Методы внутритрубной диагностики трубопроводов. И.М

До проведения внутритрубной диагностики выбор участка для капитального ремонта проводился на основе статистики аварий, результатов электрометрических испытаний, данных визуального контроля при проведении шлифования.

Ограниченность информации при таком выборе участка под ремонт не обеспечивала достоверность и не позволяла своевременно выявить участки трубопровода, нуждающиеся в ремонте в первую очередь. При проведении гидроиспытания на предмет обнаружения дефектов также, как и при ремонте участков необходимо было останавливать трубопровод на длительный период, а сброс воды после гидроиспытаний значительно ухудшал экологическую обстановку. К началу 90-х годов в связи с увеличением сроков эксплуатации традиционно применяемые средства и методы по предотвращению аварий и прямых потерь нефти исчерпали свои возможности, возникла необходимость поиска новых подходов к решению задачи обеспечения безопасности эксплуатации магистральных трубопроводов, основанных на анализе их фактического технического состояния и обеспечивающих целенаправленное использование на выборочный ремонт с экономическим эффектом.

Применение подобного направления привело к созданию в 1991г. на базе АК “ Транснефть” дочернего предприятия по диагностике “Диаскан”.

1.1.Общие понятия и определения технической диагностики трубопроводов

Диагностирование – это направленное воздействие на объект или систему для сохранения, поддержания функционирования их количественных и качественных характеристик.

Качественные оценки предполагают проверку соответствия системы в целом общим принципом и ее отдельных подсистем, имеющимся частным рекомендациям.

Для количественных оценок определяют критерии эффективности как для всей системы, так и отдельных ее частей, сравнивают полученные критерии, а также различные варианты, рассчитанные с учетом полученных критериев с заданными значениями и находят рациональные показатели при едином экономическом критерии функционирования системы.

При диагностировании применяют параметрические и непараметрические методы контроля. Параметрические методы предусматривают первоначально контроль и оценку самих параметров во времени, определяется их изменение в процессе работы оборудования. По значениям комплекса контролируемых параметров принимают решение в системе диагностирования оборудования. При непараметрических методах контроля используют значения изменения выходных величин элемента или подсистемы (их статистические и динамические характеристики). Чаще всего применяют непрерывные функции или интегрально осредненные величины, куда явно или неявно входят значения параметров элемента или подсистемы.

При решении технической диагностики не только определяют техническое состояние объекта в данное время, но и прогнозируют его состояние на некоторое время вперед, что очень важно для определения структуры ремонтных циклов и интервалов между проверками оборудования, машин и механизмов. Для этого применяют интегральный подход, с помощью которого строятся математические модели, с помощью которых можно будет получить информацию об изменении параметров. Кроме того с помощью математических моделей, построенных с учетом эксплуатационных данных и соответствующих алгоритмов, находят рациональные способы воздействия на технологические процессы технического или экономического характера. При этом должно предусматриваться максимальное использование существующих организационных структур системы трубопроводного транспорта.

Читайте также:
  1. CASE -технологии, как новые средства для проектирования ИС. CASE - пакет фирмы PLATINUM, его состав и назначение. Критерии оценки и выбора CASE - средств.
  2. I. ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВЫХ, ДИПЛОМНЫХ, НАУЧНЫХ РАБОТ
  3. I. Современные требования к проведению коррекционного занятия.
  4. VI. Требования к освещению на рабочих местах, оборудованных ПЭВМ
  5. А) Качество следует определять как соответствие требованиям, а не как полезную пригодность.
  6. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  7. Алгоритм – это понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к искомому результату.
  8. Анализ показателей себестоимости: ее виды, цели, задачи, последовательность и методика анализа. Анализ затрат на 1 руб. продукции.

Для обследования трубопроводов большой протяженности без выведения их эксплуатации применяются внутритрубные снаряды, осуществляющие профилеметрию и дефектоскопию. Внутритрубная дефектоскопия осуществляется путем сканирования внутренней поверхности трубопровода внутритрубными приборами-дефектоскопами. Дефектоскопы вводятся через специально сооружаемые камеры ввода-вывода, перемещаются по трубопроводу потоком перекачиваемого продукта и проводят сплошной контроль трубопровода (100%).

Внутритрубные снаряды представляют собой механическое транспортное устройство с размещенными на нем датчиками, системами сбора, обработки и хранения информации, источником питания.

