3d принтер что такое работает. Видео: как работает механизм

Сегодня практически любой человек имеет возможность купить 3D принтеры. Это устройство, которое способно не только открыть широкие возможности для творчества, но и избавить от шаблонных решений. Возможности современных моделей 3Д-принтеров расширяются с каждым днём, открывая новые горизонты и сферы применения. Огромный выбор позволяет подобрать технику, которая будет отвечать разным параметрам, включая габариты, цену, стоимость эксплуатации и другие.

3D принтеры: как это работает?

В основе работы любого 3Д-принтера, независимо от технологии печати лежит «методика слоёв». Смысл её заключается в том, что трёхмерный объект разбивается на горизонтальные слои, то есть виртуально как бы разрезается на них. Выполняется это при помощи специального программного обеспечения (слайсера) при отправке смоделированного на компьютере трёхмерного объекта на печать. Затем в рабочей камере 3D-принтера последовательно воссоздаётся каждый слой объекта. Толщина слоя будет определять точность получаемого объекта. Чем меньше будет толщина слоя, тем более качественной, точной и детализированной будет 3Д-печать. А в основе каждой конкретной технологии лежит метод соединения слоёв:

  • спаивание;
  • наплавление;
  • отверждение посредством лазерного или УФ-луча;
  • склеивание и т.д.

Аддитивных технологий множество и каждая имеет принципиальные отличия, обладает достоинствами и недостатками.

Технологии 3D-печати

Технологий 3Д-печати существует очень много, причём ежегодно появляются новые или же модифицируются уже имеющиеся. Процесс совершенствования бесконечен. Самыми широко востребованными технологиями 3D-печати являются:

  • FDM – послойное наплавление;
  • Фотополимерная - SLA (стереолитография), PolyJet;
  • SLS – селективное лазерное спекание;
  • 3DP – 3Д принтинг;
  • LOM - ламинирование.

Послойное наплавление пластиковой нити (FDM)

Наиболее доступная технология 3D-печати – это FDM. Суть её заключается в использовании пластиковых нитей, которые расплавляются до полужидкого состояния и выдавливаются через экструдер. Головка с экструдером перемещается над рабочей платформой, слой за слоем нанося расплавленный пластик, который застывая образует объект. Для прототипирования используются такие пластики, как: ABS, PLA, HIPS, Nylon и другие.

Достоинства: доступная цена на оборудование и расходники, простота и понятность технологии, возможность собрать FDM 3Д-принтер самостоятельно, RepRap – возможность воссоздания, то есть большинство деталей 3Д-принтера можно напечатать на нём.

Недостатки: низкая скорость печати, высокая степень слоистости изделий (низкое разрешение), сложная фиксация модели на рабочем столе, необходимость поддержек, термоусадка, много отходов, сложность выбора оптимальной температуры и условий.

Фотополимерная технология печати (SLA / DLP / PolyJet)

По данной технологии работает также достаточное количество 3д-принтеров. Суть её заключается в послойном отверждении полимерной смолы путём воздействия на неё ультрафиолета. При этом модель может выращиваться из ванны с фотополимером (SLA) или фотополимерная смола может послойно распыляться, как в модификации технологии – PolyJet.

Достоинства: высокая точность и детализация, высокая механическая прочность объектов, низкий процент отходов, простая постобработка, если она вообще требуется.

Недостатки: небольшой спектр материалов, высокая стоимость оборудования и расходников, невозможность цветной печати, использования разных материалов в ходе печати, низкая скорость печати.

Селективное лазерное спекание (SLS)

Технология 3D-печати SLS – это метод выборочного лазерного спекания. В качестве расходного материала выступает порошок, который тонким слоем наносится и затем точечно послойно спекается при помощи лазерного луча. В данном случае может использоваться металл, пластик, стекло, керамика, воск и другие порошковые материалы. При этом нерасплавленный порошок будет выступать в качестве поддержек.

Достоинства: большой выбор разнообразных материалов, возможность создания объектов со сложной геометрией, сравнительно высокая скорость печати, возможность использования для мелкосерийного производства, отсутствие необходимости в поддержках.

Недостатки: необходимость мощного лазера и герметичной камеры с низким содержанием кислорода, необходимость постобработки, сравнительно небольшое разрешение (в сравнении с SLA), высокая стоимость.

Печать гипсополимером (CJP)

Для печати используется гипсовый композитный порошок, который послойно склеивается специальным жидким клеевым составом. Тонкий слой порошка наносится и разравнивается при помощи валика, а головка точечно наносит клей. Рабочая поверхность опускается, и процесс повторяется.

Достоинства: отсутствие необходимости в поддержках, порошок, который не был проклеен можно использовать ещё раз, возможность создания объектов со сложной геометрией, возможность полноцветной печати, высокое разрешение.

Недостатки: ограниченность материалов, необходимость постобработки, низкая прочность изделий, большой вес и габариты аппарата.

