Основные разделы биотехнологии и их характеристика. Российский рынок биотехнологий: лидеры отрасли, перспективные молодые проекты и инвесторы

Введение

В ряду основных направлений современной постиндустриальной экономики особое место занимают биотехнологии. К 2015 году, по оценкам ряда экспертов, 25% химической продукции будет производиться с применением биотехнологий, одновременно ожидается бурное развитие производства топлива на основе биотехнологий. Биотехнология - это использование в производственных целях живых организмов и биологических процессов. С помощью живых организмов можно производить компоненты медицинских препаратов, продукцию для сельского хозяйства, различных отраслей промышленности, можно даже производить топливо - спирт, биогаз и водород. Биотехнологическую промышленность нашей страны не обошел стороной глубокий экономический кризис 1990-х годов. Если СССР выпускал 3-5% мировой продукции биотехнологической отрасли, то Российская Федерация сейчас производит менее 1% мирового объема такой продукции. В России нет пока ни одного крупного производства на основе биотехнологий. Однако, несмотря ни на что, основы для роста этой отрасли у нас имеются. Например, в подмосковных Химках, с привлечением инвестиций как из России, так и из-за рубежа, был создан Центр высоких технологий компании «ХимРар», специализирующийся на разработке новых видов лекарств. Биотехнологии постепенно находят свое применение на российских предприятиях. Так, золотодобывающая компания «Полюс» освоила бактериальное выщелачивание золота из труднообогатимых руд. Таких руд много в Восточной Сибири, и биотехнология может сделать рентабельным их разработку .

Российский рынок биотехнологии

Текущее состояние биотехнологии в Российской Федерации характеризуется, с одной стороны, отставанием объемов производства от уровня и темпов роста стран, являющихся технологическими лидерами в этой области, а с другой – возрастающим спросом на биотехнологическую продукцию со стороны потребителей.

Результатом является высокая импортозависимость по важнейшим традиционным биотехнологическим продуктам - лекарственным препаратам и кормовым добавкам, и отсутствие на российском рынке собственных инновационных биотехнологических продуктов.

"Красные" биотехнологии (биофармацефтика)

Красная биотехнология (медицина) считается важнейшей сферой использования биотехнологий. Биотехнологический метод играет все большую роль для разработки новых медикаментов (например, для лечения рака).

Российский рынок продукции "красной" биотехнологии является наиболее емким в денежном выражении. Его объем составляет, по экспертным оценкам, от 60 до 90 млрд. руб . в год, но спрос удовлетворяется главным образом за счет импорта. По данным Министерства промышленности и торговли Российской Федерации, только 5% биотехнологических субстанций, используемых при производстве конечных лекарственных форм, производится в России.

Учитывая общее технологическое отставание отрасли и высокую капиталоемкость исследований в области "красной" биотехнологии, развитие сектора в России идет по пути создания новых высокотехнологичных производств по выпуску биотехнологических дженериков для обеспечения импортозамещения лекарственной продукции.

В настоящее время в России реализуются следующие крупные проекты в сфере биофармацевтики:

1. ЗАО "Генериум" (Владимирская область) – проект строительства биотехнологического научно-производственного комплекса по производству препаратов для лечения заболеваний крови. Объем инвестиций – 2 млрд. руб. (осуществлено 600 млн. руб.). После выхода на проектную мощность планируется разрабатывать и выводить на рынок до 10 новых биотехнологических препаратов ежегодно. Ожидаемый объем производства – 2.7 млрд. руб. в 2010 году, 7.6 млрд. руб. – в 2013 году.

2. Центр по разработке инновационных и импортозамещающих лекарственных препаратов "ХИМРАР" (Московская область) – бизнес-инкубатор для инновационных компаний, занимающихся разработкой и выведением на рынок инновационных лекарств для лечения сердечно-сосудистых, онкологических, инфекционных заболеваний, а также заболеваний эндокринной и центральной нервной системы. Объем инвестиций – 4.3 млрд. руб. (осуществлено – 400 млн. руб.). Планируется привлечение средств государственных институтов развития инновационного бизнеса (ГК "Роснанотех"). Ожидаемый эффект от работы центра – выпуск 5-10 отечественных инновационных препаратов и разработка 20 импортозамещающих дженериков и создание их опытно-промышленного производства.

3. ЗАО "Биокад" (Московская область) – научно-производственная компания, занимающаяся разработкой оригинальных и дженериковых биопрепаратов для лечения урологических, гинекологических, онкологических и неврологических заболеваний.

4. Группа компаний "Биопроцесс" (Москва) – научно-производственная компания, занимающаяся производством биотехнологических субстанций и конечных лекарственных форм. В настоящее время компания занимается как производством дженериковых препаратов, так и инновационными разработками.

Согласно проекту Стратегии развития фармацевтической промышленности до 2020 года, в ближайшее десятилетие в России планируется создать до 10 заводов для производства высокотехнологических био-дженериков. Общая стоимость инвестиций оценивается в 10.8 млрд. руб.

Таким образом, у "красной" биотехнологии в России, несмотря на текущее слабое развитие, есть потенциал для роста – как за счет запуска производства био-дженериков для импортозамещения, так и за счет реализации собственного научного потенциала в этой сфере.

"Белые" биотехнологии

Белая биотехнология охватывает сферу применения биотехнологий в химической промышленности. В задачи белой биотехнологии входят эффективное и безопасное для окружающей среды производство таких субстанций, как алкоголь, витамины, аминокислоты, антибиотики и ферменты.

