Виды объективов микроскопа. Какими бывают объективы в микроскопах

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.


Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

Объективы микроскопа

Объективы микроскопа представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования.
Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

Числовая апертура и увеличение объективов

Чем больше NA (апертура) объектива, тем более мелкие детали он может разрешать. Если посмотреть на паспортные данные объективов, то можно видеть, что увеличение и апертура не связаны строго между собой. Так, например, существуют объективы 40/0,65; 40/1,3 и 100/1,3. Первые два дают изображения, сходные по размерам, однако второй позволяет различить более мелкие детали. Два последних объектива, масляно-иммерсионные, имеют одинаковое разрешение, но объектив 40 позволяет наблюдать большую площадь препарата (при меньшем увеличении) по сравнению с объективом 100.
Объективы следует выбирать, исходя, главным образом, из их апертуры, а следовательно, из разрешающей способности, а не из увеличения. В настоящее время многие микроскопы снабжены системами переменного увеличения, которые позволяют изменять конечное увеличение приблизительно вдвое. Кроме того, при печати можно давать дополнительное фотоувеличение. Из трех упомянутых выше объективов при прочих равных характеристиках рекомендуется для получения качественных фотомикрографий объектив 40/1,3.

Исправление аберраций

Объективы для микроскопов подразделяются на несколько типов в зависимости от степени исправления хроматической и сферической аберраций. Эти типы можно в свою очередь подразделить в соответствии с тем, насколько объективы свободны от кривизны поля зрения, каковы их увеличение и числовая апертура, являются ли они сухими или иммерсионными.

Простейшие объективы — это ахроматы, которые сводят синие и красные лучи в один фокус, несколько отличающийся от фокуса для зеленого света. Даваемое ими изображение может иметь слабо заметные цветные кольца, окрашенные в зависимости от фокусировки в зеленый или пурпурный цвет. Ахроматы исправлены в отношении сферической аберрации только для зеленых лучей. Они сравнительно дешевы и пригодны для визуальных наблюдений. Для фотомикрографии их следует использовать по возможности вместе с
монохроматическим зеленым светофильтром или интерференционным
зеленым фильтром. Тогда они дают сравнительно хорошие результаты.

Флюоритовые объективы (названные так потому, что в них стоят линзы из минерала флюорита), или полуапохроматы, лучше исправлены в отношении хроматической аберрации, чем ахроматы. Благодаря этому они выпускаются с относительно большей (при данном увеличении) апертурой и дают более качественное и контрастное изображение. Простота конструкции и большая светосила делают флюоритовые объективы удобными для флуоресцентной микроскопии. Они также могут быть с успехом использованы для фотомикрографии.

Апохроматы представляют собой наиболее скорректированные объективы, у которых практически
полностью исправлена хроматическая аберрация, а сферическая аберрация исправлена не для одного, а для двух цветов. Эти объективы дают высококачественное изображение и более всего подходят для качественной фотомикрографии, особенно в цвете. Такие объективы сложны в изготовлении, поэтому в микроскопах многих фирм добиваются коррекции вторичной хроматической аберрации с помощью специальных «компенсационных» окуляров. По этой причине полностью исправленная система состоит из объектива и соответствующего окуляра. Для объективов, изготовленных различными фирмами, а иногда и для разных объективов, выпускаемых одной фирмой, нужны различные окуляры. В некоторых случаях полная коррекция аберраций проведена в самом объективе. Обычно практикуемая в лабораториях беспорядочная замена оптических элементов, очевидно, не может дать хороших результатов. Если нет уверенности в целесообразности той или иной замены, то следует обратиться к инструкциям изготовителя.