3D ламинирование(LOM)

В качестве расходного материала используются тонкие листы бумаги или пластика. Эти листы скрепляются при помощи клеевого состава и прессуются. А специальный нож или лазер предварительно раскраивает каждый лист. В конце лишние непроклеенные детали удаляются.

Достоинства: низкая стоимость и доступность расходного материала (чаще всего бумага), возможность полноцветной высокоточной печати, возможность печати габаритных моделей, нет необходимости в поддержках.

Недостатки: толщина слоя определяется толщиной листа, сложность удаления лишних материалов, и большое количество отходов, необходимость финишной обработки, ограниченный выбор материалов.

Какие бывают 3Д-принтеры?

В большей степени тип 3Д-принтера определяется технологией печати. Однако также различают:

  • Персональные 3Д-принтеры – предназначены для домашнего использования. Как правило, это негабаритные модели, которые не отличаются широкой функциональностью и возможностями.
  • Профессиональные 3Д-принтеры – это модели, предназначенные для профессиональной деятельности. Например, медицинские 3Д-принтеры, ювелирные, стоматологические, а также оборудование для архитектурных и дизайнерских бюро и т.п. Такая техника обладает широкими возможностями и чаще всего ориентирована на требования профессиональной сферы. Такое оборудование более дорогостоящее и точное.
  • Промышленные 3Д-принтеры – это оборудование, которое используется в производстве. С их помощью можно организовать мелкосерийное производство или изготавливать эксклюзивные штучные изделия. Также можно использовать данное оборудование для создания мастер-моделей, тестируемых образцов и литьевых форм. Промышленные 3Д-принтеры чаще всего имеют внушительный вес и габариты, а также отличаются высокой стоимостью.

Сферы применения 3Д-принтеров

Использование 3Д принтеров фактически ничем не ограничивается. Они уже стали развивающей игрушкой для детей, учебным оборудованием в школах и институтах, помогают раскрыть творческий потенциал в дизайнерской сфере. При помощи 3Д-принтеров создаются архитектурные модели и прототипы деталей. На это раньше уходило очень много времени, теперь подготовительный этап перед презентацией сократился до считанных часов.

Незаменимыми 3Д-принтеры стали в стоматологической отрасли. С их помощью создаются уникальные и высокоточные капы, протезы, хирургические шаблоны, что вкупе позволяет повысить качество оказываемых услуг, минимизировать риски и нивелировать ошибки.

В медицине при помощи 3д-принтеров создают высокоточные копии органов, благодаря чему можно точно спланировать ход сложных операций. Оборудование для прототипирования используется в создании протезов.

Но и это далеко не все сферы использования аддитивных технологий. 3Д-принтеры применяются:

  • в автомобилестроении
  • в авиастроении и космической отрасли;
  • в ювелирной сфере;
  • для создания уникальной одежды и обуви;
  • в протезировании;
  • в дизайне;
  • в мелкосерийном производстве;
  • при изготовлении эксклюзивной сувенирной продукции и бижутерии;
  • при оказании ремонтных услуг и тюнинге;
  • в обучении и научных исследованиях;
  • в археологии и музейном деле;
  • в строительстве и т.д.

С 3Д-принтером любые шаблонные решения уходят на второй план.

Программное обеспечение для 3D принтеров

Любой 3D объект перед отправкой на печать должен быть смоделирован в специальном программном обеспечении. Создание любого объекта сводится к тому, чтобы смоделировать объект в виртуальном пространстве, «нарезать» его на слои и задать алгоритм его печати (G-code). Именно для последних двух задач используются слайсеры. Большинство слайсеров также оснащено понятным инструментарием для 3Д-моделирования.

Среди самого популярного и востребованного софта данного назначения следует отметить:

  • Slic3r
  • CraftWare
  • 3D Slash
  • Blender 3D
  • 3DTin и другие

Каждая из этих программ обладает своим достоинствами, особенностями и функционалом. Выбор всегда остаётся за пользователем.

3DMALL: купить 3Д принтер легко!

Компания 3ДМОЛЛ реализует широкий ассортимент 3Д-принтеров персонального. Профессионального и промышленного назначения. Интернет-магазин и его команда стояли у истоков становления 3д-технологий в России. Поэтому и сегодня специалисты компании держат руку на пульсе, отслеживая все последние инновации в данной сфере и предлагая клиентам квалифицированную и компетентную помощь.

3D-принтер - это устройство, которое позволяет создавать самые настоящие объекты, причем из самых разных материалов. Крючок для полотенца, компрессор для газовой турбины, чехол для смартфона – все это можно напечатать.