Последовательность работ по внутритрубной диагностике:

Пропуск скребка-калибра (типа СКК) для определения минимального проходного сечения трубопровода перед пропуском профилемера;

Пропуск снаряда-шаблона (типа СНШ) для участков первичного обследования, имеющих подкладные кольца, с целью предупреждения застревания и повреждения профилемера деформированными подкладными кольцами и измерения самого минимального внутреннего сечения трубопровода на данном участке;

Пропуск профилемера для контроля проходного сечения трубопровода с целью предупреждения застревания и повреждения дефектоскопа и определения вмятин и гофр в трубопроводах – одноканальные профилемеры типа КЛП, ПРМ; многоканальные профилемеры с навигационной системой предназначены для обследования трубопроводов с целью сбора информации о поперечном сечении трубопроводов, дефектах геометрии его стенок и их координатах, а также о вертикальном и горизонтальном профиле залегания трубопроводов (типа ПРН);

Пропуск очистных скребков для очистки внутренней поверхности трубопровода от асфальтенопарафинистых веществ, удаления посторонних предметов и продуктов коррозии (типа СКР4);

Пропуск дефектоскопа.

Для проведения внутритрубной диагностики магистральный трубопровод должен отвечать определенным требованиям:

Все соединительные элементы и запорная арматура участка трубопровода должны быть равнопроходными с трубопроводом;

Каждый участок диагностируемого магистрального трубопровода (в том числе лупинги резервные нитки подводных переходов) должен быть оборудован камерами пуска, приема и очистки ВИП.



Используя внутритрубные снаряды, реализуется 4-х уровневая система диагностирования. Определяются следующие виды дефектов:

Дефекты геометрии трубопровода (вмятины, гофры, овальности поперечного сечения), приводящих к уменьшению проходного сечения;

Дефекты потери металла, уменьшающие толщину стенки трубопровода (коррозионные язвы, царапины, вырывы металла и т.п.), расслоения включения;

Поперечные трещины в теле трубы, поперечные трещины и трещиноподобные дефекты в кольцевых сварных швах;

Продольные трещины в теле трубы, продольные трещины и трещиноподобные дефекты в продольных сварных швах.

6. Профилеметрия. Основные элементы профилемера, их назначение .

Для обнаружения дефектов геометрии трубопровода – вмятин, гофр, овальностей поперечного сечения используется электронномеханический способ измерений, применяемый в приборах – внутритрубных профилемерах. Профилемеры оборудованы множеством щупов, которые касаются внутренней поверхности трубы и отслеживают ее геометрию. Перемещения всех щупов преобразуются в электрический сигнал, который после обработки регистрируется в запоминающем устройстве.



Минимальное проходное сечение трубопроводы, необходимое для пропуска профилемера – 70%.

Минимальный радиус отвода, преодолеваемый прибором (цельнотянутые колена) 1,5Dн при повороте на 90º.

Профилемер перемещается по трубопроводу с потоком перекачиваемой среды. При перемещении происходит сбор информации о состоянии внутреннего профиля стенок трубопровода, а также параметров движения.

Внутритрубный профилемер состоит из двух секций - стальных герметичных корпусов, связанных между собой карданным соединением. В передней и задней части первой секции установлены манжеты- для центрирования и приведения в движение прибора в трубопроводе. Коническая манжета, установленная на передней секции предотвращает застревание прибора в трубах,. В носовой части первой секции установлен бампер, под решеткой которого находится антенна приемопередатчика в защитном кожухе, а на задней части, на подпружиненных рычагах, размещены одометрические колеса, предназначенные для измерения пройденного расстояния.

1, 5 – передний и задний бамперы, 2 – коническая манжета; 3 – одометры; 4 – блок потенциометров; 6 – спайдер; 7 – карданный узел с измерителем поворота; 8 – манжеты; 9 – маркерный приемопередатчик.

В носовой части первой секции установлен бампер, под которым находится антенна приемопередатчика в защитном кожухе.Приемопередатчики и наземные приборы сопровождения служат для контроля за движением снаряда. Приборы сопровождения - локаторы и маркерные передатчики. Приёмопередатчики инспекционных снарядов генерируют низкочастотные электромагнитные сигналы, которые улавливаются антенной локаторного приемника на поверхности. Маркерные передатчики, сигналы которых улавливаются приемниками снарядов, необходимы для привязки диагностической информации к конкретным (контрольным) точкам трассы нефтепровода и для поправки одометрической информации о пройденном расстоянии.