Сухие объективы и толщина покровного стекла

Если использовать объектив не так, как рекомендуется, то качество изображения ухудшится из-за неполной коррекции сферической аберрации. Для большинства сухих объективов (то есть рассчитанных на воздушную прослойку между препаратом и фронтальной линзой) требуется покровное стекло толщиной 0,17 мм, и последнее число выгравировано на их оправе. Некоторые объективы, маркированные Эпи (Epi), 0, или просто «—», рассчитаны на работу с непокрытым препаратом, другие, наоборот, могут быть использованы при работе с культуральными флаконами и рассчитаны на толщину их стенок до 2 мм.
Небольшие отклонения в толщине покровного стекла, как правило, несущественны для объективов с апертурой менее 0,65, но имеют значение для сухих объективов с большой апертурой (0,75—0,95). Эти объективы часто имеют коррекционную оправу, которая позволяет добиваться максимальной коррекции сферической аберрации за счет изменения расстояния между линзами объектива. Даже при использовании покровного стекла нужной толщины может потребоваться коррекция на дополнительную толщину, создаваемую заливочной средой.

Иммерсионные объективы
Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом).
Иммерсионные объективы необходимо использовать в тех случаях, когда нужна апертура 1,0 и более. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол).
Большинство иммерсионных объективов рассчитаны на работу со специально изготовленным маслом. Кроме того, имеются объективы для работы с водной и с глицериновой иммерсией, а также объективы, настраиваемые для работы с любой иммерсионной средой. Поскольку оптические свойства заливочной среды, покровного стекла и иммерсионного масла близки, то большая или меньшая толщина одного слоя по сравнению с другим не приводит к искажениям. Поэтому при фотомикрографии значительно лучше использовать иммерсионный объектив 40/1,0. а не сухой 40/0,95.
Другими словами, особенности использования иммерсионных объективов таковы:
1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.
Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.
Поскольку иммерсионные масла несколько различаются, то при их применении следует руководствоваться рекомендациями фирмы-изготовителя оптики. Особенно важно избегать смешения различных масел. Если на объективе остались следы масла, то при использовании другого масла качество изображения может ухудшиться, поэтому объективы необходимо чистить.

Глубина резкости

Многие объективы дают изображение, в котором центральная часть и периферия не могут быть сфокусированы одновременно. Чтобы решить данную проблему, фирмы-изготовители выпускают специальные объективы с минимальной
кривизной поля зрения, которые отмечены приставкой «План» (Plan), например Планахромат и Планапохромат, где исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения.

По параметрическим признакам объективы делятся следующим образом:

Объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);
. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100 х);
. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте. Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

По конструктивно-технологическим признакам существует следующее разделение:

Объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.

По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

Объективы, работающие с покровным и без покровного стекла;
. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
. иммерсионные и безыммерсионные объективы.

Маркировка объективов .

Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

Увеличение («х»-крат, раз): 8х, 40х, 90х;
. числовая апертура: 0,20; 0,65,
. пример: 40/0,65 или 40х/0,65;
. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный — П (Pol), люминесцентный — Л (L), фазово-люминесцентный — ФЛ (PhL), ЭПИ (Epi, HD) — эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст — ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;
. маркировка типа оптической коррекции: апохромат — АПО (АРО), планахромат — ПЛАН (PL, Plan), планапохромат — ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан — СХ — стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) — СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

Окуляры микроскопа

Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.
Окуляры классифицируются по тем же группам признаков, что и объективы:
1. окуляры компенсационного (К — компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;
2. окуляры обычные и плоского поля;
3. окуляры широкоугольные (с окулярным числом — произведение увеличения окуляра на его линейное поле — более 180); сверхширокоугольные (с окулярным числом более 225);
4. окуляры с вынесенным зрачком для работы в очках и без;
5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;
6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

Маркировка окуляров .
На окулярах маркируют следующие характеристики:

Линейное увеличение окуляра: 10х, 15х
. линейное поле зрения (в мм): 18, 20, 22
. пример: 10х/18
. работа в очках (дополнительный символ в виде очков);
. фокусировочный (передвижной) элемент внутри окуляра для наводки на резкость изображения сетки окуляра (foc.)
. тип коррекции (Pl) или компенсация хроматической разности увеличения (К)

Большое разнообразие научно-технических задач, решаемых с помощью микроскопии, вызывает необходимость применения микроскопов с широким диапазоном их характеристик. Это достигается за счет использования различных сочетаний объективов и окуляров.