Продукцию "белой" биотехнологии можно разделить на биохимическую продукцию, биотопливо и продукцию пищевой биотехнологии.

Биотехнологии в химии и нефтехимии пока не получили широкого распространения в мире. Например, доля основной продукции химии - полимеров, полученных с помощью биотехнологий, составляет на текущий момент не более 0.1% в натуральных значениях от общего объема производства полимеров в мире. Однако западные и азиатские страны активно проводят научные исследования в этой сфере, строят опытно-промышленные образцы установок, использующих биотехнологии. В России на текущий момент фактически отсутствуют промышленные образцы примеров использования биотехнологии в химической промышленности, но при этом российская научная база по некоторым перспективным направлениям химии (например, получение биодеградируемых полимеров) позволяет при наличии соответствующих объемов финансирования наладить крупнотоннажные производства необходимых материалов.

Перспективным направлением также является гидролизная промышленность. В СССР полностью обеспечивался внутренний спрос на многие первичные химические компоненты (фурфурол, левулиновая кислота и пр.), используемые в производстве продукции с высокой добавленной стоимостью. В настоящий момент существует благоприятная мировая конъюнктура для возрождения гидролизной промышленности в России уже с учетом имеющихся новейших биотехнологий.

Производство биотоплива, растущее во всем мире очень высокими темпами благодаря реализуемой многими странами политике обеспечения независимости от внешних поставок энергоносителей и экологической ответственности, в России в промышленных масштабах не осуществляется. Существует проект крупнотоннажного производства по переработке биомассы с получением биотоплива, который планирует реализовать в Тюменской области ОАО "Корпорация Биотехнологии", созданная ГК "Ростехнологии". Однако без мер государственной поддержки при текущих технологиях производства и ценах на традиционное топливо этот бизнес является нерентабельным.

Вместе с тем, по данным Международного энергетического агентства, объем инвестиций в исследования и бизнес в сфере возобновляемых источников энергии, в том числе и биоэнергетики, удваивается каждые два года. Направление значительных ресурсов на исследования в сфере производства биотоплива второго поколения, получаемого из непригодного для пищи сырья, позволяет ожидать скорой смены технологий, которая даст импульс для "самостоятельного" развития биоэнергетики. В связи с этим есть риск, что без осуществления собственных разработок в этой сфере Россия может пропустить волну смены технологий производства биотоплива, которая приведет к снижению мирового спроса на нефть и нефтепродукты - традиционные экспортные товары Российской экономики.

Продукция пищевой биотехнологии относится в основном к категории пищевых добавок, которые представляют собой вспомогательные технологические средства, участвующие в пищевом производстве и обогащающие продукты питания, а также включает биологически активные добавки (БАД). Одним из основных направлений развития пищевой биотехнологии является получение ферментов.

Ферменты используются практически во всех подотраслях пищевой промышленности – мясной, кондитерской, хлебобулочной, масложировой, кисломолочной, пивоваренной, спиртовой и крахмалопаточной. Ферменты можно получить только биотехнологическими методами. Объем производства ферментов в России составляет сегодня около 15% от уровня 1990 года. Доля российских производителей на рынке ферментов не превышает 20%. При этом внутренний рынок остается ненасыщенным - потребности российской пищевой промышленности в ферментных препаратах существенно выше текущего предложения. Отечественные ферменты используются в основном в кормопроизводстве, производители пищевых продуктов предпочитают импортную продукцию. Основные предприятия ферментной промышленности – ОАО "Восток" (Кировская область), ООО ПО "Сиббиофарм" (Новосибирская область), ОАО "Московский завод сычужного фермента" (г. Москва). Для многих предприятий отрасли характерны высокий износ основных фондов и использование устаревших технологий.

Позиции российского производства на рынке БАД, напротив, достаточно сильны – сегодня в России зарегистрировано около 8 000 наименований БАД, из них не менее 60% - отечественные препараты. По данным "Фармэкспорт", в России около 900 компаний занимаются производством БАД. Крупнейшие производители в отрасли – ЗАО "Эвалар" (Алтайский край), ОАО "Диод" (Москва), ООО "Фора-Фарм" (Москва). Однако большинство компаний работают в низкоценовом сегменте, и на отечественную продукцию приходится не более 30% рынка в стоимостном выражении.

"Зеленые" биотехнологии

Зеленая биотехнология используется в сфере современной селекции растений. С помощью биотехнологических методов разрабатываются эффективные средства противодействия против насекомых, грибков, вирусов и гербицидов. Особое значение для сферы зеленой биотехнологии имеет генная инженерия.

Выращивание генно-модифицированных культур в России законодательно не запрещено . Вместе с тем, согласно статье 50 Федерального закона №7-ФЗ от 10.01.2002 "Об охране окружающей среды", производство, разведение и использование растений, животных и других организмов, созданных искусственным путем, запрещено без получения положительного заключения государственной экологической экспертизы. Подзаконные акты, регулирующие вопросы проведения государственной экологической экспертизы генно-модифицированных культур, не приняты, поэтому на практике она не проводится. Таким образом, в настоящее время выращивание генно-модифицированных культур в промышленных масштабах на территории Российской Федерациине ведется .

