Экраноплан принцип действия основные характеристики и параметры. Экраноплан «Лунь» ржавеет в доке

Россия планирует создать новый экраноплан - весом 600 тонн и вместимостью 500 человек. Летательный аппарат сможет развивать скорость почти 550 км/ч.
Статья в "El Confidencial", Испания, Пепе Сервера (PEPE CERVERA).

вновь Россия объявляет о скорейшем выпуске новой модели пассажирского экраноплана, на этот раз задуманного для связи между ее обширными арктическими территориями. Новый аппарат будет весить около 600 тонн, его длина составит 100 метров, а размах крыльев - 70 метров, вместимость - 500 пассажиров, а максимальная скорость - почти 550 км/ч. Чтобы подчеркнуть гражданское предназначение аппарата, его окрестили «Спасатель», хотя у него уже появилось прозвище: «Арктический монстр». Зачем же на самом деле Россия создает новую модель этого самого странного в мире самолета? А главное, каким будет этот новый экраноплан?

По сообщению одной из центральных российских газет - «Известия» - первый прототип нового экраноплана поднимется в воздух в 2022-2023 году, а к 2025 году будет полностью введен в эксплуатацию. Цель - связать огромные пространства российской Арктики; пока что речь идет только о транспортных миссиях, хотя снабдить аппарат ракетами тоже не проблема. Разработчиком прототипа является российское Конструкторское бюро им. Р.Е. Алексеева.

В советские времена было разработано большое количество вариантов и спроектировано несколько прототипов этого транспортного средства - наполовину воздушного, наполовину водного, - но ни один из них так и не послужил отечеству. Идея использования «экранного эффекта», возникающего на низких высотах благодаря аэродинамической подъемной силе, возникающей на самолетном крыле, обещает высокие скорости и большие возможности для перевозок, а потому неоднократно привлекала интерес во многих странах. Но практические проблемы помешали тому, чтобы задумка была реализована, за исключением совсем небольших моделей для специфических ситуаций. На этот раз все может быть иначе.

Идея экраноплана продолжает будоражить умы, хотя никак не может воплотиться в реальность. Концепция проста: использовать «экранный эффект», который увеличивает поддержку крыла, когда оно находится невысоко над ровной поверхностью, в силу чего между ними образуется воздушная подушка. При определенной конструкции крыла, отличной от крыла обычного самолета, можно создавать аппараты, способные развивать огромные скорости и/или перевозить внушительные грузы при меньшем расходе топлива, чем обычные самолеты, при условии, что их полет будет происходить на небольшой высоте (на практике это от 3 до 12 метров) над ровной поверхностью, вроде океана.

Таким образом, можно сконструировать аппараты, подобные грузовым самолетам, но с гораздо большей грузоподъемностью, или быстрые военные машины, снабженные ракетами, которые к тому же плохо ловятся радарами в силу малой высоты полета. Все это очень повышает привлекательность экранопланов для военных (быстрые перевозки больших грузов, подводная и наводная штурмовая техника) и для гражданских ведомств (перевозка грузов, поисковые и спасательные операции). По крайней мере, на бумаге.

Явление, лежащее в основе принципа действия экранопланов, было широко известно, но если бы не российско-советский инженер Ростислав Евгеньевич Алексеев, оно никогда бы ни приняло форму реального транспортного средства. Алексеев разрабатывал судна на подводных крыльях, которые поднимали корпус корабля над водой, уменьшая сопротивление воды и увеличивая скорость аппарата. Именно так ему пришла в голову идея, что «экранный эффект» можно использовать напрямую, безо всяких подводных крыльев.

Он понял также, что большие аппараты имеют преимущество, поскольку больший размах крыльев позволяет увеличить высоту полета без потери аэродинамической подъемной силы. А увеличение высоты решает проблему преодоления возможных препятствий, что, теоретически, позволяет экраноплану летать над любой более или менее ровной поверхностью, как земля, водохранилища или ледовые поля. Хотя, конечно, наилучшей поверхностью является морская гладь. Убедив военных чиновников в перспективности идеи и построив с 1961 года несколько прототипов каждый раз большего размера, Алексеев разработал экраноплан КМ, который совершил свой первый полет в 1966 году и поверг в изумление все западные разведки.

Спутник-шпион серии ‘Corona" сделал снимки странного транспортного средства в Каспийском море. Это было нечто похожее на судно почти 100 метров длиной с короткими крыльями (размах 32-40м), способное двигаться над водой со скоростью почти 500 км/ч. Ничто в западных арсеналах не могло даже приблизиться к таким размерам и скоростям на воде. Американские аналитики окрестили его «Каспийским монстром».

Новые данные говорили о том, что вес аппарата равен 540 тоннам: это было как два Boeing 747 Jumbos вместе. На KM стояли 10 турбореактивных двигателей ВД-7, два на хвосте и 8 на двух крыльях по обе стороны кабины, на носу. Эти последние были снабжены ориентируемыми соплами, которые позволяли осуществлять поддув под крылья для большей устойчивости.

С виду этот устрашающий аппарат был похож на гидросамолет, который разгонялся по воде, а затем взлетал и набирал высоту 3 метра (в начальных версиях), а в последующих модификациях удалось достичь «прыжков» на высоту 20 метров - достаточно, чтобы преодолеть даже пятиметровые волны. Несмотря на то, что советские двигатели были совершенно не экономичны, но потребление топлива экранопланом было в три раза ниже, чем у обычных самолетов, дальность полета достигала порядка двух тысяч километров. В общем, речь шла о транспортном средстве с устрашающим военным потенциалом в том, что касалось скорости, грузоподъемности и дальности.

Прототип KM потерпел аварию в 1980 году, когда неопытный пилот неправильно среагировал, совершая маневр: на выходе из пике он прибавил скорость, как следовало сделать при управлении обычным самолетом. Экраноплан затонул, попыток по его подъему не осуществлялось. Параллельно разрабатывался другой аппарат той же системы, но меньших размеров - A-90 «Орленок», предназначенный для переброски морских десантов.