На второй секции установлены манжеты и измерительная система, состоящая из множества рычагов с колесами (так называемый «спайдер») для измерения проходного сечения и других геометрических особенностей трубы. Колеса спайдера прижимаются к внутренней поверхности трубы и при движении профилемера Это движение передается на движок потенциометра, что вызывает изменение сигнала. Он преобразуется в цифровую форму и записывается в память профилемера.

За один прогон прибора может быть обследован участок трубопровода для ной от 300 до 350 км.

В запоминающем устройстве профилемера идет одновременная регистрация и хранение пяти параметров:

1. данных спайдера (вмятины, гофры);

2. угла поворота (ориентация дефекта по периметру трубы);

3. сигналов одометра (дистанция в метрах от камеры пуска);

4. маркерных передатчиков (для поправки одометрической информации);

5. временные отметки (дата и время обнаружения дефекта).

Чувствительность измерительной системы прибора - ± 2 мм.

Точность измерения глубины вмятин на прямых участках – (0,4 – 0,6)% относительно внешнего диаметра трубы – минимальный размер 5,0 мм.

Точность определения профилемером месторасположения зафиксированных дефектов, при условии использования одометра, маркеров и информации о поперечных сварных швах, составляет 0,3 м.

Профилемеры также используют для оценки качества строительно-монтажных работ до введения нефтепроводов в эксплуатацию. Пропуск профилемера производится по сформированным в протяженные участки трубопроводам, уложенные в траншеи и засыпанные грунтом. Трубопровод при этом оборудуют временными или постоянными камерами пуска и приема средств очистки и диагностики.

Внутритрубная профилеметрия на стадии строительно-монтажных работ осуществляется на переходах через водные преграды вне зависимости от их протяженности и на участках линейной части протяженностью от 1 км до 40 км. Контроль геометрических параметров участков протяженностью менее 1 км производит служба технадзора после укладки трубопроводов в траншею перед его засыпкой.

Нами очищены и обследованы внутритрубными дефектоскопами более 3800 километров трубопроводов диаметром от 159 мм до 1420 мм.

Цель услуги:

1. Обследование технического состояния трубопровода.

2. Расчеты на прочность (максимального разрешенного давления) и долговечность (остаточного ресурса) по результатам обследования.

3. Экспертиза промышленной безопасности. Лицензия № ДЭ-00-013475.

Этапы технологии внутритрубной диагностики:

1. Подготовительные работы - определение (по данным опросного листа) и обеспечение контролепригодности обследуемого трубопровода.

2. Очистка внутренней полости трубопровода от инородных предметов, окалины, остатков электродов, асфальтосмолистых, парафиновых и пирофорных отложений.

3. Калибровка трубопровода - определение минимального проходного сечения трубопровода и обеспечение 70% проходимости от наружного диаметра (т.е. устранение всех дефектов геометрии, превышающих 30% от наружного диаметра).

4. Обследование трубопровода профилемером - выявление дефктов геометрии трубопровода (вмятин, гофр, овальности) и изерение радиуса поворотов. Обеспечение проходимости трубопровода в 85% от от наружного диаметра (устранение всех дефектов геометрии, превышающих 15% от наружного диаметра) и минимального радиуса поворота трубопровода, равного 1,5Dн или 3Dн (Rпов. должно быть более или равно 1,5Dн или 3Dн в зависимости от применяемого после пофилеметрии дефектоскопа).

5. Обследование трубопровода внутритрубными магнитными (MFL и TFI) и/или ультразвуковыми дефектоскопами - выявление таких дефектов, как: коррозия (внутренняя, наружная, точечная и сплошная), стресс-коррозия под напряжением, расслоения, включения, разноориентированные трещины и др. дефекты стенки трубопровода.

6. Расчет на прочность и долговечность (остаточного ресурса) и экспертиза промышленной безопасности.

С 2007 г. нами выполнены работы по внутритрубной диагностике и экспертизе промышленной безопасности трубопроводов (в т.ч. подводных переходов) в ОАО АНК «Башнефть», ОАО «Удмуртнефть», ООО «Белкамстрой», ОАО «Белкамнефть», ЗАО «Нафтатранс», ОАО «Сургутнефтегаз», ООО «БПО-Отрадный», АО "Шешмаойл", "СНПС-Актобемунайгаз", ОАО "РН-Краснодарнефтегаз" и др.

Опыт работ по внутритрубной диагностике нефтегазопроводов более 10 лет.