В данной статье мы рассмотрим самый распространённый тип 3D-принтеров, который работает по технологии FDM (метод послойного наплавления)

Из чего состоит 3D-принтер

3D-принтер состоит из корпуса (1) , закрепленных на нем направляющих (2) , по которым перемещается печатающая головка (3) с помощью шаговых двигателей (4) , рабочего стола (5) , на котором выращивается изделие; и всё это управляется электроникой (6) .

Чем печатает 3D-принтер

Расходные материалы (филаменты) для 3D-принтеров представляют из себя пластиковые нити, намотанные на катушки. Расходные материалы бывают различных типов и свойств. О всех типах материалов можно почитать в энциклопедии 3Dtoday.

Килограмм самого дешевого пластика можно купить за какие-то 500 руб., хотя более интересные варианты (например, имитаторы древесины или песчаника с наполнителями из настоящей древесины или камня) уже могут обойтись в несколько раз дороже.


Как работает 3D-принтер

Нить (филамент) (1) поступает в печатающую головку (Экструдер) (2) , в которой разогревается до жидкого состояния и выдавливается через сопло экструдера. Шаговые двигатели с помощью зубчатых ремней приводят в движение Экструдер (2) , который перемещается по направляющим (3) и наносит пластик на платформу (4) слой за слоем. Снизу в вверх. В итоге ваше изделие (5) растёт слой за слоем.


Как запрограммировать 3D-принтер на печать

Для начала работы (печати) на 3D-принтере, будущий предмет необходимо нарисовать, причем во всех трех измерениях. Делается это с помощью специальных программ, называемых CAD-редакторами или САПР («Системами автоматизированного проектирования»). При этом рисовать модели самому совершенно необязательно – готовые варианты всевозможных крючков, чехлов или даже квадрокоптеров можно просто скачать с различных интернет-сайтов. В крайнем случае, если душа к проектированию не лежит, а необходимой модели в интернете нет, всегда можно заказать ее у профессионалов.


Когда дело доходит до 3D-печати, такие модели подвергаются «слайсингу», то есть разбиваются на отдельные слои с помощью специальных программ, так и называемых – слайсеры. Представьте, что вы хотите напечатать вазу: первым делом вазу необходимо условно нарезать на тонкие-тонкие слои, а каждый из них опять-таки условно сфотографировать. Стопку полученных снимков можно передать принтеру, и он сделает копию каждой картинки, одну поверх другой, пока слой за слоем не воссоздаст оригинальную вазу. Вот только «рисуют» принтеры по-разному и разными материалами.


Слайсер формирует специальную программу для 3D-принтера. В этой программе принтеру рассказывается, как нужно печатать модель - куда двигаться экструдеру, с какой скоростью выдавливать пластик, какая толщина слоев будет у модели и др параметры. Вся программа для принтера сохраняется в файл под названием g-code. Дальше через флеш карту или USB провод программа загружается в 3D-принтер и запускается печать.
Пруток подается в печатающую головку, где плавится и выдавливается через тонкое сопло. Головка передвигается в двух плоскостях, вырисовывая нитью целый слой – один из срезов того самого «яблока». Закончив один слой, принтер приподнимает головку или опускает платформу, а затем начинает печатать новый слой поверх только что нанесенного. Так, слой за слоем, срез за срезом, выращивается копия оригинального предмета.


Теперь должно быть понятным происхождение термина «аддитивные технологии». Большинство цифровых производственных методов основываются на удалении лишнего материала. Например, то же самое яблоко можно выточить, высверлить и выпилить из болванки. Такие технологии называются субтрактивными (от англ. «subtract» – «отнимать»). В 3D-печати все с точностью до наоборот: объект выстраивается крупинка за крупинкой, слой за слоем, с нуля. Отсюда и термин «аддитивный процесс» (от англ. «add» – «добавлять»).


Как мы уже говорили, 3D-принтеров великое множество и устроены они по-разному. Особо сложные промышленные машины, спекающие слои из мелких металлических порошков с помощью высокоточных лазеров, могут стоить сотни тысяч долларов. А вот настольные варианты, печатающие пластиковой нитью, вполне по карману обычному любителю: приличный конструктор вполне можно найти за 20 000 руб. даже в текущий кризисный период, а полностью собранные, отлаженные машины с массой дополнительных функций вроде подогрева рабочей камеры, сенсорного дисплея и автоматической калибровки редко стоят более 200 000 руб. Такие принтеры используют технологию FDM (Fused Deposition Modeling) или «Моделирование послойным наплавлением»

Насколько функциональны печатаемые изделия?

Скажем так: все зависит от качества процесса и используемого пластика. На домашнем 3D-принтере вполне реально печатать рабочие шестеренки для самодельных роботов или пластиковые корпуса для электронных гаджетов. Матерым инженерам-любителям даже доступны прочные пластиковые композиты с углеволоконными добавками. Само собой, сувениры, игрушки или новая ручка для сковородки не составят никаких проблем. Самое же замечательное то, что у вас появиться возможность создавать уникальные изделия или ремонтировать вещи, давно снятые с производства. Себестоимость одной детали, как правило, будет выше, чем у ширпотреба, но и здесь бывают исключения. Хотя бы те же защитные кожухи для смартфона: 50-граммовый 3D-печатный чехол из ABS-пластика хорошего качества обойдется примерно в 50 рублей, плюс небольшие затраты на электричество, а аналогичный кейс с витрины будет стоить в 5-10 раз дороже.