Существующие конструкции различных микрообъективов можно классифицировать по следующим признакам:

состоянию коррекции остаточных аберраций (ахроматы, апохроматы, планахроматы и т. д.);

свойствам иммерсии (безыммерсионные и иммерсионные);

особенностям оптических схем (линзовые, зеркальные, зеркально-линзовые);

длине тубуса микроскопа.

Механической длиной тубуса, представляющего собой трубу, называется расстояние от нижнего среза 2 тубуса, куда ввинчивается микрообъектив, до верхнего среза 1, куда вставляется окуляр (рис. 159). В большинстве микроскопов, применяемых для наблюдения в проходящем свете, механическая длина тубуса составляет а для наблюдения в отраженном свете -

В микрообъективах с механической длиной тубуса расстояние от предметной плоскости 4 до нижнего среза тубуса в микроскопах старых моделей и в микроскопах современных моделей. Расстояние от плоскости изображения 2 после микрообъектива, совпадающей с передней фокальной плоскостью окуляра, до верхнего среза Следовательно, расстояние от плоскости предмета до плоскости изображения после микрообъектива составляет в микроскопах старых моделей и в микроскопах современных моделей. При постоянной длине тубуса микроскопа обеспечивается замена объективов и окуляров микроскопа, входящих в данный комплект, так, чтобы для любого объектива комплекта создаваемое им изображение совпадало с передней фокальной плоскостью любого окуляра комплекта.

Основными характеристиками объективов микроскопа являются линейное увеличение и числовая апертура, значения которых гравируются на оправе микрообъектива. Объективы современных микроскопов имеют увеличение и числовую апертуру

Конструкция оптической схемы микрообъектива тем сложнее, чем выше его апертура и увеличение и чем совершеннее коррекция остаточных аберраций. Объективы-ахроматы с увеличением и апертурой до 0,2 состоят из двух двухлинзовых склеенных компонентов. При повышении апертуры до 0,3 необходимо добавлять фронтальную плосковыпуклую линзу. Иммерсионный объектив-ахромат с увеличением и апертурой 1,25

Рис. 159. Тубус микроскопа

Рис. 160. Объектив микроскопа

(обозначается 90x1,25) состоит из четырех компонентов: фронтальной плосковыпуклой линзы, положительного мениска и двух двухлинзовых склеенных компонентов. В объективах-апохроматах для лучшего исправления хроматических аберраций применяются кристаллы (флюорит и квасцы). Отличительной особенностью объективов с исправленной кривизной изображения (планахро-маты и планапохроматы) является использование отрицательного компонента или менисковой линзы значительной толщины.

В качестве примера на рис. 160 приведены оптическая схема и конструктивные параметры ахроматического микрообъектива (10x0,30).

Как следует из формулы (324), для повышения разрешающей способности микроскопа необходимо уменьшать длину волны излучения, в котором проводится исследование объектов. Однако оптические стекла обладают сильным поглощением в ультрафиолетовой области спектра и практически не пригодны для создания объективов в диапазоне длин волн Такую задачу можно решить с помощью кварцевой оптики. При этом предусматривается использование объектива для определенной длины волны. Рассматриваемые объективы-монохроматы не требуют ахроматизации, а высокая степень коррекции сферической аберрации достигается применением апланатических менисков и линз, рассчитанных на минимум сферической аберрации. Объективы-монохроматы имеют увеличение до и апертуру до 1,30 при глицериновой иммерсии, что позволяет при фотографировании на длине волны различать детали размером до

За последние годы намного возросло значение зеркальных и зеркально-линзовых микрообъективов, используемых для

Рис. 161. Зеркально-линзовый объектив Максутова.

Рис. 162. Окуляр Гюйгенса

инфракрасной техники, высокотемпературной металлографии, в ультрафиолетовой микроскопии и в целом ряде других отраслей науки и техники. Одним из достоинств этих объективов является возможность их использования в широком спектральном интервале (от ультрафиолетовой до инфракрасной области спектра) без перефокусировки микроскопа. Зеркально-линзовые объективы могут иметь увеличение до и апертуру до 1,1 (глицериновая иммерсия).