При этом российское законодательство в сфере производства и реализации продуктов питания, содержащих генно-модифицированные организмы, близко к европейским нормам: пищевые продукты, полученные из генно-модифицированных организмов, прошедшие медико-биологическую оценку и не отличающиеся по изученным свойствам от своих традиционных аналогов, признаются безопасными для здоровья человека, разрешены для реализации населению и использованию в пищевой промышленности без ограничений. В настоящее время в Российской Федерации прошли полный цикл всех необходимых исследований и разрешены для использования в питании 15 линий генно-модифицированных культур : 8 линий кукурузы, 3 линии сои, 2 сорта картофеля, 1 линия сахарной свеклы, 1 линия риса.

В результате, сложившаяся практика регулирования сферы выращивания и переработки генно-модифицированных культур создает неконкурентные преимущества для импорта сельскохозяйственной продукции и сдерживает развитие "зеленой" биотехнологии и сельского хозяйства в Российской Федерации.

На текущий момент заявлен единственный проект, связанный с развитием трансгенных лесов : российско-шведское предприятие ООО "Байкал-Нордик" в Республике Бурятия до 2012 года планирует реализовать проект стоимостью 1.5 млрд. руб. "Комплексная переработка древесины и строительство инфраструктуры лесоперерабатывающего объекта". Проект включает в себя создание лесопитомника с генно-модифицированными породами.

"Серые" биотехнологии

Серая биотехнология применяется в сфере охраны окружающей среды. Биотехнологические методы используются для санации почв, очистки канализационных стоков, отработанного воздуха и газов, а также для переработки отходов.

В России применение биодеструкторов для очистки почв, воды от загрязнений в большинстве случаев сводится к ликвидации аварийных разливов нефти и нефтепродуктов. Для биоремедиации загрязненных нефтью и нефтепродуктами водоемов и почв используются несколько десятков препаратов, разработанных в России и бывших республиках СССР.

Наиболее известны в России "Путидойл", "Олеоворин", "Нафтокс", "Uni-rem", "Родер", "Центрин", "Псевдомин", "Дестройл", "Микромицет", "Лидер", "Валентис", "Деворойл", "Родобел", "Родобел-Т", "Эконадин", "Десна", "Консорциум микроорганизмов" и "Simbinal". В основном препараты отличаются друг от друга используемыми для их получения штаммами углеводородокисляющих микроорганизмов.

Официальное применение некоторых биодеструкторов было разрешено еще в 1990-ых годах. Многие российские крупнейшие нефтегазовые компании (например, Газпром, Транснефть) официально в своих инструкциях по ликвидации последствий аварий санкционировали применение определенных препаратов (например, Деворойл, Путидойл, Олеоворин).

Таким образом, можно говорить, что в России существуют научные разработки в сфере биоремедиации нефтяных загрязнений, но достаточно слабо проработана научная база по созданию штаммов-деструкторов отходов химической и нефтехимической промышленности. Отсутствуют промышленные технологии по использованию биодеструкторов для биодеградации токсичных веществ, содержащихся в природных ландшафтах, местах техногенных загрязнений.

Заключение

Объем производства биотехнологической продукции в России к 2020 году, согласно разработанной Минэкономразвития программе «БИО-2020», возрастет до 800 миллиардов рублей в сравнении с 24 миллиардами рублей в 2010 году, сообщил в четверг заместитель директора Департамента инновационного развития МЭР Григорий Сенченя. По его данным, в 2015 году объем биотехнологического производства вырастет до 200 миллиардов. При этом объем потребления такой продукции в России, с 210 миллиардов рублей в 2010 году, увеличится в 2015 году до 400 миллиардов, а в 2020 - до 1 триллиона рублей. Соответственно, доля импорта продуктов биотехнологий с 80% в 2010 году снизится до 40% в 2020 году, а доля экспорта за это же время вырастет с менее чем 1% до 25%. «Проект программы сейчас проходит согласование с федеральными ведомствами, но текст ее уже есть, и ключевые ориентиры обозначены», - сказал Сенченя. Он отметил, что целью программы развития биотехнологий в РФ до 2020 года является выход страны на лидирующие позиции в мире в данной области. «Эта программа объединит в себе всю активность в стране, касающуюся биотехнологий. Она предъявляет определенные требования к формированию последующих госпрограмм, которые будут разрабатываться федеральными органами власти», - сказал он. Сенченя также отметил, что в рамках программы планируется ряд инструментов поддержки, в том числе, стимулирование создания в регионах России биотехнологических кластеров. 4

Список литературы

    http://cbio.ru/page/44/id/1170/

    http://www.nbtc.ru/articles/38-chto-takoe-biotexnologii

    http://www.cleandex.ru/articles/2010/04/27/biotechnology_market_in_russia

    http://rosbiotech.com/news/view.php?ID=45

Компании двух центров биотехнологий - США и Европы - в 2015 году заработали более $133 млрд, а к 2017 году эта число превысит уже $220 млрд. Инвесторы называют биотехнологии самой интересной индустрией для вложений. Обозреватель сайт рассказал об известных биотехнологических компаниях, которые находятся в России, и об инвесторах и фондах, которые вкладывают средства в направление.

Современные биотехнологические проекты выглядят так, словно только что вышли из научно-фантастической книги. Например, американская компания Bioquark планирует оживить 20 клинически мертвых людей (результаты эксперимента будут доступны в апреле 2017 года), южнокорейский стартап Sooam Biotech готов клонировать домашнего питомца за $100 тысяч, а ученый Массачусетского технологического института создал компанию Elysium, которая разрабатывает таблетку, возвращающую молодость.