Производство настольных 3D-принтеров уже вовсю налажено в России, причем отечественные аналоги ничем не хуже западных вариантов, и это не пустые слова. Полного замещения комплектующих пока никому из отечественных производителей добиться не удалось, но готовые продукты дешевле западных конкурентов и не уступают им по характеристикам или качеству печати, а за сервисным обслуживанием не придется далеко бегать. Помимо FDM-принтеров существуют и машины, работающие с жидкими смолами, отверждаемыми светом, пластиковыми и металлическими порошками, спекаемыми лазерами, и даже устройства, изготавливающие высокоточные трехмерные модели из листов обычной бумаги, но это уже отдельная история.
  • Робототехника ,
  • 3D-принтеры
  • На хабре уже были статьи о технологиях печати, которые используют 3D принтеры, однако в данной статье я постарался подойти к вопросу системно, чтобы в голове у читателя сложилась четкая картина о том, какие принципы заложены в технологии 3D печати, какие материалы используются и в конечном итоге какую технологию лучше использовать для получения определенного результата, будь то деталь из титана, или мастер-модель для последующего тиражирования.
    Статья основана на книге Fabricated: The New World of 3D printing

    I. Те которые что-то выдавливают или выливают или распыляют

    1) FDM (fused deposition modeling) принтеры которые выдавливают какой-то материал слой за слоем через сопло-дозатор, не буду расписывать подробно, мы про них все знаем. Все мэйкерботоподобные принтеры + принтеры Stratasys + различные кулинарные принтеры (используют глазурь, сыр, тесто) + медицинские которые печатают “живыми чернилами” (когда какой-либо набор живых клеток помещается в специальный медицинский гель которые используется далее в биомедицине)

    2) Технология Polyjet , была изобретена израильской компанией Objet в 2000 г. в 2012 их купили Stratasys. Суть технологии: фотополимер маленькими дозами выстреливается из тонких сопел, как при струйной печати, и сразу полимеризуется на поверхности изготавливаемого девайса под воздействием УФ излучения. Важная особенность, отличающая PolyJet от стереолитографии, является возможность печати различными материалами.
    Преимущества технологии: а) толщина слоя до 16 микрон (клетка крови 10 микрон) б) быстро печатает, так как жидкость можно наносить очень быстро. Недостатки технологии: а) печатает только с использованием фотополимера - узко-специализированный, дорогой пластик, как правило, чувствительный к УФ и достаточно хрупкий.
    Применение: промышленное прототипирование и медицина

    3) LENS (LASER ENGINEERED NET SHAPING)
    Материал в форме порошка выдувается из сопла и попадает на сфокусированный луч лазера. Часть порошка пролетает мимо, а та часть, которая попадает в фокус лазера мгновенно спекается и слой за слоем формирует трехмерную деталь. Именно по такой технологии печатают стальные и титановые объекты.
    Поскольку до появления этой технологии печатать можно было только объекты из пластика, к 3D печати особенно серьезно никто не относился, а эта технология, открыла двери для 3D печати в “большую” промышленность. Порошки различных материалов можно смешивать и получать таким образом сплавы, на лету.
    Применение: например, титановые лопатки для турбин с внутренними каналами охлаждения. Производитель оборудования: Optomec

    4) LOM (laminated object manufacturing)
    Тонкие ламинированные листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются в трехмерный объект. Т.е. укладывается тонкий лист материала, который вырезается по контуру объекта, таким образом получается один слой, на него укладывается следующий лист и так далее. После этого все листы прессуются или спекаются.
    Таким образом печатают 3D модели из бумаги, пластика или из алюминия. Для печати моделей из алюминия используется тонкая алюминиевая фольга, которая вырезается по контуру слой за слоем и затем спекается с помощью ультразвуковой вибрации.

    II. Те которые что-то спекают или склеивают

    1) SL (Stereolithography) Стереолитография.
    Есть небольшая ванна с жидким полимером. Луч лазера проходит по поверхности, и в этом месте полимер под воздействием УФ полимеризуется. После того как один слой готов платформа с деталью опускается, жидкий полимер заполняет пустоту далее запекается следующий слой и так далее. Иногда происходит наоборот: платформа с деталью поднимается вверх, лазер соответственно расположен снизу…
    После печати таким методом, требуется постобработка объекта - удаление лишнего материала и поддержки, иногда поверхность шлифуют. В зависимости от необходимых свойств конечного объекта модель запекают в т.н. ультрафиолетовых духовках.
    Фотополимер зачастую бывает токсичным поэтому при работе с ним нужно пользоваться средствами защиты и респираторами. Содержать и обслуживать такой принтер дома - сложно и дорого
    Преимущества: быстро и точно, точность до 10 микрон. Для спекания фотополимера достаточно лазера от Blu-ray проигрывателя, благодаря чему на рынке появляются дешевые при этом точные принтеры работающие по такой технологии (e.g. Form1).