Внутритрубная диагностика (ВТД) линейной части магистрального газопровода (ЛЧ МГ) на сегодня является самым эффективным способом получения информации о состоянии магистральных газопроводов и их целостности. Общество с ограниченной ответственностью «Научно-производственный центр «Внутритрубная диагностика» (ООО «НПЦ «ВТД») является лидером по достоверности предоставляемых результатов по ВТД (на уровне 90–95%) среди российских и зарубежных компаний.

Текст: Н. Н. Иванова, С.В. Налимов, В. Е. Лоскутов, Б. В. Патраманский.

ООО «НПЦ «ВТД» разрабатывает и производит собственные диагностические внутритрубные комплексы диаметрами от 219 мм до 1420 мм и оказывает услуги по ВТД отечественным и зарубежным операторам трубопроводов.

Среди отечественных - такие крупнейшие компании, как ПАО «Газпром» и дочерние общества ПАО «Роснефть».

Ежегодный объем работ по ВТД, выполняемых ООО «НПЦ «ВТД» на объектах ПАО «Газпром», составляет более 20 тысяч километров, или около 90% всего годового объема работ по внутритрубной диагностике линейной части магистральных газопроводов.

Внутритрубные диагностические комплексы, применяемые ООО «НПЦ «ВТД», обнаруживают практически все встречающиеся в газопроводах дефекты, образующиеся при производстве трубы, при строительстве трубопровода и его эксплуатации.

При производстве трубы - это расслоения, дефекты проката, аномалии продольных сварных швов (непроваренные стыки); при строительстве трубопровода - вмятины, гофры, задиры, дефекты сварки кольцевого шва, плохая изоляция, которая в процессе эксплуатации трубопровода становится причиной развития коррозийных повреждений, а также в сочетании с другими факторами (высокое давление в трубопроводе, доступ грунтовых вод, кислотность почв, загрязненный металл трубы и др.) способствует возникновению самого опасного дефекта - мелких трещин КРН (коррозионного растрескивания под напряжением).

Дефекты КРН представляют собой мелкую сетку трещин на поверхности трубы, которые при определенных условиях объединяются в магистральную трещину, и происходит разрушение трубопровода.

Рисунок 1. Диаграмма дефектов, обнаруженных по результатам выполнения работ по ВТД в первом полугодии 2017 года.

На рисунке 1 представлена диаграмма дефектов, обнаруженных по результатам выполнения работ по ВТД в первом полугодии 2017 года. Как видно из диаграммы, более 80% из общего числа дефектов составляют коррозионные повреждения и около 10% - аномалии кольцевых сварных швов.

Дефекты таких типов надежно обнаруживаются внутритрубными инспекционными приборами (ВИП) продольного намагничивания (по зарубежной классификации - MFL).

Однако для поиска и обнаружения продольных трещин и зон трещин КРН создаются ВИП поперечного намагничивания (TFI), поскольку приборами типа MFL их обнаружить невозможно.

Необходимо отметить, что приборы MFL и TFI работают на магнитном принципе контроля, который основан на регистрации полей рассеяния от дефекта в стенке трубы. Зоны трещин КРН при намагничивании организуют достаточно слабые поля, которые трудно зафиксировать датчиковой системой.


Специалистами ООО «НПЦ «ВТД» создан высокочувствительный прибор поперечного намагничивания, способный обнаруживать зоны продольных трещин глубиной 15–20% от толщины стенки трубы.

Одной из самых серьезных задач при выполнении работ по ВТД является создание специальных алгоритмов и программных продуктов, с помощью которых производится обработка и расшифровка записанной внутритрубными приборами информации.

Благодаря участию специалистов компании в обследовании дефектов в более чем 4,5 тысячах шурфов удалось создать алгоритмы, точно отражающие параметры разных типов дефектов.

Количество аномалий кольцевых стыков в приведенной диаграмме составляет 9,6%, в численном же выражении на участок газопровода в среднем приходится 300–400 штук. Поскольку опасность аномалий не определена, оператору трубопровода по действующим нормативным документам необходимо все аномалии отшурфовать, снять изоляцию и обследовать наружными переносными дефектоскопами каждый стык. При этом оператор вынужден проделать огромную работу и понести затраты, хотя опасных стыков под вырезку может быть несколько.


В ООО «НПЦ «ВТД» в дополнение к существующим ВИП создан прибор - интроскоп. Его назначение – контроль внутреннего рельефа поверхности трубы. С помощью интроскопа удалось ранжировать аномалии кольцевых швов на три категории: «а» - опасные, «b» - под наблюдение, «с» - неопасные.