A-90 имел 58 метров в длину, 31,5 метр размах крыльев и весил около 140 тонн; на нем были установлены турбовинтовые двигатели Кузнецова НК-12 (на хвосте) и два НК-8 на корме с целью поддува воздуха под крылья во время взлета. Грузоподъемность аппарата составляла 40 тонн, то есть, 150 солдат в боевой экипировке или две легкобронированные машины. «Орленок» развивал скорость до 400 км/ч, а его дальность полета составляла 1500 километров, плюс одна деталь: он мог подняться на высоту до 300 метров, теряя при этом преимущества полета с использованием «экранного эффекта», но получая возможность преодолеть препятствие, а затем снова вернуться на 3-х метровую высоту. Это являло собой важное военное преимущество, поскольку позволяло «перепрыгивать», например, бурные участки моря или посты береговой охраны.

СССР планировал закупить до 120 «Орлят», но к 1985 году было сконструировано всего пять штук. Распад Союза и отсутствие средств у ВМФ привели к полному забвению проекта. Три из уже изготовленных экранопланов стояли на боевой службе до 1993 года, а российская промышленность подумывала о том, чтобы сделать из четвертого гражданское судно, но планы дальше бумаги не пошли.

Еще одна модель экраноплана была сконструирована в 1970-1986 годах, на этот раз с боевой целью: МД-160 «Лунь». Этот аппарат, похожий на КМ, но меньших размеров (74 м в длину, размах крыльев 44 м, вес 400 тонн), имел только четыре турбовинтовых двигателя НK-87, установленных на крыльях на носу. «Лунь» стал самым быстроходным экранопланом, который развивал скорость до 550 км/ч и мог перевозить 40 тонн груза на расстояние до двух тысяч километров.

Кроме того, аппарат был оснащен шестью пусковыми ракетными установками для ракет П-270 «Москит» - страшного оружия дальностью 120 км и скоростью до 5 Махов, способного нести боеголовку с 320 килограммами обычных взрывчатых веществ или ядерную мощностью 120 килотонн. На хвосте видны кожухи радиолокационной антенны, расположенные на возвышении, чтобы увеличить до максимума дальность связи. В качестве платформы для противокорабельных ракетных систем он был бы просто разрушительным: его было чрезвычайно сложно засечь радарами из-за низкой высоты полета, плюс огромная скорость и возможность выпуска колоссального количества залпов практически гиперзвуковых ракет. «Лунь» был неуязвим для береговых кордонов, торпед и мин и мог осуществлять точечные атаки с устрашающей эффективностью. К счастью для западных ВМФ из-за коллапса СССР был произведен только один «Лунь», который до сих пор гниет в сухом доке военно-морской базы Каспийска на Каспийском море. Второй неоконченный экземпляр попытались превратить в гражданское транспортное средство для спасателей. Его даже назвали «Спасатель», но так и не доделали.

С тех пор многие страны экспериментировали с экранопланами, почти всегда гражданскими и небольших размеров, часто по российской технологии или с помощью россиян. Китай построил несколько моделей транспортных средств гражданского назначения среднего размера, то же самое сделали несколько гражданских компаний США. Иран даже принял на боевое дежурство небольшую модель Bavar-2, копию советского прототипа 70-х годов с двухместной кабиной и винтовым двигателем; эти аппараты не оснащены вооружением и, как предполагаются, предназначены исключительно для разведывательных миссий. Эти судна базируются в Бендер-Аббасе и входят в состав быстроходного флота, который, используя тактику «роя», призван помешать заходу судов в порт в случае войны. Проект тяжелого транспортного судна Pelican ULTRA компании Boeing не является, строго говоря, экранопланом, поскольку взлетает с обычных аэродромов и приземляется на них же, хотя и использует «экранный эффект», чтобы уменьшить расход топлива во время дальних полетов.

Только в России сохранилась эта технология в чистом виде, и там время от времени появляются новые прототипы, выставляемые на салонах военной техники. В качестве примера можно привести «Орион-14» и «Орион-20», последний - прототип средних размеров, который потерпел громкое крушение в 2015 году, но теперь вновь участвует в испытаниях с прицелом на возможные продажи. Сейчас Конструкторское бюро имени Р.Е. Алексеева, носящее имя изобретателя экраноплана, делает ставку на возрождение этого транспортного средства.

И КМ, и последующие «Орленок» и «Лунь» были выполнены уже по отработанной фирменной алексеевской аэрогидродинамической схеме: перед крылом располагались открытые (у КМ) или закрытые корпусом (у «Орленка») двигатели, обеспечивавшие поддув воздуха под крыло во время взлета

Советские конструкторы назвали свое детище «Корабльмакет» (КМ). В 1967 году американские военные, рассмотрев на снимках спутника-шпиона непонятно огромный летательный аппарат, прозвали его «Каспийским монстром». Иногда это имя употребляется на Западе для обозначения всех советских боевых экранопланов, а тогда, в 60-х, в Советском Союзе даже само заветное слово «экраноплан» было секретным. В англоязычном мире амфибии, основанные на экранном принципе движения, называли (да и теперь называют) WIG от Wing-In-Ground effect (от английских «крыло» и «земля»).

Рожденный ползать стремглав

Что же увидели на снимках американские специалисты? Самолет-гигант имел в длину около 100 м при удивительно малом для такой махины размахе крыльев — около 40 м. Движимый десятью турбореактивными двигателями с тягой по 13 т каждый, он мог скрытно «ползти» на высоте нескольких метров над водой и над сушей, перемещаясь со скоростью до 500 км/ч, в недоступной для систем ПВО противника зоне.

Дальность полета составляла до полутора тысяч километров. И при этом масса судна с полезным грузом достигала 500 т. Оно могло взять на борт, к примеру, батальон десантников с бронетехникой.

Как свидетельствуют очевидцы, летом 1967 года в «Зеленой комнате» Военного разведывательного управления в Вашингтоне эксперты Пентагона и НАСА изучали спутниковые снимки, и большинство пришло к выводу, что это блеф русских. Только трое инженеров НАСА решились утверждать, что в России появился новый вид вооружений.

В информированном английском военном журнале Jane’s Intelligence Revue появились восторженные отзывы: «Полагают, что крылья этого экспериментального аппарата создают подъемную силу, которой хватает на подъем до высоты крейсирования, приблизительно равной 30 футам (9 м). По‑видимому, аппарат сможет работать в арктических условиях». Над Америкой нависла реальная угроза.