    2) LS (laser sintering)
    Лазерное спекание. Похоже на SL, только вместо жидкого фотополимера используется порошок, который спекается лазером.
    Преимущества: а) менее вероятно, что деталь сломается в процессе печати, так как сам порошок выступает надежной поддержкой б) материалы в порошковой форме довольно легко найти в продаже в том числе это могут быть: бронза, сталь, нейлон, титан
    Недостатки: а) поверхность получается пористая б) некоторые порошки взрывоопасны, поэтому должны храниться в камерах, заполненных азотом в) спекание происходит при высоких температурах, поэтому готовые детали долго остывают, в зависимости от размера и толщины слоев, некоторые предметы могут остывать до одного дня.

    3) 3DP (three dimensional printing)
    Технология изобретена в 1980 году в MIT студентом Paul Williams, технология была продана в несколько коммерческих организаций, одна из которых - zCorp, в настоящее время поглощена 3D Systems.
    На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс)
    Преимущества: а) так как используется клей, в него можно добавить краску и таким образом печатать цветные объекты б) технология относительна дешевая и энергоэффективная в) можно использовать в условиях дома или офиса в) можно печатать использовать порошок стекла, костный порошок, переработанную резину, бронзу и даже древесные опилки. Используя похожу технологию можно печатать съедобные объекты например из сахара или шоколадного порошка. Порошок склеивается специальным пищевым клеем, в клей может добавляться краситель и ароматизатор. Как пример, новые 3D принтеры от компании 3D systems, которые были продемонстрированы на CES 2014 - ChefJet и ChefJet Pro
    Недостатки: а) на выходе получается достаточно грубая поверхность, с невысоким разрешение ~ 100 микрон б) материал нужно подвергать постобработке (запекать), чтобы придать ему необходимые свойства.

    Надеюсь материал будет для вас полезен.
    Дополнения принимаются.

    О существовании 3D печати слышал, наверняка, каждый, а в новостях то и дело проскакивают факты о новых возможностях этой технологии. Не так давно трехмерная печать использовалась только в производственных условиях и немногими энтузиастами, сегодня же можно запросто купить 3D принтер для использования в быту. С помощью таких устройств печатают самые разные вещи : от декоративных безделушек для дома до протезов, оружия и даже зданий. Перспективы трехмерной печати настолько фантастические, что мало кто сегодня может в полной мере их себе представить. А пока наблюдаем за тем, как будущее наступает , изучаем принципы работы 3D принтера, его возможности и преимущества, а также разбираемся, какой 3D принтер выбрать для использования в быту.

    Несмотря на то, что технология трехмерной печати находится у всех на слуху только последние несколько лет, ее появление стоит искать еще в прошлом веке. Пионером в данной области стала компания Charles Hull, которая в 1984 году разработала технологию трехмерной печати, а чуть позже запатентовала технику стереолитографии, которая сегодня используется повсеместно. Тогда же компания разработала и создала первый промышленный трехмерный принтер, который фактически стал началом новой эпохи.

    90-е годы стали временем появления новых разработок в сфере трехмерной печати, благодаря которым 3D принтеры нашли применение в производственных условиях и стали использоваться для прототипирования. Пик развития технологии приходится на XXI век, и мы сами становимся очевидцами того, как семимильными шагами трехмерная печать покоряет новые вершины. Сегодня печать может осуществляться разными материалами, причем не только пластиками и металлом , но и тканью, бумагой, керамикой, пищевыми продуктами и даже живыми клетками.

    В 2005 году появилась возможность печатать в цвете, а в 2006 году был создан принтер, который может распечатать около половины всех собственных комплектующих. В 2014 году появились первые принтеры с областью печати, практически неограниченной в размере. С помощью этого устройства уже попытались создать полноценный дом, используя в качестве основного материала бетон. На возведение такого сооружения было потрачено не более суток. Уже в 2016 году было представлено первое здание, построенное с помощью трехмерной печати в Дубае. В феврале 2017 года Россия также представила дом, целиком напечатанный на стройплощадке. В этом году также был разработан принтер с шестью осями, с помощью которого сложные элементы будет печатать намного проще, без необходимости использовать поддерживающие конструкции. На данный момент вовсю ведутся разработки принтеров, которые смогут печатать органы человека, протезы, имплантаты, корпусы автомобилей и даже еду.

