Руководство по электродуговой сварке для начинающих. Как научиться варить сваркой — пособие для новичков

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Методика составления и решения прикладных задач теории обыкновенных дифференциальных уравнений

Составление дифференциального уравнения по условию за­дачи (механической, физической, химической или технической) состоит в определении математической зависимости между пе­ременными величинами и их приращениями.

В ряде случаев дифференциальное уравнение получается без рассмотрения приращений - за счет их предварительного учета. Например, представляя скорость выражением , мы не привлекаем приращений ∆s и ∆t, хотя они фактически учтены в силу того, что

.

Ускорение в какой-нибудь момент времени t выражается зависимостью:

.

При составлении дифференциальных уравнений приращения сразу же заменяются соответствующими дифференциалами. Изучение любого процесса сводится:

1) к определению его отдельных моментов;

2) к установлению общего закона его хода.

Отдельный момент процесса (т. н. элементарный процесс) выражается уравнением, связывающим переменные величины процесса с их дифференциалами или производными - диффе­ренциальным уравнением; закон общего хода процесса выра­жается уравнением, связывающим переменные величины про­цесса, но уже без дифференциалов этих величии.

Исчерпывающих правил для составления дифференциальных уравнений нет. В большинстве случаев методика решения техни­ческих задач с применением теории обыкновенных дифферен­циальных уравнений сводится к следующему:

1.Подробный разбор условий задачи и составление чертежа, поясняющего ее суть.

2.Составление дифференциального уравнения рассматривае­мого процесса.

3.Интегрирование составленного дифференциального уравне­ния и определение общего решения этого уравнения.

4.Определение частного решения задачи на основании дан­ных начальных условий.

5.Определение, по мере необходимости, вспомогательных пара­
метров (например, коэффициента пропорциональности и др.),
используя для этой цели дополнительные условия задачи.

6. Вывод общего закона рассматриваемого процесса и число­
вое определение искомых величии.

7. Анализ ответа и проверка исходного положения задачи.
Некоторые из этих рекомендаций в зависимости от характера
задачи могут отсутствовать.

Как и при составлении алгебраических уравнений, при реше­нии прикладных задач по дифференциальным уравнениям многое зависит от навыков, приобретаемых упражнением. Однако здесь еще в большей степени требуется изобретательность и глубокое понимание сути изучаемых процессов.

Рассмотрим процесс решения следующих задач:

Задача 3.1.

Температура вынутого из печи хлеба в течение 20 мин. падает от 100 0 до 60 0 (рис. 3.1). Температура воздуха равна 25 0 . Через сколько времени от момента начала охлаждения температура хлеба понизится до 30 0 ?

Решение:

В силу закона Ньютона скорость охлаждения тела пропорциональна разности температур тела и окружающей среды. Это – процесс неравномерный. С изменением разности температур в течение процесса меняется также и скорость охлаждения тела. Дифференциальное уравнение охлаждения хлеба будет:

где Т – температура хлеба;

t – температура окружающего воздуха (в нашем случае 25 0);

k – коэффициент пропорциональности;

Скорость охлаждения хлеба.

Пусть - время охлаждения.

Тогда, разделяя переменные, получим:

или для условий данной задачи:

Виду того, что

интегрируя, получаем:

Потенцируя обе части последнего равенства, имеем:

то окончательно

Произвольную постоянную С определяем, исходя из начального условия: при мин, Т=100 о.

или С=75.

Величину определяем, исходя из данного дополнительного условия: при мин, Т=60 о.

Получаем:

и .

Таким образом, уравнение охлаждения хлеба при условиях нашей задачи примет вид:

. (2)

Из уравнения (2) легко определяем искомое время при температуре хлеба Т=30 о:

Или.

Окончательно находим:

мин.

Итак, после 1 часа 11 мин. Хлеб охлаждается до температуры 30 о С.

Задача 3.2. Трубопровод тепловой магистрали (диаметр 20 см) защищен изоляцией толщиной 10 см; величина коэффициента теплопроводности k=1,00017. Температура трубы 160о; температура внешнего покрова 30о (рис.8). Найти распределение температуры внутри изоляции, а также количество теплоты, отдаваемого одним погонным метром трубы.

Решение. Если тело находится в стационарном тепловом состоянии и температура Т в каждой его точке есть функция только одной координаты х, то согласно закону теплопроводности Фурье количество теплоты, испускаемое в секунду.