Цели и достижения этих компаний растиражированы СМИ, и на самом деле их успехи вполне могут оказаться более скромными. Однако инвесторы с особым интересом наблюдают за сферой биотехнологий. «Если бы в мире осталась одна ценная индустрия, я бы хотел, чтобы это были биотехнологии», - партнёр инвестиционного банка Stifel Nicolaus Чад Морганлэндер.

Центрами развития биотехнологий считаются США и Европа. К концу 2015 года в этих регионах было зарегистрировано пять тысяч публичных компаний, в которых работают более 200 тысяч человек, а объём индустрии составляет $350 млрд.

Биотехнологии повсюду - в США, например, более 90% кукурузы и сои являются генномодифицированной. В Европе ГМО запрещены в большинстве стран, но пища для скота также генетически модифицирована. Один из самых известных препаратов инсулина «Актрапид» также делается с помощью генной инженерии. Самым продаваемым биотехнологическим препаратом является «Хумира» (продано на $12 млн в 2014 году), которую используют при артрите.

Обозреватель сайт узнал, какие биотехнологические стартапы существуют в России и чем они занимаются.

Ohmygut

В феврале 2015 года в компанию инвестировал фонд Maxfield Capital. Инвестиции будут использованы для развития продукта, создания сети продаж и защиты интеллектуальной собственности.

Diagnostic Reagents & Devices, DRD


Компания DRD занимается разработкой диагностических устройств гемотестов, которые позволяют определить различные повреждения мозга: ишемический инсульт и черепно-мозговые травмы. Такие тесты можно применять в критических ситуациях, чтобы выяснить степень травмы больного.

В июне компания заняла второе место на международном конкурсе Asian Entrepreneurship Award в Токио и получила 500 тысяч йен ($5 тысяч) и три года бесплатной работы в токийском коворкинге. DRD является резидентом фонда «Сколково».

Экспресс-тесты работают на основе биомаркеров повреждения мозга - это пептиды и антитела к NMDA и AMPA рецепторам. Согласно многочисленным клиническим исследованиям, биомаркеры высоко специфичны и чувствительны к повреждениям мозга ишемического и травматического характера

- основатель DRD Анжей Жимбиев

«Моторика »


У компании по разработке протезов «Моторика» два продукта: тяговый активный протез кисти и миоэлектрический модуль искусственной кисти Stradivary. Первый протез подходит людям с частичными травмами кисти, при которых сохраняется подвижность лучезапястного сустава. Протез одевается сверху на поврежденную кисть.

Модуль Stradivary полностью заменяет поврежденную кисть и выполняет движения, считывая электрический ток, вырабатываемый мышцами культи в момент их сокращения. Stradivary даёт возможность пользоваться ложкой, вилкой шариковой ручкой и прочими предметами мелкой моторики. Модуль находится на стадии прототипа и будет готов к испытаниям к ноябрю 2016 года.

Как и в случае с компанией MaxBionic, протез «Моторики» можно получить бесплатно, обратившись к производителю.

Какие фонды поддерживают биотехнологические стартапы

В России немало конференций и инвестиционных фондов, поддерживающих молодые компании и стартапы в сфере биотехнологий. В инновационном центре «Сколково» есть кластер « Биомед », который помогает «проектам инициированные врачами, химиками, биологами, генетиками конвертироваться в успешные бизнесы».

Исполнительным директором кластера биотехнологий «Сколково» является Кирилл Каем. До этого Каем был владельцем собственного бизнеса по дистрибуции медицинского оборудования и фармацевтики. Он также возглавлял холдинг Hygiene Kinetics, который производит целлюлозно-бумажные товары и федеральную сеть клиник «Альфа Групп».

Консалтинговая компания Frost & Sullivan отмечает

  • Фонд посевных инвестиций РВК (объём 2 млрд рублей, в портфеле 54 компании, из них 21 относятся к биотехнологиям).
  • Inbio Ventures (в портфеле 7 компаний из США, Канады и Австралии).
  • Gurus BioVenture - первый фонд, который инвестирует совместно с частными инвесторами.
  • Лекция 1

    Классификация биотехнологических производств

    по технологическим признакам

    Биотехнологические методы применяются в химической, пищевой, медицинской и других отраслях промышленности в основе общего технологического признака биотехнологических производств является родственность процессов и оборудования.

    Биотехнологические производства делятся на две большие группы.

    1. Некоторые пищевые производства по переработке с/х сырья, например, бродильные (пивоварение, виноделие, хлеб и др.). Здесь не культивируются большие массы м.о. Биотехнологическим является какая-либо отдельная стадия процесса. Специфическое оборудование имеет малый удельный вес.

    2. Производства, где культивирование м.о. является основной целью. Они делятся на две подгруппы.

    2.1. Многотоннажные производства, в которых получают большие количества биомассы м.о. (дрожжи), органических кислот или спиртов. Здесь используется, в основном, глубинный метод культивирования. Высокая степень асептики не требуется, т.к. вероятность проникновения посторонней микрофлоры незначительна. Условия культивирования – температура, рН, состав (кислоты и спирты – до 5-10%, в производстве дрожжей – у.в. нефти) затрудняют рост посторонних м.о. Часто используются анаэробы и анаэробные способы культивирования, которые не способствуют развитию большинства патогенных микробов .

    В этих производствах не требуется надежная стерилизация, тонкая очистка воздуха, герметизация и стерилизация оборудования.