И впрямь КМ, использовавший известный к тому времени в течение десятилетий экранный эффект, был созданием уникальным. Его отец, конструктор Ростислав Алексеев выжал из «экрана» многое, и при движении на высоте от двух до десяти метров машина потребляла в пять раз меньше топлива, чем транспортный самолет.

Во время первого полета КМ, построенного на нижегородском (тогда горьковском) заводе «Красное Сормово» и Авиастроительном заводе им. Серго Орджоникидзе, главный конструктор Алексеев был за штурвалом.

Испытания на Каспии продолжались 15 лет. А в 1980-м самый крупный в мире экраноплан погиб в аварии.

Исключение из правила

Принцип полета экраноплана не похож ни на законы работы самолетного крыла на большой высоте, ни на основы движения судна на воздушной подушке.

Прежде всего экраноплан опровергает правило авиации «чем выше, тем экономичнее». Ведь на дальние расстояния летают именно высокопотолочные реактивные самолеты: полет в разреженном воздухе на большой высоте требует значительно меньше топлива. Но если лететь очень низко, ниже 15 м, как и летают экранопланы, — воздушная подушка, возникающая между крылом и поверхностью земли или воды, как бы дополнительно поддерживает машину и топлива расходуется значительно меньше.

У этого феномена есть две составляющие. Самолет взлетает, потому что форма крыла и его профиль при обтекании потоком воздуха создают под крылом большее давление, чем над ним. При этом возникает и негативное воздействие: на конце крыла возникает завихрение — воздух с более высоким давлением из под крыла обтекает его и понижает подъемную силу. Но если самолет летит очень низко над землей, для завихрения остается слишком мало места, и его воздействие ослабляется. Кроме того, у воздуха, находящегося под крылом под более высоким давлением, нет выхода вниз, как было бы на большей высоте. Формируется «подушка», и машину словно поддерживает невидимая рука.

Экранный эффект мешал авиаторам, ведь «подушка» усложняла пилотирование низко над землей и посадку. Так что не удивительно, что заинтересовались им кораблестроители, применившие поначалу для повышения скорости судов подводные крылья (с разработки этих машин начинал конструктор Алексеев). Суда на подводных крыльях были вдвое втрое быстрее обычных, но разработчикам, столкнувшимся с явлением кавитации (холодного кипения от разряжения) воды на верхней поверхности подводного крыла, пришлось на этом остановиться.

Корабли на воздушной подушке, создаваемой при помощи «закачивания» воздуха в жестко ограниченное пространство под днищем, достигли скорости 150−180 км/ч, но дальше теряли устойчивость движения.

Погоня за скоростью

Считается, что первый экраноплан построил в 1935 году финский конструктор Каарио, поставивший крыло на моторные сани. Советские же источники утверждают, что первая экспериментальная работа, посвященная влиянию экранирующей поверхности на аэродинамические свойства воздушного крыла, была выполнена ученым-вертолетчиком Борисом Юрьевым в 1923 году, а уже в 1938-м появился первый советский проект двухмоторного экраноплана, автором которого был специалист по воздушно-десантной технике Павел Гроховский. Немало попыток было сделано после Второй мировой войны в США, Японии, Китае.

Отец дельтавидного крыла и проекта Messerschmitt-334, немецкий конструктор Александр Липпиш, работая после войны в США, создал целую серию WIG-самолетов, один из которых Х-114 (пятиместный патрульно-транспортный экранопланамфибия, созданный в 1976 году) был принят на вооружение военно-морскими силами. Были и другие попытки на Западе разработать боевые экранопланы, но появление советского КМ стало для НАТО большим и очень неприятным сюрпризом. «Монстр» оказался в десятки раз больше американских аналогов.

К тому времени Ростислав Алексеев был известен как конструктор судов на подводных крыльях — торпедных катеров времен Великой Отечественной, «Ракет», «Комет», «Метеоров». Говорят, что он даже совершил на своей «Комете» кругосветное путешествие через Тихий, Индийский и Атлантический океаны. А его КБ называлось «Центральное конструкторское бюро по судам на подводных крыльях».

Не удивительно, что, начав погоню за скоростью, в 1961 году первый свой экраноплан СМ-1 Алексеев выполнил по собственной схеме судна на двух малопогруженных подводных крыльях, называемой «двухточкой» или «тандемом»: два крыла располагались одно за другим с небольшим разрывом, а на «хвосте» не было привычного для следующих моделей горизонтального «оперения».

«Орленок» с судьбой Икара

На испытания СМ-1 приехал тогдашний куратор «оборонки» Дмитрий Устинов и был так поражен машиной, что Алексеев получил карт-бланш и почти неограниченную финансовую поддержку. Его КБ выдавало один проект за другим, и уже через пять лет на воду спустили экраноплан КМ, вслед за ним построили 120-тонный десантный корабль «Орленок», который мог садиться и взлетать в пятибалльный шторм. Откидывавшийся вбок «нос» корабля позволял с ходу высаживать на берег два танка и батальон морских пехотинцев.

Ростислав Алексеев был полон идей. Он обдумывал возможность запуска со «спины» экраноплана космических кораблей многоразового использования и экранопланов для исследования соседних планет… Однако череда аварий, а затем смена политического руководства страны поставили крест на разрабатывавшемся им направлении.

При испытаниях разбился СМ-5, затем случилась авария «Орленка», а в 1980 году, словно не выдержав смерти своего создателя, разбился первый «Каспийский монстр».

Соратникам создателя советских экранопланов удалось разработать и даже изготовить в 1985 году боевой экраноплан «Лунь», оснащенный шестью противокорабельными самонаводящимися ракетами «Москит» (по классификации НАТО — SS-N-22 Sunburn), летящими со скоростью 2800 км/ч и способными поразить цель на расстоянии до 250 км. Однако в серию он так и не пошел, а из запланированных 120 «Орлят» изготовлено было только пять, и производство было прекращено.

Новая жизнь «Монстра»

И все же проект «Лунь» не заглох. Еще в 1992 году Минобороны решило создать на базе ракетоносца конверсионный вариант — экраноплан для поиска и спасения жертв морских аварий. И название ему дали «Спасатель». После консервации проекта в середине 90-х из-за отсутствия средств, работы были продолжены.