    Как работает 3D принтер? Просто о сложном

    Если коротко, то 3D принтер – это устройство для создания трехмерных объектов методом послойной печати. Спектр используемых для печати материалов постоянно расширяется и можно смело предполагать, что в будущем он будет включать большинство известных нам веществ. Пока самыми популярными материалами для печати остаются термопластики и фотополимерные смолы.

    Общий принцип работы 3 D принтера можно представить следующим образом:


    Особенности печати зависят той технологии, которую использует принтер, поэтому имеет смысл разобраться с самыми распространенными на данный момент.

    Типы 3D-принтеров и особенности печати каждого

    Чаще всего сегодня используют технологию FDM -печати, а также SLA -печати. Что стоит за этими непонятными аббревиатурами, и какими еще разработки существуют в данной сфере?

    Метод FDM-печати

    FDM -технология (Fused Deposition Modeling) – это технология послойного наплавления нити. Сегодня этот способ 3D-печати считается самым распространенным, одновременно он относится и к одним из самых старых методов. Принцип заключается в послойном наплавлении нити пластика по контуру модели.

    Для печати используются термопластики, которые поставляются в виде катушек или прутков. Чаще всего печатают PLA и ABS пластиками , в числе которых нейлон, полиамид, поликарбонат, PET (он же полиэтилентерефталат, который используется для создания пластиковых бутылок) и некоторые другие вещества.

    Принцип работы заключаются в следующем:

    • нить материала помещается в экструдер, где она плавится под воздействием нагревательного элемента, а потом выдавливается через сопло на рабочую поверхность;
    • экструдер двигается по траектории, заданной ей программным обеспечением, и слой за слоем строит объект;
    • если необходимо напечатать сложный предмет, то могут использоваться два типа материала: один – для модели, второй – для создания опор (он, как правило, растворимый, или же просто очень легко отламывается от объекта). Опоры необходимо печатать , если объект имеет повисшие в воздухе элементы, которые без поддерживающих элементов создать невозможно – принтеру будет просто не на чем печатать. Наглядно все представлено на рисунках ниже;
    • после формирования первого слоя платформа опускается вниз на толщину одного слоя, а экструдер выдавливает новую порцию материала, процесс повторяется много раз;
    • по окончанию печати остается отделить вспомогательные элементы.

    Модель и поддерживающие элементы

    FDM-технология позволяет использовать термопластики производственного класса, поэтому распечатанные объекты получают отличную механическую, химическую и термическую прочность. Технология простая, чистая и пригодна для использования в условиях офиса или дома.

    По такому же принципу работают 3 D -ручки. Это фактически миниатюрные принтеры. Такие ручки предназначены для рисования трехмерных рисунков. Пользователь может выдавливать из нее мгновенно застывающий пластик, придавая ему любую форму и получая забавные изделия. Устройство больше предназначено для баловства, но идея интересная, а дизайнеры смогут сделать много интересных предметов декора для дома.

    Метод SLA-печати, или стереолитография

    SLA-технология (laser stereolithography) предполагает использование для печати жидких фотополимерных смол, которые имеют свойство застывать под воздействием лазера или подобного источника энергии. Метод позволяет получать предметы с очень точной геометрией , ведь толщина слоя может достигать рекордных 15 микрон, поэтому уже широко применяется в стоматологии при изготовлении имплантатов и в ювелирном деле для создания заготовок с обилием сложных деталей.

    Принцип работы 3 D -принтеров , использующих метод лазерной стереолитографии, коротко можно описать так:

    • рабочая платформа погружается в ванну с жидким фотополимером на толщину одного слоя (15-150 микрон);
    • воздействие лазера на стенки будущего объекта. Лазерный луч в буквальном смысле вычерчивает на фотополимере форму объекта, которая, в свою очередь, задается программным обеспечением. Облучение лазера вызывают полимеризацию материала в точках соприкосновения с лучом и его затвердевание;
    • платформа погружается еще чуть глубже в ванну с жидким фотополимером, причем глубина погружения соответствует величине слоя. Лазер снова воздействует на зоны материала, которые должны быть частями печатаемого объекта;
    • процесс повторяется слой за слоем, пока не будет распечатан смоделируемый объект;
    • технология также требует печати поддерживающих элементов. Они выполняются из того же фотополимера;
    • после завершения печати объект погружают в ванну в специальные растворы для удаления излишков и очистки модели;
    • финал – облучение ультрафиолетом для окончательного застывания фотополимера.

    Технология прогрессивная, но требует покупки дорогих расходных материалов.

    Другие типы печати

    Менее распространенными, но не менее интересными и перспективными являются следующие способы трехмерной печати:

    Какой 3D-принтер лучше выбрать для бытового использования?

    Забегая наперед, отметим, что пока стоимость бытовых 3D-принтеров остается относительно высокой, но в дальнейшем имеем все шансы наблюдать удешевление технологии. Вспомните, когда появились мобильные телефоны, они также были доступны только очень богатым людям.