    Конечные продукты стабильны, и зачастую их выпускают в жидком виде без применения распылительной сушки, иногда применяется тепловая обработка.

    2.2. Производства тонкого микробиологического синтеза с получением бактериальных препаратов и веществ со сложной структурой – антибиотики, ферменты, а.к., витамины, гормоны, вакцины и т.п.

    Здесь основной стадией является выращивание м.о.

    Особенностью этих производств является глубинное культивирование и повышенные требования к защите рабочей среды от проникновения посторонней микрофлоры. Это объясняется тем, что условия культивирования являются оптимальными для большинства представителей данной микрофлоры (рН 6,2-7,2, 25-35°, среды содержат у.в., белки и другие питательные вещества).

    Продуцентом является не смесь, а индивидуально подобранный штамм.

    Здесь высокие требования к герметизации и стерилизации оборудования.

    Для выделения и очистки используют ряд сложных методов – экстракция, полный обмен и др. Особые требования предъявляются также к расфасовке и хранению продукции, которая выпускается обычно в сухом виде, поскольку продукт нестоек.

    В то же время оборудование данной группы производств без существенных переделок легко приспосабливается под выпуск другой продукции.

    Требования к асептике постоянно растут.

    Особенности основной и звключительных стадий биотехнологического производства

    Технологические процессы в биотехнологических производствах – такие же, как и в химических – массообменные, теплообменные, гидрохимические и механические. Но все они осложнены биологическим фактором.

    Важнейшие аспекты биологического фактора заключаются в следующем.

    1. Биологическим системам присуще саморегулирование, направленное на ускорение роста.

    2. Клеточные м.о. имеют общий химический состав, который включает три класса сложных макромолекул – ДНК, РНК и белки.

    3. Внутриклеточные процессы протекают с участием специфических белковых катализаторов-ферментов.

    4. Вследствие малой концентрации ферментов ограничены возможности стимулировать рост м.о. путем увеличения концентрации субстрата.

    5. На всякое внешнее воздействие в клетках возникает реакция, направленная в сторону, благоприятную для жизнедеятельности и на снятие воздействия.

    6. Биологическая система развивается, ее состав и потребности меняются, необходимо постоянно регулировать условия ферментации.

    7. Клеточная мембрана обладает избирательной проницаемостью, обладает сложными свойствами. Может переносить вещества как по градиенту, так и против градиента концентрации. Это затрудняет регулирование.

    Все это объясняет, почему в биотехнологических производствах наряду с разработкой и созданием специального оборудования широко используется типовое химическое.

    При проектировании новых биотехнологических производств решаются две задачи:

    Масштабирование – расчет оборудования на основании данных, полученных в лабораторных условиях и на опытно-промышленных установках;

    Оптимизация – выбор наиболее выгодного варианта схемы, режима, типа оборудования.

    В научных исследованиях, проектировании и на производстве специалист должен знать закономерности и кинетику процессов, методы расчета и главные принципы аппаратурного оформления.

    Основные характеристики процесса ферментации при глубинном культивировании

    С точки зрения проектирования и методики расчета оборудования наибольшее значение в биотехнологии имеет классификация процессов по способу организации:

    1) периодические;

    2) непрерывные;

    3) многоциклические;

    4) объемно-доливные;

    5) периодические с подпиткой субстрата;

    6) полунепрерывные с подпиткой.

    1) Периодический процесс: загрузка сырья и посевного материала производятся единовременно, затем некоторое время идет процесс, после чего ферментационная жидкость выгружается.

    2) Непрерывный процесс – загрузка и выгрузка среды протекают непрерывно и одновременно с одинаковой скоростью; в итоге объем среды в аппарате не изменяется.

    При такой организации не требуется приготовление посевного материала.

    4) Объемно-доливные процессы – между загрузкой и выгрузкой протекают как периодические, но через некоторое время часть среды выгружают и заменяют свежей.

    Интервалы между отборами здесь меньше, а число отборов больше, чем в случае (3), а отбираемая часть жидкости меньше.

    Это – не строго периодический процесс, экономические характеристики по посевному материалу – лучше.

    5) Периодический процесс с подпиткой субстрата – часть среды загружается в начале ферментации, а другая – добавляется непрерывно по мере протекания процесса. Естественным завершением является переполнение аппарата. Поэтому нужно завершать процесс быстро и как периодический с максимальным заполнением.

    6) Полунепрерывные с подпиткой субстрата процессы сочетают объемно-доливные и подпиточные.

    По достижении определенного состояния биологической системы после подпитки, часть жидкости отбирают, а затем постепенно добавляют субстрат до нового заполнения аппарата.

    Фазы и параметры периодической ферментации

    Если бы клетки делились синхронно, кинетика описывалась бы экспонентой по аналогии с химической реакцией. Но они делятся асинхронно, и подход иной: т.к. развитие популяции ограничено ресурсами среды.

    Показатели роста биомассы:

    Общая скорость (1)

    Удельная, т.е. по Аррениусу (2)

    В экспоненциальной фазе скорость не лимитирована и μ= const .

    Если бы процесс с самого начала определялся этой зависимостью, то концентрация биомассы изменялась бы, начиная с X 0 по уравнению:

    (3)

    Т.к.

    Пусть при τ =0, X = X 0 , но если X 0 , то X = X 0 .

    После логарифмирования получаем:

    Следовательно, в логарифмических координатах график прямолинейный и тангенс угла равен μ.