На рис. 161 приведена схема одного из вариантов микрообъектива Максутова с увеличением и апертурой 0,85. В этом объективе предмет располагается в центре кривизны поверхности 1. Параметры поверхностей 2 и 3, близких к концентрическим, рассчитаны так, что после отражения от этих поверхностей лучи проходят поверхность 4, не испытывая преломления. Такой объектив практически ахроматичен и используется без перефокусировки для наблюдения и фотографирования в интервале длин волн

Помимо рассмотренных выше объективов имеются объективы для интерференционных и поляризационных микроскопов, эпиобъективы для работы в отраженном свете и целый ряд других. Подробные сведения о микрообъективах различных видов приведены в .

В микроскопах применяются окуляры типа окуляров Гюйгенса и Кельнера, компенсационные, симметричные и ортоскопические, а также отрицательные окуляры (гомалы). Видимое увеличение окуляров составляет угловое поле что соответствует линейному полю окулярных увеличениях и угловых полях до 50°. В этих окулярах хорошо исправлены хроматизм увеличения, астигматизм и дисторсия.

Компенсационные окуляры используются в сочетании с объективами-апохроматами, планообъективами и объективами-апохроматами больших увеличений. Эти окуляры компенсируют хроматизм увеличения применяемых с ними объективов. По своей оптической схеме компенсационные окуляры являются усложненными окулярами Гюйгенса или аналогичны ортоскопическим.

Гомалами называются отрицательные оптические системы, применяемые в микроскопах вместо окуляров для проецирования увеличенного изображения на фотографический слой. Аберрационный расчет гомалов выполняется так, чтобы скомпенсировать кривизну поверхности изображения и хроматизм увеличения микрообъектива.

Окуляры. Окуляр в световом микроскопе увеличивает первичное (промежуточное) изображение, сформированное объективом. Окуляр может также рассматриваться как элемент внешней стороны макро (оборачивающей) системы линз, создаваемой окуляром плюс преломляющие элементы глаза наблюдателя, видео- или фотографической камеры.

Промежуточная плоскость изображения (которая лежит между линзами в окулярах многих типов или предшествует линзовым элементам в окулярах типа Рамсдена), или его сопряженная плоскость используется для размещения полевых ограничителей, ирисовых диафрагм, сеток, микрометрических шкал, компаратора светоделителя и т.п., которые нужны для появления этих элементов в той же фокальной плоскости, что и препарат.

Диск Рамсдена, выходной зрачок объектива, изображаемый окуляром, обычно располагается на коротком расстоянии над окуляром. Так как диск Рамсдена должен лежать в плоскости зрачка наблюдателя, предусматриваются специальные окуляры с большим выносом зрачка для удобства наблюдателя, носящего очки (особенно при астигматизме). Окуляры с большим выносом зрачка также используются для включения устройств для отклонения луча (такие как сканирующие зеркала в лазерных сканирующих конфокальных микроскопах) или устройств с преобразованием апертуры (например, апертура окклюдеров для стерео наблюдений через один объектив бинокулярного микроскопа).

Увеличение окуляров определяется как 25 см, деленное на фокусное расстояние окуляра. На окуляре указываются увеличение и размер поля (например, 1 Ох/20, означает 10 -увеличение или 25 см - фокусное расстояние с полем зрения 20 мм), вместе с именем изготовителя и специальными атрибутами, как например, без хроматической аберрации (СР), широкое поле (\У, \УР, Е\УР), план (Р, РЬ), компенсационный (СОМР, С, К), с большим выносом зрачка (Н, изображены очки), с перекрестием и заглушкой ориентации для кристаллографии (pol), проекция (pro), фотографирование (photo), видео (TV) и т.п. Также, специальные окуляры обеспечивают большую плоскость поля зрения (обозначены как "широкопольный", "экстра широкопольный", "план", "периплан", "гиперплан" и т.п., некоторые с размерами поля, колеблющимися до 28 мм).

