов выборочного обследования.

При типической выборке до начала ее формирования генеральная совокупность единиц разбивается на типические группы. При этом очень важным моментом является правильный выбор группировочного признака. Выделенные типические группы могут содержать одинаковое или различное число единиц отбора. В первом случае выборочная совокупность формируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности. Если выборка формируется с равной долей отбора, по существу она равносильна ряду собственно случайных выборок из меньших генеральных совокупностей, каждая из которых и есть типическая группа. Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При типической выборке, как с равной, так и неравной долей отбора, удается устранить влияние межгрупповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каждой из типических групп. Стандартная ошибка выборки будет зависеть не от величины общей дисперсии?2, а от величины средней из групповых дисперсий?i2 . Поскольку средняя из групповых дисперсий всегда меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической выборки будет меньше стандартной ошибки собственно случайной выборки.

При определении стандартных ошибок типической выборки применяются следующие формулы:

При повторном способе отбора

При бесповторном способе отбора:

– средняя из групповых дисперсий в выборочной совокупности.

Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подлежащие обследованию, а группы единиц (серии, гнезда). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практически организовать и провести легче, чем отбор отдельных единиц. Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий и, во-вторых, не устраняется влияние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта вариация значительна, она приведет к увеличению случайной ошибки репрезентативности. При выборе вида выборки исследователю необходимо учитывать это обстоятельство. Стандартная ошибка серийной выборки определяется по формулам:

При повторном способе отбора -


где?– межсерийная дисперсия выборочной совокупности; r – число отобранных серий;

При бесповторном способе отбора -


где R – число серий в генеральной совокупности.

В практике те или иные способы и виды выборок применяются в зависимости от цели и задач выборочных обследований, а также возможностей их организации и проведения. Чаще всего применяется комбинирование способов отбора и видов выборки. Такие выборки получили название комбинированные. Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типической и механической, серийной и собственно случайной и т. д. К комбинированной выборке прибегают для обеспечения наибольшей репрезентативности с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.

При комбинированной выборке величина стандартной ошибки выборки состоит из ошибок на каждой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле


где?1 и?2 – стандартные ошибки соответственно механической и типической выборок.

Особенность многоступенчатой выгборки состоит в том, что выборочная совокупность формируется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного способа и вида отбора отбираются единицы первой ступени. На второй ступени из каждой единицы первой ступени, попавшей в выборку, отбираются единицы второй ступени и т. д. Число ступеней может быть и больше двух. На последней ступени формируется выборочная совокупность, единицы которой подлежат обследованию. Так, например, для выборочного обследования бюджетов домашних хозяйств на первой ступени отбираются территориальные субъекты страны, на второй – районы в отобранных регионах, на третьей – в каждом муниципальном образовании отбираются предприятия или организации и, наконец, на четвертой ступени – в отобранных предприятиях отбираются семьи.

Таким образом, выборочная совокупность формируется на последней ступени. Многоступенчатая выборка более гибкая, чем другие виды, хотя в общем она дает менее точные результаты, чем выборка того же объема, но сформированная в одну ступень. Однако при этом она имеет одно важное преимущество, которое заключается в том, что основу выборки при многоступенчатом отборе нужно строить на каждой из ступеней только для тех единиц, которые попали в выборку, а это очень важно, так как нередко готовой основы выборки нет.

Стандартную ошибку выборки при многоступенчатом отборе при группах разных объемов определяют по формуле


где?1, ?2, ?3, ... – стандартные ошибки на разных ступенях;

n1, n2 , n3, .. . – численность выборок на соответствующих ступенях отбора.

В том случае, если группы неодинаковы по объему, то теоретически этой формулой пользоваться нельзя. Но если общая доля отбора на всех ступенях постоянна, то практически расчет по этой формуле не приведет к искажению величины ошибки.

Сущность многофазной выгборки состоит в том, что на основе первоначально сформированной выборочной совокупности образуют подвыборку, из этой подвыборки – следующую подвыборку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т. д. Многофазную выборку целесообразно применять в случаях, если:

для изучения различных признаков требуется неодинаковый объем выборки;

колеблемость изучаемых признаков неодинакова и требуемая точность различна;

в отношении всех единиц первоначальной выборочной совокупности (первая фаза) необходимо собрать менее подробные сведения, а в отношении единиц каждой последующей фазы – более подробные.

Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фазах, информацией второй фазы – как дополнительной информацией на следующих фазах и т. д. Такое использование сведений повышает точность результатов выборочного обследования.

При организации многофазной выборки можно применять сочетание различных способов и видов отбора (типическую выборку с механической и т. д.). Многофазный отбор можно сочетать с многоступенчатым. На каждой ступени выборка может быть многофазной.

Стандартная ошибка при многофазной выборке рассчитывается на каждой фазе в отдельности в соответствии с формулами того способа отбора и вида выборки, при помощи которых формировалась ее выборочная совокупность.

Взаимопроникающие выгборки – это две или более независимые выборки из одной и той же генеральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за короткий срок получить предварительные итоги выборочных обследований. Взаимопроникающие выборки эффективны для оценки результатов обследования. Если в независимых выборках результаты одинаковы, то это свидетельствует о надежности данных выборочного обследования. Взаимопроникающие выборки иногда можно применять для проверки работы различных исследователей, поручив каждому из них провести обследование разных выборок.

Стандартная ошибка при взаимопроникающих выборках определяется по той же формуле, что и типическая пропорциональная выборка (5.3). Взаимопроникающие выборки по сравнению с другими видами требуют больших трудовых затрат и денежных расходов, поэтому исследователь должен учитывать это обстоятельство при проектировании выборочного обследования.

Предельные ошибки при различных способах отбора и видах выборки определяются по формуле? = t?, где? – соответствующая стандартная ошибка.

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.