    Другой показатель – время генерации – время, за которое биомасса удваивается. Можно показать, что:

    Размерность μ – [ч -1 ] или [мин -1 ]

    Для многих бактерий μ=0,5 или даже 1,0 мин -1 .

    Для микроводорослей, растительных и животных клеток – на уровне 0,01 ч -1 .

    Для грибов и актиномицетов – значения промежуточные: у психрофилов до 1 час -1 , у мезофилов – до 2, у термофилов – до 3 ч -1 .

    Кинетика потребления субстрата.

    S – концентрация субстрата

    Удельная

    Кинетика биосинтеза продукта метаболизма:

    Обозначения:

    X – концентрация биомассы, г/см 3

    x – координата

    P – концентрация продукта метаболизма

    S – концентрация субстрата

    Q x – скорость прироста биомассы

    q – удельная скорость прироста биомассы (прирост на единицу биомассы)

    τ – время

    Q p – скорость образования продукта метаболизма

    q p – удельная скорость образования продукта метаболизма

    Q s – скорость потребления субстрата

    q s – удельная скорость потребления субстрата

    Передача - прием рисков в перестрахование между двумя конкрет­ными страховыми компаниями может быть разовой операцией (что ис­торически появилось раньше), а может осуществляться на регулярной основе. В силу чего перестрахование бывает необязатель­ным(факультативным) и обязательным (облигаторным).

    Факультативный метод перестрахования отличается полной свободой возможных участников перестраховочной цессии. Необяза­тельность здесь заключается в том, что договор перестрахования может быть заключен, а может быть нет, соответственно, условия той и другой стороны могут быть приняты, а могут быть отвергнуты. Вопрос о за­ключении сделки такого рода с тем или иным перестраховщиком пере­страхователь решает в течение времени с момента подачи страховате­лем заявления на страхование до момента заключения договора прямого страхования. Перестрахователь передает потенциальным перестрахов­щиком информацию о риске, условиях прямого страхования, размере собственного удержания. Перестраховщики могут принять предложение перестрахователя, могут отказаться в силу каких-либо причин, а могут, проанализировав полученную информацию, предложить внести изме­нения в договор прямого страхования (в страховое покрытие, размер страхового тарифа, оговорки) или в размер собственного удержания це­дента. Перестрахователь, получив условия перестраховщиков, выбирает наиболее приемлемый для себя вариант и заключает договор.

    Специфической особенностью данной формы перестрахования яв­ляется то, что размер страховой премии по такому договору зависит от спроса и предложения на цедируемый риск на перестраховочном рынке. По более востребованным рискам (с меньшей степенью реализации) страховая премия (цена страхования) будет меньше, по менее востребо­ванным - больше. Причем возможна ситуация, когда страховая премия по договору перестрахования может оказаться больше, чем страховая премия по договору прямого страхования.

    Договор облигаторного перестрахования предполагает обяза­тельную уступку перестрахователем заранее согласованной части риска по всем заключаемым договорам прямого страхования. Перестрахов­щик, соответственно, обязан принять эти части риска.

    Договоры перестрахования бывают пропорциональными и не­пропорциональными . Суть пропорционального страхования состоит в том, что риск, возмещение и страховая премия распределяются между перестрахователем и перестраховщиком в оговоренной договором про­порции.

    К основным видами договоров пропорционального перестрахо­вания относятся квотные и эксцедентные договоры. Рассмотрим их суть в упрощенном варианте.

    Поквотному договору перестрахователь передает перестрахов­щику в перестрахование согласно заранее установленному проценту (квоте) часть всех принятых на страхование рисков по определенному виду или группе видов страхования.

    По эксцедентым договорам рассчитывается собственное удержа­ние цедента, а превышение над ним - эксцедент отдается в перестрахо­вание.

    Непропорциональное перестрахование появилось позже пропор­ционального. Расчеты в этом случае строятся либо на основании окончательного финансового результата, либо на основе только очень крупного убытка. К непропорциональным видам договоров перестра­хования относятся договоры эксцедента убытка и договоры эксцедента убыточности.

    По договорам эксцедента убытка перестраховщик участвует в возмещении убытков от страхового случая только при превышении ими обусловленной перестраховочным договором суммы.

    Договор эксцедента убыточности отличается от предыдущего вида договоров тем, что перестраховщик участвует в покрытии убыточ­ности страховой суммы (представляющий собой отношение величины фактических страховых выплат к совокупной страховой сумме по дого­ворам данного вида страхования за определенный период), если убы­точность превысит установленный перестраховочным договором уро­вень.

    Надо сказать, что имеется также множество видоизмененных и комбинированных договоров на основе перечисленных выше форм ор­ганизации отношений и видов договоров перестрахования.

    Классификация продуктов биотехнологии.

    I. В зависимости от количества.

    1. Продукты тонкого биологического синтеза – от 100 кг до 1000 т в год – вакцины, витамины, антибиотики для медицины. основная стоимость связана с очисткой и анализом.

    2. Продукты маломасштабного биосинтеза – до 20 тыс. тонн в год – аминокислоты для пищевой промышленности, напитки, продукты получаемые ферментацией, антибиотики для с/х.

    3. Крупномасштабный биологический синтез – сточные воды после биологической очистки, биополимеры для отдельных отраслей промышленности – полисахариды для извлечения остатков нефти, выщелачивания Ме из руд. Основное условие - дешевизна. Более 20 тыс. тонн в год.