Предполагается, что спасательный экраноплан сможет работать при сильном ветре и садиться при пятиметровой волне, а устройство его таково, что он будет прикрывать своим корпусом пострадавших и принимать их с воды через хвостовую часть, за которой образуется затишье. В самом экраноплане, способном взлететь с 500 пассажирами, разместится госпиталь с операционной, реанимацией и ожоговым центром.

Тем временем в секретном конструкторском подразделении компании Boeing — Phantom Works — разрабатывается огромный экранолет, получивший название «Пеликан». Предназначен он для решения главной проблемы американской армии — проблемы мобильности. Для перемещений больших воинских контингентов для заморских операций корабли слишком медленны, а даже самые большие транспортные самолеты слишком малы. Ведь в составе одной дивизии может быть более 300 семидесятитонных танков «Абрамс», но даже огромный транспортник «C-5 Гэлакси» (C-5 Galaxy; их в американском военно-воздушном флоте 126) может взять на борт не более двух таких танков. Предполагается, что «Пеликан» будет весить столько же (взлетная масса — 3000 т), сколько семь полностью загруженных «Боинг-747», и при этом, скользя над водой, будет способен летать на расстояние 16 тыс. км. При этом планируется, что уродливая с виду машина будет летать не только на экране, но и на обычных для самолетов высотах, а садиться сможет и на аэродромы (в проекте она снабжена 76 колесами). Если американские военные одобрят проект, Boeing приступит к его реализации уже в нынешнем или будущем году.

Однако и российская глава истории экранопланов не выглядит завершенной. После прошлогоднего визита на Каспий президента Путина, поставившего перед военными моряками задачу «не просто продемонстрировать военное присутствие в регионе, а показать подавляющий потенциал российского ВМФ на Каспии по сравнению с военно-морскими силами других стран», ожидается возрождение «Луня» как боевого экраноплана.

При всем уважении к Алексееву, Липпишу и Бартини, постоянно летать во взлетном режиме плохо, чертовски неэкономично и смертельно опасно. Высота очень полезна для летательного аппарата, здоровья его экипажа и пассажиров.


Все преимущества от экранного эффекта (увеличение подъемной силы при полете в нескольких метрах над поверхностью) нивелируются сопротивлением плотных слоёв атмосферы, усугубленных конструкцией самих “морских монстров”.

Им требуются целые “гирлянды” двигателей для выхода на экранный режим, что влечет за собой очевидные неприятности:

А) Ухудшение аэродинамического облика по сравнению с обычным самолетом (гладкий сигарообразный фюзеляж, всего два или четыре двигателя).

Б) Катастрофический расход топлива во взлетном режиме. Десять реактивных двигателей экраноплана КМ сжигали на старте 30 тонн керосина!

В) Часть двигателей отключалось при выходе на экранный режим и потом возились в качестве бесполезного “балласта”.

Каждый из двигателей “Луня” вместе с топливной арматурой и мотогондолой, весил четыре тонны. И таких у него было восемь штук!

Для расширения возможностей применения экранопланов в штормовую погоду и безопасного взлета с преодолением гидродинамического сопротивления на скоростях в сотни км/час их конструкция должна иметь повышенную прочность, как у корпусов прочности кораблей. Все это прямое нарушение теории ЛА, где идет борьба за каждый килограмм веса.

Плюс фюзеляж с характерными корабельными обводами и громоздкой не убираемой гидролыжей для посадки на воду и сохранения устойчивости на воде.

Да, именно поэтому несчастный “Орленок” при одинаковой грузоподъемности с Ан-12 обладал в 1,5 раза меньшей скоростью и вдвое меньше дальностью полета. Он поднимал всего 20 тонн, при сухой массе его конструкции 120 тонн! Для сравнения: созданный за двадцать лет до него Ан-12 поднимал такой же груз при собственной массе всего 36 тонн.

Именно поэтому экраноплану “Лунь” не хватало боевого радиуса, чтобы пересечь Каспийское море. После чего кто-то предлагает использовать подобные ЭКП для преследования авианосцев в Атлантике. Самим-то не смешно?

Именно поэтому современный ЭКП “Акваглайд” имеет ту же грузоподъемность (400 кг), что и созданная полвека назад Цессна-172. При том “Цессна” почему-то (сюрприз!) довольствуется мотором вдвое меньшей мощности (160 против 326 л.с.) и, разумеется, имеет большую скорость.

Все приведенные цифры вряд ли впечатлят общественность. Фанаты данного вида техники продолжат отрицать очевидное. Как обычно, все неудачи свалят не на объективные трудности, возникающие при полетах в плотных слоях атмосферы , а на отсутствие современных двигателей, материалов и расчетов.

Но если многолетние “расчеты” показывают, что получается глупость, было бы странно продолжать что-то решать.

В будущем появятся новые легкие материалы и экономичные двигатели, но ситуация останется прежней. При внедрении новых технологий самолеты вновь покажут свое полное превосходство над экранопланами.

Любителей экранопланов огорчает сравнение ЭКП с авиацией и кораблями. По их мнению, этот гениальный “монстр” существует в отдельной реальности и в силу своей гениальности не может конкурировать с существующими видами транспорта.

Разные виды транспорта вполне нужно и можно сравнивать, т.к. РЖД вполне себе конкурент Аэрофлоту и борются за одного клиента. И вдруг в эту пару вклинивается какой-нибудь РосЭкраноплан и говорит, что сможет всех возить быстрее, дешевле и безопаснее. Сможет такой РосЭкраноплан отжать существенный кусок рынка перевозок у РЖД или Аэрофлота?


Комментарий от Alex_59

Будучи неспособными привести контраргументы технического характера и объяснить преимущества полета на малых высотах, любители ЭКП ссылаются на другие виды техники. Якобы также испытавшие невыносимые муки при внедрении в жизнь.

Заменить в этой статье экраноплан на “аэроплан”, поменять дату на 1903 год, и будет похоже на правду.

Только правда там другая.

Аэропланам хватило всего 10 лет для превращения в полноценные военно-воздушные силы. Без участия которых стал немыслим любой военный конфликт. Несмотря на убогость конструкции первых “этажерок”, их преимущества оказались так велики, что не смогли оставить никого в стороне.