    Цели использования домашнего 3Д-принтера могут быть совершенно любыми: от простого баловства и знакомства с новой технологии до печати полезных в хозяйстве мелочей и моделей-прототипов для бизнеса. В любом случае, при выборе обращайте внимание на такие ключевые характеристики устройства:

    • разрешение печати (точность печати) – это минимально возможная высота слоя, которую может напечатать принтер. Обозначают разрешение в микрометрах (тысячная доля миллиметра). Чем меньше высота слоя, тем менее заметным будет переход между ними, и тем более гладкой будет поверхность печатаемого объекта. С другой стороны, чем меньше слой, тем больше времени принтеру понадобится на печать и тем выше нагрузка на все его элементы. Разрешение зависит от технологии (SLA позволяет печатать точнее, чем FDM), точности работы печатающих головок, настроек программного обеспечения и выбранного материала для печати;

      Образцы с разной толщиной слоя

    • скорость печати напрямую зависит от точности: чем выше точность, тем меньше скорость выращивания модели.
    • область печати говорит о том, какого размера объект можно напечатать на принтере. Другими словами, это зона возможной досягаемости печатающей головки по горизонтальным осям X и Y, а также по вертикальной оси Z. Обычно область печати выражают тремя цифрами – это высота, длина и ширина условного параллелепипеда (например, 20*30*30 мм). У дельта-принтеров область печати имеет форму цилиндра, поэтому указывается его высота и диаметр;
    • тип используемых для печати пластиков. В бытовых условиях используются именно пластики, и это могут быть ABS и PLA пластики, некоторые модели могут печатать обоими видами материалов. Возможность печати тем или иным типом пластиков объясняется наличием или отсутствием подогрева платформы. Если вы пока не решили, чем будете печатать, то лучше выбрать модель, которая поддерживает максимальное количество материалов;
    • страна-производитель . Европейские страны и США производят качественные, но дорогие устройства, завозятся в небольших количествах, сервисное обслуживание затруднено. Китайские устройства стоят недорого, качество часто оставляет желать лучшего, но для того, чтобы побаловаться, такие принтеры пойдут. Есть еще принтеры российского производства: при неплохом качестве они радуют возможностью сервисного обслуживания.

    Интересные варианты бытовых 3D-принтеров

    MakerBot Replicator 2

    Качественный принтер американского производства, печатает по FDM-технологии, минимальная толщина слоя – 100 микрон (0,1 мм). Область печати – 285*153*155 мм, для печати используются PLA и ABS пластики. Максимальная скорость печати – 40 мм в секунду, или 24 см 3 /час. Корпус выполнен из стали, есть ЖК-экран, вес 11,5 кг. Модель хоть и выпущена в 2013 году, до сих пор активно используется для бытовой печати. Стоимость 3100$.

    PrintBox3D One

    Принтер отечественного производства, печатает по технологии FDM, минимальная толщина слоя – 50 мкм, размеры рабочей платформы – 185*160*150 мм. Устройство печатает ABS и PLA пластиками, оснащено подогреваемой платформой. Цена около 1700$, разработано для использования в сфере образования и дизайна.

    PICASO 3D Designer

    Печатает по FDM-технологии, как и все бытовые 3D-принтеры на сегодняшний день, использует для печати ABS и PLA пластики, в т.ч. нейлон. Точность печати — 50 мкм, рабочая платформа размерами 200*200*210 мм, максимальная скорость – 30 см 3 /час. Устройство оснащено подогреваемой платформой, стоимость 1700$.

    3D принтер Hercules

    Неплохое устройство от российской компании IMPRINTA, печатает разными видами пластика, точность печати – 50 мкм. Платформа подогреваемая, максимальная температура – 120 0 С. Скорость печати – 40 см 3 /час. Цена 1150$.

    В качестве итога об основных плюсах и минусах трехмерной печати

    3D-печать – направление перспективное и с большим потенциалом. Чтобы расставить все точки над «i» в изучении вопроса трехмерной печати, приведем основные ее преимущества:


    Существующие минусы :


    Трехмерная печать – это будущее медицины и промышленности, а также возможность быстрого создания прототипов и моделей, а это бесценно для инженерии. Кто знает, может, через 5-10 лет мы так же просто будем скачивать модели чашек или обуви и печатать их на собственном домашнем принтере, как сегодня скачиваем и просматриваем фильмы.

    Появление на рынке 3D-принтеров ознаменовало новую эпоху. Если раньше продукция, разработанная на базе высоких технологий, в бытовом хозяйстве позволяла решать привычные задачи, то в случае с трехмерной печатью предлагается новый способ применения устройств. Разумеется, новым он является только для рядового пользователя, так как в промышленности и на производственных предприятиях схожие технологии используются давно. Но в любом случае печать на 3D-принтере значительно расширяет возможности потребителя, к освоению которых, как показывает практика, готовы далеко не все. Во многом это связано со сложностью технологической реализации аппаратов, а также с нюансами их эксплуатации.