По аналогии с объективами микроскопа, некоторые конструкции приняты стандартными и некоторые стандартные обозначения используются для указания исполнения или функции окуляров. Два физических параметра окуляров, тем не менее, стали более или менее стандартизованными. Внешний диаметр окуляра стал равен или 23.2мм или 30.0 мм, и справочное расстояние, или высота окуляра (то есть, расположение промежуточной плоскости изображения от опорной плоскости окуляра) сейчас в основном это расстояние 10 мм.

В прошлом, окуляры с широкими диапазонами возрастающего увеличения были предназначены регулировать общее увеличение изображения микроскопа, но эта практика теперь заменена использованием нескольких, более откорректированных окуляров в соединении с устройством, изменяющим увеличение в тубусе корпуса микроскопа, или окуляром плавного изменения увеличения проекции масштаба.

Факторы, влияющие на выбор фокусного расстояния окуляра и его увеличения, включающие оптимизацию общего увеличения микроскопа и способности разрешения изображения, подбирают характеристиками МПФ (модуляционной передаточной функции) детектора и регулировкой доступного охвата поля. В флуоресцентной микроскопии по видео, Б1С (дифференциально-интерференционный контраст), поляризации, темному полю и т.п., общее увеличение часто должно расти за предельным классическим "пустым увеличением", чтобы наблюдать моментальные объекты, диаметры которых расположены ниже предела разрешающей способности микроскопа. Тем не менее, в зависимости от характеристик МПФ, чувствительности и всех доступных пикселей в датчике, могут возникнуть конфликты между потребностью в большом увеличении, яркости изображения, и охвате поля. Чтобы оптимизировать общее увеличение изображения, может быть нужно убрать подгонку увеличения окуляра, и дополнительно выбрать объектив с соответствующим увеличением и соотношением числовой апертуры к увеличению. Окуляры изменения масштаба изображения особенно пригодны для тонкой регулировки увеличения, чтобы оптимизировать отношение сигнал/шум и время интеграции изображения в видео микроскопии. Для изображений с очень низким уровнем света, например, в фотонном изображении, увеличение окуляра менее, чем 1, возможно нужно для того, чтобы достаточно высоко поднять коэффициент сигнал/шум, при этом пожертвовав пространственным разрешением.

Дополнительно к урегулированию увеличения изображения и размещению выходного зрачка микроскопа в удобной позиции, окуляр компенсирует аберрации, которые не скорректированы должным образом в объективе и тубусной линзе. Окуляры Гюйгенса в комбинации с маломощными ахроматическими объективами и компенсационные окуляры в сочетании с высокоапертурными ахроматическими и апохроматическими объективами, корректируют поперечную хроматическую аберрацию. Некоторые высокоапертурные ахроматические объективы умышленно проектируются так, чтобы обеспечить остаточные аберрации (включая кривизну поля), которые подобны тем аберрациям в апохроматам, потому что некоторые компенсационные окуляры применяются, чтобы компенсировать аберрации в объективах обоих типов.

Определенные классы современных объективов достаточно хорошо корректируются, чтобы требовать минимальной компенсационной коррекции окуляров. Например, объективы Nikon CF и современные объективы Zeiss Jena разработаны таким образом, чтобы обеспечивать соответствующее хорошо корригированное промежуточное изображение, потому что окуляры сами по себе также свободны от поперечного и продольного хроматизма и некоторых сферических аберраций. Пренебрегая степенью коррекции в окулярах, современные микроскопы обеспечивают изображение с цветовой коррекцией, полем зрения и плоскостностью поля значительно лучше более ранних моделей.

Следует признать, что описание современных принципов построения микроскопов является Ноу-хау и не является предметом широкого обсуждения. Только специалисты могут судить о тех или иных конструктивных особенностях микроскопов конкурирующих между собой фирм-производителей данного виде техники. Основная задача инженеров при поиске новых подходов в реализации основного концептуального принципа- это прогнозируемость результата и удобство прибора при использовании его потребителем.