Едва был создан надежный механизм перекоса винтов - в серию массово пошли вертолеты. “Сикорский R4” активно применялся в боевых действиях с апреля 1944 года. У немцев с 1944 году действовал вертолетоносец “Drache” c эскадрильей противолодочных вертолетов Fl.282 “Колибри”. Высоко оценив машину, командование Кригсмарине немедленно выдало заказ на 1000 таких “пташек”.

Возможность взлетать с любого “пятачка”, зависать на месте и перемещать габаритные грузы на внешней подвеске - свойства вертолетов бесценны.

А что может предложить экраноплан?

Единственное достижение создателей “монстров” было в том, что они, ценой невероятных усилий, все-таки смогли поднять в воздух то, что, по природе своей, летать не должно. Не обращая внимания на затраты, опираясь на бесконечное финансирование со стороны государства.

Вопрос, зачем и для чего создавать сложности на ровном месте, остался без ответа.

Наверное, им было весело гонять по Каспию 500-тонный “сарай” при помощи “гирлянды” из 10 реактивных двигателей от сверхзвуковых бомберов Ту-22.

Неадекватность 10-двигательного “монстра” была очевидна еще на этапе первичных расчетов. Но его все-таки воплотили в металле. И, видимо, эксперимент посчитали успешным. Бредовые идеи “Каспийского монстра” получили развитие в виде экраноплана “Лунь” с восемью двигателями от широкофюзеляжного авиалайнера Ил-86.

Комедия с экранопланами продолжалась более полувека, но длиться вечно она не могла. Получив результаты практической эксплуатации этих машин, в т.ч. 140-, 380- и 540-тонных “монстров”, заказчики из ВМФ, в конце концов, прикрыли бесперспективное направление.

В разы меньшая скорость и грузоподъемность при одинаковом взлетном весе, тройной расход топлива, невозможность полета над сушей - всё, что отличает экраноплан от обычного самолета.

Экраноплан идеален для высадки групп разведчиков - рёв 10 двигателей будет слышен на всем побережье.

О незаметности на радарах при полетах на малой высоте: что мешает проделать тот же трюк бомбардировщику-ракетоносцу? Подкрасться к цели на предельно малой высоте на вдвое большей скорости, чем ЭКП?

Вопреки слухам о безопасности экранопланов, “которые при отказе двигателей сразу садятся на воду”, в реальности они бьются ничуть не реже, чем обычные самолеты. Из восьми крупных “алексеевских” монстров было разбито четыре, в т.ч. две катастрофы с человеческими жертвами.

У пилотов экранопланов не остается спасительных секунд, чтобы оценить обстановку и выровнять машину. Одно неловкое движение штурвалом - и от удара о воду на 400 км/ч обломится хвост. Если взять штурвал немного на себя - отрыв от экрана, потеря устойчивости, утрата контроля над машиной, катастрофа, смерть.

Еще большей проблемой становится управляемость. В силу невозможности совершения виражей с глубоким креном, радиус поворота “Луня” на крейсерской скорости составлял три километра! Теперь самые отчаянные пусть попробуют “пройти” извилину реки на 380-тонном экраноплане. Или уклониться от неожиданно возникшего прямо по курсу буксира.

Единственная сфера применения ЭКП в наши дни - водный аттракцион для избалованных туристов, которым надоело кататься на банане и гидролыжах.

Идея с экранопланом не несет в себе ни малейшего здравого смысла. Полет на сверхмалой высоте способен только ухудшить все, без исключения, характеристики ЛА. Так же, как привязанная к ноге гиря никогда не будет способствовать повышению скорости бега спортсмена. Можно пересчитать еще раз и сделать гирю из карбона, но гиря останется гирей. Главный вопрос - зачем она вообще на ноге, если можно жить без гири.

С экранопланом представляет интересный социальный эксперимент. Как легко люди верят во всевозможную чушь. А при попытке указать на очевидную ошибочность их суждений готовы яростно отстаивать абсурдную точку зрения, обвиняя оппонентов в предательстве национальных интересов.

А потом удивляются, как смогли появиться кашпировские и МММ.

Те, кто призывает к возрождению работ над созданием тяжелых экранопланов, делятся на две категории. Первые - впечатлительные обыватели, которым понравился вид низко летящего “суперсамолета” с десятком ревущих двигателей. Будучи уверены в своей правоте, они не замечают недостатки и на ходу изобретают мнимые достоинства ЭКП.

Вторые представляют группу интересов серьезных людей. Которые все прекрасно понимают, потому пытаются запустить заведомо безрезультатный, оттого длительный и дорогостоящий проект, “распилив” на этом достойное количество средств.

Не случайно создание принципиально новых типов судов почти всегда связывают с малым судостроением. Именно на небольших, сравнительно недорогих лодках и катерах удобно проводить эксперименты, причем высокие скорости достигаются при умеренной мощности механической установки. Глиссирующие катера, катамараны, суда на подводных крыльях и воздушной подушке, - все они начинались с малых судов.

Примечательно, что достигнутые успехи получали затем быстрейшее развитие на более крупных судах, дающих больший экономический эффект. Возможно, так будет и с парящими судами - экранопланами, хотя в настоящее время (в стадии экспериментов) их размеры и грузоподъемность невелики. Сейчас трудно говорить о перспективах внедрения экранопланов, но вероятные области их применения можно связать с высокими скоростями и. проходимостью этих аппаратов. Вероятно, будут созданы быстроходные патрульные экранопланы для обширных заболоченных или заросших тростником устьев рек, возможно ими заинтересуются и спортсмены.

С основными принципами конструкции и движения экранопланов, их достоинствами и недостатками, по сравнению с судами других типов, знакомит читателей статья кандидата технических наук Н. И. Белавина.

Уже более ста лет инженеры-кораблестроители, борясь за скорость, стремятся «вытащить судно из воды», поднять его в воздух - среду в 840 раз менее плотную, чем вода. Глиссирование, подводные крылья, воздушная подушка, - таковы ступени развития этой идеи, последнюю из которых занимают экранопланы, т. е. аппараты, использующие при движении эффект повышения давления воздуха под крылом вблизи водной поверхности - экрана. Кстати, экранирующей. поверхностью может быть и земля, поэтому экранопланы, как и суда на воздушной подушке, являются амфибиями: они способны выходить на сушу, преодолевать заболоченные участки, парить над замерзшими водоемами и т. д.