Теперь оператору трубопровода необходимо в течение указанного в отчете периода отшурфовать дефекты категории «а» и отремонтировать, избегая при этом огромных затрат на шурфовку остальных аномалий.

Среди достижений последнего времени необходимо указать создание специалистами ООО «НПЦ «ВТД» методики определения непроектных изгибов трубопроводов.

Если радиус поворота оси трубопровода будет меньше допустимой величины, в нем возникает напряженно деформированное состояние (НДС), которое может привести к пластической деформации или даже к разрыву. Реализация технологии определения непроектных изгибов стала возможной при установке в ВИП высокоточных навигационных систем.

В целом благодаря созданному внутритрубному оборудованию, разработанным алгоритмам и методикам, комплексу ремонтных работ по удалению опасных дефектов по результатам ВТД, выполняемому газотранспортными обществами ПАО «Газпром», и восстановлению несущей способности газопроводов при их периодическом обследовании удается поддерживать безопасную эксплуатацию газотранспортной системы ПАО «Газпром» на необходимом уровне.

Внутритрубная ультразвуковая диагностика газонефтепроводов

2. Внутритрубная диагностика газонефтепроводов

Внутритрубная дефектоскопия зарекомендовала себя как наиболее информативный метод и по существу является основным при диагностике линейной части газопроводов. Многолетний опыт работы по внутритрубной дефектоскопии на трубопроводах позволил сформулировать основные критерии выбора метода внутритрубной инспекции для различных трубопроводов.

Решение об обследовании промысловых трубопроводов приборами внутритрубной дефектоскопии принимает заказчик. Обследование следует проводить исходя из технико-экономической целесообразности и в соответствии с требованиями действующих нормативно-технических документов.

Внутритрубная инспекция проводится после завершения подготовки участка магистрального нефтепровода к диагностированию предприятием, эксплуатирующим участок нефтепровода и направления предприятию, выполняющему диагностические работы, документации, подтверждающей эту готовность. Ответственными за проведение диагностических работ на участке магистрального нефтепровода являются главные инженеры предприятий, эксплуатирующих участки нефтепроводов. Готовность к диагностированию обеспечивается проверкой исправности камеры пуска-приема и запорной арматуры, проведением очистки внутренней полости трубопровода, созданием необходимых запасов нефти для обеспечения объемов перекачки в соответствии с режимами. При использовании запасов нефти из резервуаров должна быть предотвращена возможность попадания в транспортируемую нефть осадка из резервуара.

Необходимая полнота контроля участка магистрального нефтепровода достигается на основе реализации 4-х уровневой интегрированной системы диагностирования, предусматривающая определение параметров следующих дефектов и особенностей трубопровода, выходящих за пределы допустимых значений, оговоренных в утвержденных методиках определения опасности дефектов:

дефектов геометрии и особенностей трубопровода (вмятин, гофр, овальностей поперечного сечения, выступающих внутрь трубы элементов арматуры трубопровода), ведущих к уменьшению его проходного сечения;

дефектов типа потери металла, уменьшающих толщину стенки трубопровода (коррозионных язв, царапин, вырывов металла и т.п.), а также расслоений, включений в стенке трубы;

поперечных трещин и трещиноподобных дефектов в кольцевых сварных швах;

продольных трещин в теле трубы, продольных трещин и трещиноподобных дефектов в продольных сварных швах.

Работы по внутритрубной диагностике в общем случае включают в себя:

Пропуск скребка-калибра, снабженного калибровочными дисками, укомплектованными тонкими мерными пластинами, для определения минимального проходного сечения трубопровода перед пропуском профилемера. Диаметр калибровочных дисков должен составлять 70% и 85% от наружного диаметра трубопровода. По состоянию пластин после прогона (наличию или отсутствия их изгиба) производится предварительное определение минимального проходного сечения участка нефтепровода. Минимальное проходное сечение линейной части нефтепровода, безопасное для пропуска стандартного профилемера, составляет 70% от наружного диаметра трубопровода;

Пропуск шаблона-профилемера для участков первичного обследования, имеющих подкладные кольца, с целью предупреждения застревания и повреждения профилемера деформированными подкладными кольцами;