    Но самые интересные вопросы касаются пользы от таких принтеров. Какие изделия позволяет создавать данное устройство? Для каких целей его продукцию можно использовать? И как работает 3D-принтер? Это важные вопросы, так как трехмерная печать все же является недешевым удовольствием. Поэтому приобретать соответствующее оборудование ради любопытства, мягко говоря, нецелесообразно. По крайней мере, стоит детальнее вникнуть в рабочие процессы печати и выяснить, какую пользу от них можно ожидать.

    Что такое 3D-принтер?

    Это устройство для трехмерной печати, посредством которого можно генерировать объемные предметы, дублирующие заранее подготовленную виртуальную модель объекта. По сравнению с традиционными принтерами, которые выводят электронный текст на бумагу, 3D-устройства обеспечивают вывод трехмерной информации, то есть создают объекты с реальными физическими параметрами. Собственно, для понимания того, как работает 3D-принтер, следует рассмотреть этапы изготовления твердых предметов с его помощью.

    Принцип работы в общих чертах

    Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета. По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати. Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и и свойства используемого материала, а также подходы к программной реализации задачи.

    Технология быстрого прототипирования

    Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок. Сегодня этот метод известен как понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства. На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).

    Метод послойного наплавления термопласта

    Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид. Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.

    Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов. Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором. В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.

    Стереолитографические установки

    Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати. Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами. Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.

    Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью. Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.

    Лазерное спекание

    Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса. Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными. Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.

    Расходные материалы

    Основным материалом для создания моделей путем трехмерной печати является термопластик. Кроме уже упомянутых разновидностей, стоит отметить пластик для 3D-принтера в форматах ABS и PLA. Также используется нейлон, поликарбонат, полиэтилен и другие виды, также используемые в промышленности. При этом некоторые установки допускают и смешивание материалов, а также использование вспомогательных веществ, улучшающих качественные характеристики будущего изделия. Например, для этой цели используют который, в сущности, является той же разновидностью пластика PVA. Растворив его в воде, пользователь может создавать сложные геометрические фигуры.

    Наиболее же экзотическим материалом для использования в подобных задачах является металл. Чтобы получить такое изделие, также применяют 3D-модели для печати на 3D-принтере, а отличия технологии сводятся к функции С ее помощью наносится связующая клейкая масса в места, куда указывает компьютерная программа. Далее на всю рабочую область головка наносит тонкий пласт металлической пудры. То есть металл не плавится, как в случае с пластиками, а накладывается и склеивается послойно в виде мельчайших частичек.

    Управление работой принтера

    Для начала стоит отметить операции, которые контролируются пользователем через компьютер. Это регулировка температуры сопла и рабочей площадки, темпы подачи материала и работы электромотора, который обеспечивает позиционирование печатающей головки. Все эти действия находятся под управлением электронных контроллеров. Как правило, современные модели таких устройств базируются на системе Arduino с открытой архитектурой. Что касается программного языка, то в принтерах используется так называемый G-код, построенный на командах управления оборудованием для печати. На этой стадии можно перейти к рассмотрению программ-слайсеров, которые обеспечивают перевод 3D-модели для печати на 3D-принтере в понятный контроллерам код. Сразу надо сказать, что такое программное обеспечение не имеет прямого отношения к разработке графических моделей.

    Программное обеспечение

    В перечень основных задач слайсеров входит установка параметров, в соответствии с которыми будет осуществляться печать. Выбор конкретной программы определяется типом принтера. Например, устройства RepRap подразумевают использование слайсеров, выполненных с открытым кодом. Среди таких можно выделить Replicator G и Skeinforge. Однако немало и производителей, которые рекомендуют использовать только фирменное ПО от конкретных компаний. Это, в частности, относится к аппаратам Cube от фирмы 3D Systems. Что же касается моделирования изделий, то этим занимается специальная программа для 3D-принтера, предназначенная для трехмерного проектирования. Обычно для этих целей используют CAD-редакторы, которые, впрочем, требуют определенного опыта работы с дизайном 3D.

    Какие изделия можно получить?

    Спектр возможностей трехмерных принтеров активно расширяется, что позволяет создавать продукцию для самых разных сегментов рынка. Если говорить о строительстве и архитектуре, то здесь очень ценятся возможности изготовление макетов, для которых, собственно, и разрабатывалась концепция аддитивного производства. В машиностроительной промышленности также широко используется 3D-принтер. Изделия в данном случае могут быть представлены и потребительской продукцией, и отдельными элементами для концептов. Как уже говорилось, высокая точность изготовления деталей была высоко оценена работниками медицины. Помимо протезирования, 3D-принтер используется в изготовлении макетов и образцов органов.