Построенные в настоящее время экранопланы (табл. 1) еще далеки от совершенства. Их сравнительно низкие энерговооруженность и аэродинамические характеристики обеспечивают скорость в пределах 80-150 км/час. Однако специалисты пришли к выводу, что технически вполне осуществимо повышение скорости экранопланов до 350 и более км/час.


Для сравнения возможностей экранопланов и скоростных аппаратов уже привычных нам типов используется такой наглядный показатель как аэрогидродинамическое качество K, представляющее собой отношение подъемной (полезной) силы аппарата к величине сопротивления среды (воды, воздуха) его движению. Напомнйм, что от величины К зависит необходимая для движения с заданной скоростью мощность, а следовательно, и вес энергетической установки и, что еще более важно, расход топлива .

Для глиссеров со скоростями движения 60-80 км/час гидродинамическое качество К=6÷8, для судов на подводных коыльях с близкими скоростями К=10÷12, для судов на воздушной подушке К=12÷16 (с учетом поддува 4-5), а для самолетов аэродинамическое качество K=16÷17. Для существующих экранопланов значения А составляют 19-25, а это значит, например, что для движения с одинаковой скоростью экраноплаиу требуется втрое меньшая мощность, чем глиссеру.

Дело теперь за тем, чтобы практически реализовать это теоретически бесспорное преимущество. Вероятно, пройдет еще немного времени и над нашими реками и озерами появятся летающие катера - экранопланы. И мы не будем удивляться им, как не удивляет нас вид проносящихся мимо судов на крыльях или, тем более, пролетающих самолетов.

Из истории экранопланов

По-видимому, первый из них был создан финским инженером Т. Каарио. Зимой 1932 г. над замерзшей поверхностью озера он испытал экраноплан, буксируемый аэросанями. Позднее, в 1935-1936 гг. Каарио построил усовершенствованный аппарат, уже оборудованный двигателем с воздушным винтом, а в дальнейшем постоянно совершенствовал конструкцию своих экранопланов; последнюю модификацию - «Аэросани № 8» - он испытывал в 1960-1962 гг. (рис. 1).

В 1939 г. американец Д. Уорнер, занимавшийся экспериментами по снижению сопротивления быстроходных катеров, разработал проект катера, оборудованного системой несущих крыльев (рис. 2). Для облегчения выхода на расчетный режим околоэкранного полета предполагалось оборудовать этот аппарат системой поддува с двумя мощными вентиляторами.

В 40-х годах обширные эксперименты выполнялись в Швеции под руководством И. Троенга. Были построены два экраноплана по схеме «летающее крыло» (рис. 3), т. е. катамараны с несущим крылом.

В послевоенные годы работы по созданию экранопланов развернулись в США. Начиная с 1958 г. известным авиаконструктором У. Бертельсоном были построены и испытаны три аппарата. Это «Аркоптеры» «GEM-1» (рис. 4), «GEM-2», «GEM-З», выполненные примерно по одной и той же схеме, но имеющие разную величину. Двухместный экраноплан - «летающее крыло» (рис. 5) с толкающим воздушным винтом построил Н. Дискинсон. Американская фирма «Локхид» провела испытания трех аппаратов, последний из которых («летающая лодка») показан на рис. 6.

Самоходная пилотируемая модель 1000-тонного трансконтинентального пассажирского экранопла-на «Большой Вейландкрафт» была построена по проекту X. Вейланда (рис. 7). Это - четырехтонный катамаран с двумя несущими крыльями, расположенными одно за другим (типа тандем). Во время первых летных испытаний модель разбилась.

Экраноплан «Аэрофойлбот Х-112», спроектированный А. Липпишем, построен по чисто самолетной схеме и напоминает гидросамолет (рис. 8).

В Японии созданием экранопланов успешно занимается фирма «Кавасаки». Построенный ею аппарат «KAG-З» (рис. 9) представляет собой катамаран с несущим крылом и мощным подвесным мотором. Более подробное его описание приведено в следующей статье.

В нашей стране еще в начале 30-х годов очень интересный проект двухмоторного транспортного экраноплана был разработан авиаконструктором П. И. Гроховским. В 1963 г. студентами ОИИМФ под руководством Ю. А. Будницкого построен выполненный по схеме «летающее крыло» одноместный экраноплан с двумя мотоциклетными двигателями (рис. 10).

Аэродинамика экраноплана

Положение крыла над экраном характеризуется относительной высотой:


где h - высота задней кромки крыла над экраном, а b - хорда крыла. Установлено, что влияние экрана на работу крыла начинает сказываться при h
Благодаря близости экрана уменьшается и лобовое сопротивление крыла, главным образом, за счет снижения его индуктивного сопротивления (рис. 13). Напомним, что причиной индуктивного сопротивления являются вихри, возникающие на концах крыла вследствие перетекания воздуха из-под нижней плоскости (зона повышенного давления) на верхнюю (зона разрежения). Сопротивление профиля, обусловленное силами давления и трения, с приближением крыла к экрану изменяется сравнительно мало.

С приближением крыла к экрану качество К может увеличиться в 1,5-2 и более раз по сравнению с его значением для данного же крыла, но на большой высоте; одновременно можно заметить, что при этом максимальные значения К достигаются при меньших углах атаки. Естественно, что К вблизи экрана, как и на большой высоте, сильно зависит от характеристик самого крыла. Отметим, что применяющиеся на экранопланах профили крыла по своим основным характеристикам различаются мало. На эк-раноплане «ОИИМФ-2» применен профиль с относительной толщиной С=10÷12%.

При расчете площади крыла определяющей величиной является удельная нагрузка на единицу его площади. Для существующих экранопланов величина эта сравнительно невелика (35-50 кг/м 2), что объясняется стремлением ограничить мощность двигателя экспериментального аппарата.

Устройства для повышения качестве крыла

Для повышения летных и особенно взлетно-посадочных характеристик экранопланов их крылья оборудуют (рис. 14) щитками, закрылками, заслонками, концевыми шайбами. Применяются поворачивающиеся крылья.