В этой связи необходимо отметить наличие в данной статье устаревших технических данных по микроскопам различных фирм, а также очевидную неконкретность в описании некоторых конструктивных решений. Авторы статьи пошли по пути простого описания схемных решений современных микроскопов различных производителей, без попытки анализа и комментариев их оптимальности.

Поверхностный подход к изложению материала, связанного с теоретическими и практическими изысканиями в построении схемных решений, например, микрообъективов, обусловливает наличие неправильного трактования и просто ошибок.

Некоторые материалы иллюстрируют подход 10 летней давности.

Вместе с тем, нами не обнаружено других источников, где в популярной и доступной форме изложено главное: как строится оптическая система современного микроскопа широкого назначения

МИКРОСКОП - оптический прибор для получения увеличенных изображений объектов или деталей их структуры, не видимых невооруженным глазом; относится к числу наиболее распространенных приборов, применяемых в биологии и медицине.

Историческая справка

Способность систем из двух линз увеличивать изображение предметов была известна мастерам, изготовлявшим очки (см.). О таких свойствах полушаровидных и плосковыпуклых линз знали оптики-ремесленники Нидерландов и Сев. Италии в 16 в. Есть сведения, что приблизительно в 1590 г. прибор типа М. был построен Янсеном (Z. Jansen) в Нидерландах.

Сначала появились» простые М., состоящие из одного объектива (см. Лупа), а затем были сконструированы более сложные М., имеющие, кроме объектива, и окуляр.

Быстрое распространение и совершенствование М. началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный М. (1609 -1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Academia dei lincei») И. Фабером был предложен термин «микроскоп».

Первые успехи, связанные с применением М. в научных биол, исследованиях, были достигнуты Гуком (R. Hooke), к-рый первым описал растительную клетку (ок. 1665 г.).

А. Левенгук с помощью М. обнаружил и зарисовал сперматозоиды, различных простейших, детали строения костной ткани (1673 - 1677).

В 1668 г. Б]. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа; в 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, М. стали монтировать из тех основных деталей, к-рые входят в состав современного биол. М.

В начале 18 в. М. появились в России; здесь Эйлер (Z. Euler) впервые разработал методы расчета оптических узлов микроскопа.

В 18 и 19 вв. М. продолжали совершенствоваться. В 1827 г. Амичи (G. В. Amici) впервые применил в М. иммерсионный объектив.

В конце 18 - начале 19 в. была предложена конструкция и дан расчет ахроматических объективов для М., благодаря чему их оптические качества значительно улучшились, а увеличение объектов, обеспечиваемое такими М., возросло с 500 до 1000 раз.

В 1850 г. англ. оптик Сорби (Н. С. Sorby) сконструировал первый микроскоп для наблюдения объектов в поляризованном свете.

В 1872-1873 гг. Аббе (Е. Abbe) разработал ставшую классической теорию образования изображений несамосветящихся объектов в М. Труды англ. оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии.

В 1903 г. Р. Жигмонди и Зидентопф (H. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный М., в 1935 г. 3ернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в М. прозрачных, слабо рассеивающих свет объектов. В середине 20 в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A.Wilska) был изобретен аноптральный М.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем М. и микроскопической техники внесли М. В. Ломоносов, И. П.Кулибин, Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, С. И. Вавилов, В.П. Линник, Д. Д. Максутов и др.

Устройство биологического микроскопа

Биологический М. (рис. 1) крепится на массивном штативе (основании), чаще всего имеющем подковообразную форму. Основание снабжено кронштейном, внутри которого находится коробка микромеханизма тонкой настройки тубуса М. Кроме того, коробка микромеханизма имеет направляющую для кронштейна конденсора. Сверху к коробке микромеханизма при помощи особого кронштейна прикреплен вращающийся центрирующийся столик. Дугообразный тубусодержатель в нижней своей части снабжен макровинтом с двумя барашками, служащим для грубого движения тубуса. Верхняя часть тубусодержателя снабжена снизу головкой для крепления револьвера с гнездами для объективов, а сверху - специальным посадочным гнездом для крепления сменных тубусов: бинокулярной насадки для визуальных исследований и монокулярного прямого тубуса для фотографирования.