    II. По товарным формам.

    1. Биопрепараты – основной компонент – жизнеспособные клетки м/о или др. организмы закваски, бактериальные удобрения.

    2. Инактивированная биомасса м/о – белок одноклеточных организмов.

    3. Биопрепараты на основе очищенных метаболитов – ферменты, витамины, гормоны, антибиотики.

    III. Образование биотехнологических продуктов в зависимости от стадии роста биологических объектов.

    1. Первичные метаболиты.

    2. Вторичные метаболиты.

    Биотехнология наиболее развита в Японии (аминокислоты), США (1-я крупная биотехнологическая компания). В XXI в. ок. 20% продуктов станут продукцией биотехнологии. В РБ биотехнология отнесена к новым высоким технологиям. Это связано с ограниченностью ресурсов, никой энерго- и материалоемкостью биотехнологических производств. Возможностью использования местного сырья, экологичность биотехнологических проектов на фоне радиационного и химического загрязнения.

    Основные потребители биотехнологической продукции:

    Сельское хозяйство (ветеринария);

    Пищевая промышленность;

    Химическая промышленность.

    Для развития ветеринарии требуется ок. 500 препаратов, ок. 100 получат методами биотехнологии.

    Схема биотехнологического производства

    Исходное сырье культивирование конечный продукт постеферментативная стадия

    (ферментация) (целевой) (конечному продукту придается товарный вид,

    (предферментация) ↓ утилизируются отходы производства)

    (подогрев, размельчение аппаратура биологические объекты сырья и др.).

    Характеристика биологических объектов биотехнологии

    Клетки м/о – прокариоты и одноклеточные эукариоты (дрожжи, простейшие, водоросли);

    Высшие растения;

    Животные;

    Трансгены;

    Многокомпонентные системы, представленные клетками или определенными компонентами клеток.

    Источники получения биологических объектов:

    Коллекции культур;

    Образцы природного материала. В этом случае необходимо получить чистую культуру м/о.

    Сравним в данном разделе, какие типологии биотехнологий предлагают организации, занятые в данной сфере (госпрограммы, технологические платформы и бизнес) а также российские эксперты, исследующие биотехнологические рынки.

    В первую очередь обратимся к «Комплексной программе развития биотехнологий в Российской Федерации на период до 2020 года» ()основному документу, утвержденному Правительством России, в котором отражены желаемые качественные и количественные характеристики развития биотехнологий в стране. В соответствии с Программой можно выделить девять следующих отраслей биотехнологий:

    1. Биофармацевтика , включающая жизненно важные лекарственные препараты, вакцины нового поколения, антибиотики и бактериофаги;
    2. Биомедицина , подразделяющаяся на следующие подотрасли: диагностикумы ин витро, персонализированная медицина, клеточные биомедицинские технологии, биосовместимые материалы, системная медицина и биоинформатика, развитие банков биологических образцов;
    3. Промышленная биотехнология , включающая большое количество подотраслей, среди которых производство ферментов, аминокислот и полисахаридов; организация производства глюкозно-фруктозных сиропов; производство субстанций антибиотиков; производство биодеградируемых полимеров; создание биологических комплексов по глубокой переработке древесной биомассы, зерновых и других сельскохозяйственных культур; применение биогеотехнологии в горнодобывающей промышленности; развитие принципов биорефайнинга на основе производства целлюлозы и т.д.;
    4. Биоэнергетика , предполагающая производство электрической энергии и тепла из биомассы; утилизацию эмиссии парниковых газов и предотвращение и ликвидация последствий вредного антропогенного воздействия на окружающую среду энергетической отраслью методами биоконверсии;
    5. Сельскохозяйственная биотехнология подразделяется на биотехнологии для растениеводства (биологическая защита растений, создание сортов растений биотехнологическими методами, биотехнология почв и биоудобрения), биотехнологии для животноводства (технологии молекулярной селекции животных и птицы, трансгенные и клонированные животные, биопрепараты для животноводства, кормовой белок, биологические компоненты кормов и премиксов), а также включающая переработку сельскохозяйственных отходов;
    6. Пищевая биотехнология , включает производство пищевого белка, ферментных препаратов, пребиотиков, пробиотиков, синбиотиков, функциональных пищевых продуктов (лечебных, профилактических и детских), а также производство пищевых ингредиентов и глубокую переработку пищевого сырья;
    7. Лесная биотехнология делится на четыре направления: управление лесонасаждениями, сохранение и воспроизводство лесных генетических ресурсов, создание биотехнологических форм деревьев с заданными признаками и биологические средства защиты леса;
    8. Природоохранная (экологическая) биотехнология предполагает биоремедиацию, экологически чистое жиль, создание биологических коллекций и биоресурсных центров;
    9. Морская биотехнология фокусируется на создании сети аквабиоцентров, глубокой переработке гидробионтов и продукции аквакультур, производстве специализированного корма для аквакультур.

    Данная классификация включает в себя наиболее подробный перечень отраслей, но упомянуты лишь основные подотрасли, стратегически важные. В третьем разделе настоящей работы расширим перечень подотрослей, существующих в российской экономике.