Напомним, что отклонение щитков и закрылков обеспечивает увеличение подъемной силы крыла, главным образом, благодаря повышению вогнутости его Профиля. Концевые шайбы уменьшают перетекание воздуха через оконечности крыльев, а вблизи экрана обеспечивают образование под крылом полузамкнутого контура с зоной повышенного давления. На экранопланах обычно применяются односторонние шайбы, расположенные только с нижней стороны крыла.

Особенности аэрогидродинамической компоновки

Существуют две схемы компоновки экранопланов: «летающее крыло» и самолетная.

Первая характеризуется тем, что несущее крыло опирается концами на два поплавка, которые одновременно выполняют роль концевых шайб. Достоинствами этой схемы являются высокое аэродинамическое качество (благодаря отсутствию развитого корпуса и надстроек) и возможность использования объемов самого крыла для размещения грузов, основным недостатком - сложность решения проблемы устойчивости и мореходности (особенно для малых аппаратов).

В самолетной схеме из-за малого удлинения крыла λ сравнительно сильно сказывается влияние корпуса (фюзеляжа) аппарата, снижающее качество. Тем не менее, крылья малого удлинения установлены на большинстве современных экранопланов (исключение представляет модель X. Вейланда), так как с увеличением λ=l/b существенно ухудшаются мореходные и эксплуатационные качества аппарата, например, появляется опасность касания концом крыла гребня волны. При заданной площади крыла необходимое значение К можно обеспечить за счет уменьшения h, что требует, как известно, при заданной высоте полета увеличения хорды крыла, т. е. соответствующего уменьшения λ.

Устойчивость

Экраноплан, как и самолет, должен обладать способностью сохранять заданный режим полета и самостоятельно (без вмешательства пилота) возвращаться к нему после, например, порыва ветра. При движении аппарата продольная устойчивость в значительной степени обусловлена взаимным расположением его центра тяжести ЦТ и аэродинамического фокуса F (рис. 15), т. е. точки, относительно которой момент полной аэродинамической силы крыла не зависит от угла атаки при постоянной скорости полета. Если ЦТ самолета расположен впереди фокуса, аппарат обладает статической продольной устойчивостью (по перегрузке). Для экранопланов проблема устойчивости значительно сложнее, так как положение фокуса крыла экраноплана зависит не только от угла атаки, но и от h.

Продувками моделей установлено, что обычно применяемые крылья не обладают продольной устойчивостью, поэтому все современные экранопланы (как и самолеты) приходится оборудовать стабилизаторами или другими устройствами, смещающими их F в хвост аппарата (тем самым увеличивается расстояние между ЦТ и F). Наиболее успешно проблема продольной устойчивости решена на аппарате «Х-112», на котором она обеспечивается, главным образом, высоко установленным на вертикальном оперении, за пределами влияния экрана, развитым стабилизатором.

Что же касается поперечной устойчивости экранопланов, то она практически всегда будет обеспечена: в случае накренения аппарата на консоли крыла, приближающегося к экрану, возрастает подъемная сила и появляется восстанавливающий момент.

Путевая (курсовая) устойчивость обеспечивается примерно теми же способами, которые приняты в авиации, т. е. соответствующим выбором площади вертикального оперения (воздушного киля) и его положения относительно ЦТ экраноплана. При этом, естественно, существенную роль играет общая компоновка аппарата, в частности, положение точки приложения тяги винта.

Управляемость

Для управления по курсу чаще всего ставят один или два воздушных руля, для повышения эффективности обычно располагаемых в струе воздушного винта. В случае применения гребного винта используется обычный водяной руль либо подвесной мотор.

Известную сложность представляет свойственный экранопланам сильный дрейф на циркуляции; ведь у них нет ни погруженной в воду части корпуса, ни стоек подводных крыльев. Возможности выполнения крутых виражей со скольжением несущего крыла ограничены опасной близостью поверхности воды или Земли.

Для управляемости в продольной плоскости практически все экранопланы, включая и аппараты с гребным винтом, оборудуются рулем высоты или закрылком. Эти же устройства используются при старте экраноплана и для балансировки его на выбранном режиме полета.

Управляемость аппаратов в поперечной плоскости, т. е. по крену, необходимая для противодействия кренящим моментам и выполнения виражей, осуществляется при помощи элеронов, элевонов (т, е. тех же элеронов, но выполняющих одновременно и функции рулей высоты) или зависающих элеронов (т. е. элеронов, могущих работать и в режиме закрылков). Площадь этих дополнительных плоскостей довольно велика, так как скорость движения экраноплана все же значительно меньше, чем скорость самолета. Так, суммарная площадь V-образного хвостового оперения на «KAG-З» составляет 3,2 м 2 или около 35% площади несущего крыла.

Двигатели и движители

Мощность двигателей экранопланов, как правило, сравнительно невелика: отнесенная к полному весу экраноплана она колеблется от 80 до 160 л. с./т.

Большинство современных экранопланов приводится в движение воздушным винтом. Достоинства его очевидны: это возможность достижения больших скоростей и обеспечения амфибийных качеств аппарата.

Реже используется гребной винт, работающий в воде. Его положительными сторонами являются сравнительно небольшие размеры и незначительная шумность, а самое главное - более высокий к. п. д. на скоростях до 100-120 км/час. Так, на швартовах удельный упор, развиваемый воздушными винтами, колеблется в пределах 2-3 кг/л. с., а у гребных достигает 4-5 кг/л. с.

Стартовые устройства

Для выхода на основной режим движения экраноплану, как и гидросамолету или судну на подводных крыльях, необходимо развить скорость, при которой подъемная сила крыльев станет равной весу аппарата и оторвет его от воды. Испытаниями моделей установлено, что максимальное сопротивление движению («горб» на кривой сопротивления) возникает на скоростях, составляющих 40-60% от скорости отрыва.

Из рис. 16 видно, что горб полного сопротивления R возникает вследствие роста его гидродинамической составляющей W при повышении скорости на режиме плавания. Именно горбу сопротивления при критической скорости υ кр и соответствует минимальное значение аэрогидродинамического качества К экраноплана. Если максимальная тяга движителя недостаточна (кривая 1), экраноплан не сможет преодолеть горб сопротивления и будет продолжать глиссировать со скоростью, соответствующей точке α.

Насколько резко меняется сопротивление при разбеге видно, например, из кривой сопротивления экраноплана «Х-112» (рис. 17). При выходе на расчетный режим R упало с 25-35 до 10 кг, а гидродинамическое качество К (при весе D=231 кг) увеличилось с 7,7 до 23.