Пропуск профилемера, определяющего дефекты геометрии: вмятины, гофры, а также наличие особенностей: сварных швов, подкладных колец и других выступающих внутрь элементов арматуры трубопровода. При первом пропуске профилемера маркерные передатчики устанавливаем с интервалом 5-7 км. При втором и последующих пропусках профилемера установка маркеров производится только в тех точках, где по результатам первого пропуска обнаружены сужения, уменьшающие проходное сечение трубопровода от согласованного максимального уровня наружного диаметра, представляемого в таблицах технического отчета по результатам прогона профилемера. По результатам профилеметрии предприятие, эксплуатирующее участки нефтепровода, устраняет сужения, уменьшающие проходное сечение на величину менее 85% от наружного диаметра трубопровода с целью предупреждения застревания и повреждения дефектоскопа;

Пропуск очистных скребков для очистки внутренней поверхности трубопровода от парафиносмолистых отложений, глиняных тампонов, а также удаления посторонних предметов;

Пропуск дефектоскопа. Установка маркеров при первом пропуске снарядов-дефектоскопов осуществляется с интервалом 1,5-2 км. При втором пропуске снарядов-дефектоскопов установка маркеров производится в тех точках, где имелись пропущенные маркерные пункты при первом пропуске и где по данным первого пропуска снаряда-дефектоскопа имеют место потери информации. Перед запуском инспекционного снаряда персонал предприятия, выполняющего диагностические работы, обязан провести проверку исправности внутритрубного снаряда с составлением акта установленной формы.

Внутритрубная ультразвуковая диагностика газонефтепроводов

Техническое диагностирование трубопровода - определение технического состояния трубопровода, поиск мест и определение причин отказов (неисправностей), а также прогнозирование его технического состояния...

Динамометрирование скважинной штанговой насосной установки

В ПО "DinamoGraph" используются следующие алгоритмы (разработка ООО НПП "ГРАНТ"): - расчета периода и начала динамограммы, позволяющие автоматизировать обработку данных...

Капитальный ремонт линейной части магистрального газопровода Уренгой-Помары-Ужгород с заменой трубы

На каждый газопровод на основании результатов анализа технической документации разрабатывается индивидуальная программа диагностирования, которая включает: Рисунок 1...

Методы диагностики тягового электродвигателя (ТЭД)

Методы оценки технического состояния газоперекачивающих агрегатов

При вполне удовлетворительном техническом состоянии агрегата и его опорных узлов необходимо иметь сведения об интенсивности и характере износа поверхностей трения...

Моделирование неисправностей шарикоподшипников качения на примере двухрядного сферического подшипника

Подшипник качения является самым распространенным и наиболее уязвимым элементом любого роторного механизма...

Основные этапы монтажа аппаратуры автоматического регулирования и управления

Приводы путевых машин

Испытание проводится в рабочем режиме для каждого контура. Присутствует напряжение на соленоидах распределителя Р и клапана КП. Шток Ц полностью выдвинут...

Приводы путевых машин

Испытание проводится в режиме холостого хода для каждого насоса. КП находится в режиме переливного. Напряжение на соленоидах распределителей и клапанов отсутствует. Вторичная защита отключена. ГТ установлен в напорной линии насоса перед КП...

Приводы путевых машин

Испытание ГЦ осуществляется в рабочем режиме. Производится переключение Р1 или Р2 во все рабочие позиции и втягивание/выдвижение штоков цилиндров на полный ход. Вторичная защита отключена...

Приводы путевых машин

Испытание гидромотора производится в рабочем режиме путем установки гидротестера в линии после распределителя. Распределитель переведен в рабочую позицию. КП первичной защиты работает в режиме предохранительного, вторичная защита отключена...

Проектирование цеха роликовых подшипников

Большое количество роликовых подшипников, находящихся в эксплуатации, выдвигает повышенные требования к надежности их работы в буксовых узлах колесных пар...

Развитие теоретических принципов технической диагностики

С начала 1970-х годов проблеме диагностики и изоляции отказов динамических процессов стали уделять все большее внимание. Было изучено и разработано большое количество методологий основанных на физической и аналитической избыточности...

Системы обнаружения утечек в нефте- и нефтепродуктопроводах

Метод основан на звуковом эффекте (в ультразвуковом диапазоне частот), возникающем при истечении жидкости через сквозное отверстие стенке трубопровода. Ультразвуковые волны создают звуковое поле внутри трубопровода...

Современные технологии ремонта оборудования производства на базе аутсорсинга

Диагностика осуществляется с помощью специальных систем мониторинга и диагностических устройств...