    Дальнейшее добавление цветов привело к тому, что самая широкая типология биотехнологий, представленная в большом количестве англоязычных научных работ , содержит десять отраслей, где среди традиционных отраслей появляются следующие: черная (или темная, dark) биотехнология, связанная с военными целями и терроризмом; фиолетовая биотехнология, связанная с патентованием биотехнологических открытий и разработок, а именно со всеми вопросами интеллектуальной собственности; золотая биотехнология, посвященная вопросам биоинформатики и нанобиотехнологиям; коричневая биотехнология, связанная с биотехнологическим решением проблем пустынных и аридных территорий (пространственная и геомикробиология).

    Примером описанной выше расширенной типология биотехнологий является типология, опубликованная в одной из статей журнала Electronic Journal of Biotechnology (), (см. Рисунок 4). Стоит обратить особое внимание на серую и белую биотехнологии. Здесь, как и в некоторых других источниках, серая и белая биотехнологии не просто означают экологическую и промышленную биотехнологии соответственно, а делается акцент на том, что белая биотехнология — это все, что основано на исследованиях генов, а серая – это все биотехнологии, связанные с ферментами и классическими биопроцессами. В этом есть определенная логика, так как многие промышленные биотехнологии дают значительный положительный экологический эффект. Такой подход мог быть обусловлен желанием выделить «чистые» биотехнологические отрасли, а именно более или менее однозначно отнести ту или иную технологию к одному «цвету».


    Рисунок 4. Типология Electronic Journal of Biotechnology
    Источник: http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/1114/1496

    Может показаться, что биоэнергетика здесь не представлена, однако следует обратить внимание на зеленую биотехнологию: она содержит на самом деле экологическую биотехнологию в классическом смысле (то, что в российской литературе принято считать «серой» биотехнологией), а также биоэнергетику (которая не имеет цвета в российских источниках и часто «теряется» во многих типологиях).

    2. Предлагаемая типология биотехнологий, развивающихся в России

    На наш взгляд, типология биотехнологий – достаточно сложная вещь, так как биотехнологическую продукцию можно разделить по принципу «в какой отрасли осуществляется производство» и по принципу «какая отрасль нуждается, использует». Но и здесь не все однозначно, поэтому постараемся в предлагаемой типологии учесть сразу и процесс производства, и процесс использования. Это позволит более выпукло отразить связи между отраслями биотехнологий (играющие важную роль для их взаимного развития) в противоположность приведенным выше типологиям, которые представляют отрасли биотехнологий изолированно, стараются классифицировать их на основе различающихся признаков, не учитывая родство отраслей. Также постараемся раскрыть содержание биотехнологических отраслей более подробно и указать наиболее полный перечень их подотраслей, применительно к ситуации в России.

    Построим предлагаемую типологию, основываясь на концепции межотраслевого баланса, а именно представим ее в виде таблицы, где строки содержат биотехнологические отрасли по принципу «где производится», а в столбцах указаны отрасли «где используется» (см. Таблицу 1).
    Включим в типологию актуальные и более или менее развитые в России отрасли биотехнологий. Не будем включать черную, коричневую, золотую и фиолетовую отрасли: российские биотехнологии развиты только по 6 из 10 отраслей биоэкономики. Присвоим биоэнергетике зеленый цвет, выделим лесную биотехнологию и также присвоим ей зеленый цвет, а экологическую биотехнологию объединим с биотехнологией по переработке отходов и будем считать ее серой биотехнологией.

    В ряде русскоязычных источников () к биоэнергетике относится получение энергии только с использованием возобновляемых биологических ресурсов и биологических процессов, тогда как в соответствии с «Комплексной программой развития биотехнологий в Российской Федерации на период до 2020 года» в данную отрасль входят также меры, снижающие антропогенное воздействие традиционной энергетики на окружающую среду. По нашему мнению, второй подход (более широкий) предпочтительнее, так как в ближайшей перспективе только биологические источники энергии не смогут полностью заменить традиционные.

    Среди отраслей, «производящих» биотехнологии, выделим отдельную отрасль «наука». Многие аспекты биотехнологий сейчас еще имеют только теоретическое значение, но это неотъемлемая и очень важная часть наукоемкого производства. К подобным биотехнологиям, несомненно, относится постоянное пополнение базы прочитанных геномов различных живых организмов, живущих на Земле в настоящее время или обитавших в ранние эпохи, а также создание банка биологических образцов и биологических коллекций.

    Таким образом, еще раз отметим, что в практических целях технологические платформы и компании создают классификацию биотехнологий, отвечающую целям работы. Такие классификации не отличаются полнотой и подробностью, что в данном случае является не «минусом», а обоснованной необходимостью. Наиболее широкая и классически принятая классификация биотехнологий – это разделение отраслей по цветам. В данной работе также предложена типология биотехнологий, развивающихся в России, целью которой было отразить связи между отраслями.

    Таблица 1. Предлагаемая типология биотехнологий в России

    ___________________

    Доклад Надежды Орловой «Рынок биотехнологий в мире и в России. Перспективы развития» в цикле семинаров «Биотехнологии будущего»: http://www.youtube.com/watch?v=72VsxIYfsAw;
    Лекция Надежды Орловой на Экономическом факультете МГУ имени М.В.Ломоносова в рамках межфакультетского курса «Биоэкономика и наукоемкий бизнес»:
    http://www.youtube.com/watch?v=aYh8oE-FDzg;
    Исследовательская компания Abercade:
    http://www.abercade.ru/research/analysis/themeid_20.html.

    Более подробная информация о некоторых добавках к кормам «Биотехнологии в сельском хозяйстве»: http://www.youtube.com/watch?v=bgIzT3vkJ-s