Для преодоления горба сопротивления при разбеге и выходе на расчетный режим было бы необходимо кратковременно повышать мощность двигателя в 2,5-3,5 раза по сравнению с той, которая необходима для полета. На практике повышения подъемной силы, выталкивающей корпус из воды в момент разгона, достигают применением каких-либо стартовых устройств: закрылков, предкрылков, поворотных крыльев, гидролыж, систем поддува.

На «Аэросанях № 8», например, это - два небольших поворотных крыла, установленных между боковыми шайбами в струе воздушного винта. В момент разбега среднее крыло при помощи ручного привода устанавливается так, что отбрасываемая винтом воздушная струя направляется под основное несущее крыло. В результате в полузамкнутом объеме под несущим крылом, огражденном с боков поплавками-шайбами, а в хвостовой части опущенными закрылками, образуется воздушная подушка с повышенным давлением. Таким образом, даже при отсутствии поступательного движения на крыле развивается значительная подъемная сила, приподнимающая аппарат из воды.

Стартовое устройство в виде гидролыж, т. е. подводных крыльев Еесьма малого удлинения (λ=0,1÷0,2 и менее), до настоящего времени было применено лишь на экраноплане X. Вейланда. Считается, что их достоинствами являются довольно высокое гидродинамическое качество (К=5÷6), возможность снижения перегрузок аппарата при движении на волнении и простота.

Стартовое устройство в виде специальной системы поддува, состоящей из двух вентиляторов с газотурбинным приводом, предусмотрено лишь на экраноплане «Коламбиа».

Стартовые устройства могут применяться также и для снижения перегрузок при посадке, особенно в сложных гидрометеорологических условиях.

Конструкция корпуса

По конструкции корпуса, поплавков, крыльев и других элементов современные экранопланы во многом напоминают самолет. Большинство аппаратов выполнено из легких, главным образом алюминиевых, сплавов, причем толщины обшивки и профилей набора (например, у экраноплана ОИИМФ) находятся в пределах 0,5-2,0 мм.

Несколько отличаются от других аппараты У. Бертельсона, на которых применена ферменная конструкция из легких стальных труб с дюралевой обшивкой. Оригинальна конструкция экраноплана Н. Дискинсона: несущее крыло и поплавки выполнены из сплошных брусков пенопласта, стянутых тонким стальным тросом.

Все в больших масштабах применяются и новые конструкционные материалы. Например, часть обшивки «KAG-З» изготовлена из стеклопластика.

1. Основы теории крыла читатель найдет в статье Э. А. Афрамеева и В. В. Вейнберга, помещенной . Здесь напомним выражение, связывающее мощность N p и основные расчетные характеристики аппарата:


где G - его вес, υ - заданная скорость.

2. При повышении скоростей до 140-150 км/час значение К из-за кавитации крыльев падает до 5-6, в то время как для экранопланов оно сохраняется без изменений. Это делает вывод в пользу экранопланов еще более очевидным.

Все знают, что такое самолет, и что такое корабль. Но что получится, если объединить эти два объекта? Летучий корабль, или плавучий самолёт? Оказывается, учёные уже давно изобрели такой "гибрид", и имя ему - экраноплан.

Экраноплан - что это?

Википедия в своём строгом стиле даёт определение экраноплана: это скоростное транспортное средство, летающее на небольшой высоте и способное приземлиться на поверхность воды. От самолёта его отличает необходимость оставаться над гладкой поверхностью, в качестве которой подходит вода, снег, лёд, или, на худой конец, земля. От корабля - способность летать. Тем не менее, примечательно, что относится это чудо техники именно к морским судам.

Физика полёта экраноплана

Для удержания транспорта в воздухе необходима подъемная сила. В случае с экранопланом, её генерирует так называемый экранный эффект. По сути он является воздушной подушкой, которая образуется благодаря набегающему на крыло потоку воздуха, а не механическими устройствами, как например в . Крыло экраноплана создаёт подъёмную силу не только за счёт разрежения воздуха сверху, как у самолёта, но и за счёт его уплотнения снизу. Беда в том, что создать повышенное давление под плоскостью крыла получается только на небольших высотах. В этом и есть ограничение использования экранопланов.

Достоинства и недостатки экранопланов

К достоинствам этого вида транспорта можно отнести:

  • безопасность: малая высота полёта и возможность сесть на поверхность, над которой осуществляется полёт, сводит на нет возможные авиакатастрофы из-за поломок,
  • высокая скорость - до 600 км/ч. что значительно быстрее любых судов,
  • высокие экономичность и грузоподъёмность, значительно выше чем у самолётов,
  • для взлёта и посадки экранопланам не нужна взлётная полоса.

При всех имеющихся достоинствах, экранопланы не лишены некоторых недостатков:

  • территория их полётов вдоль рек совпадает с зонами обитания птиц,
  • низкая маневренность,
  • необходимость летать невысоко над относительно гладкой поверхностью,
  • процедура старта требует больших затрат энергии.

Использование экранопланов в современном мире

Разные страны мира ведут исследования и опытные разработки по усовершенствованию конструкции экранопланов и избавлению их от недостатков. Так, например, США в 2003 году представило проект военного экранолёта Pelican, способный перевозить до 1400 тонн груза на расстояние в 16 тысяч километров. Китайская компания Hainan Yingge Wing провела на побережье острова Хайнань лётные испытания аппаратов CYG-11, собранных по российским чертежам (проект "Иволга"). Южная Корея в сентябре 2007 года объявила о строительнстве крупного коммерческого экраноплана, который должен быть способер перевозить 100 тонн груза со скоростью до 300 км/ч. К сожалению, новостей об этой разработке более не поступало.

В России КБ "Сухой" в 2000 году продемонстрировал небольшой коммерческий экранолёт С-90, способный переносить 4 тонны груза более чем на 3 километра. Кроме того, существует несколько проектов экранопланов, разрабатываемых российскими организациями для гражданского и военного применения.

Где можно увидеть экраноплан вживую?

В 2012 году в Москве, у берега водохранилища близ парка "Северное Тушино" можно было обнаружить экраноплан "Орлёнок" проекта А-90. Стоит ли он там до сих пор - не известно.