Предметный столик М. имеет устройство для перемещения рассматриваемого препарата в направлениях, перпендикулярных друг другу. Отсчет передвижения препарата в том или другом направлении может быть произведен по шкалам с нониусами с точностью до 0,1 мм.

Рис. 2. Принципиальная оптическая схема биологического микроскопа с осветителем: 1 - глаз наблюдателя; 2 - окуляр; 3 - рассматриваемый объект (препарат); 3 - образуемое окуляром мнимое перевернутое изображение объекта, лучи от которого, проходя через оптические системы глаза наблюдателя, создают на сетчатке глаза действительное изображение объекта; 3" - перевернутое и увеличенное действительное изображение объекта; 4 - объектив; 5 - конденсор, концентрирующий на объекте пучок света, отражающегося от зеркала; 6 - апертурная диафрагма; 7 - зеркало; 8 - полевая диафрагма; 9 - линза-коллектор осветителя; 10 - источник света; 11 - предметное стекло, на котором располагают рассматриваемый объект; D - расстояние наилучшего видения; стрелками показан ход лучей в оптической системе микроскопа.

Принципиальная оптическая схема биол. М. приведена на рисунке 2.

Лучи света, отраженные зеркалом, собираются конденсором. Конденсор (рис. 3) состоит из нескольких линз, вмонтированных в металлическую оправу, закрепляемую винтом в гильзе кронштейна конденсора, и представляет собой светосильный короткофокусный объектив. Светосила (апертура) конденсора зависит от числа линз. В зависимости от методов наблюдения применяют различные виды конденсоров: конденсоры светлого и темного поля; конденсоры, создающие косое освещение (под углом к оптической оси М.); конденсоры для исследования по методу фазового контраста и др. Конденсор темного поля для проходящего света обеспечивает освещение препарата полым конусом света с большим углом; конденсор для отраженного света представляет собой кольцеобразную зеркальную или зеркально-линзовую систему вокруг объектива, так наз. эпиконденсор.

Между зеркалом и конденсором расположена ирисовая диафрагма (ирис-диафрагма), иначе называемая апертурной, т. к. степень ее раскрытия регулирует апертуру конденсора, к-рая всегда должна быть чуть-чуть ниже апертуры применяемого объектива. Диафрагма в конденсоре может располагаться и между его отдельными линзами.

Основным оптическим элементом М. является объектив. Он дает действительное перевернутое и увеличенное изображение изучаемого объекта. Объективы представляют собой систему взаимно центрированных линз; ближняя к объекту линза называется фронтальной. Даваемое ею действительное изображение объекта страдает рядом аберраций (см.), свойственных каждой простой линзе, к-рые устраняются вышележащими коррекционными линзами. Большинство этих линз весьма сложно: они изготовлены из разных сортов стекла или даже других оптических материалов (напр., флюорита). Объективы по степени исправления аберраций делятся на несколько групп. Наиболее простыми являются ахроматические объективы, у них исправлена хроматическая аберрация для двух длин волн и сохраняется лишь небольшая остаточная окраска изображения (ореол). Несколько меньшие хроматические аберрации имеют полуапохроматические, или флюоритовые, системы: их хроматическая аберрация исправлена для трех длин волн. Планахроматические и планапохроматические системы устраняют кривизну изображения (т. е. дают плоское поле изображения) и хроматические аберрации. Каждый объектив характеризуется свойственным ему собственным увеличением, фокусным расстоянием, численной апертурой и нек-рыми другими константами. Собственное увеличение зависит от переднего фокусного расстояния объектива, по величине к-рого объективы делятся на сильные (с фокусным расстоянием 1,5-3 мм), среднесильные (с фокусным расстоянием 3,5 мм), средние (фокусное расстояние 5-12 мм) у слабые (фокусное расстояние 12-25 мм) и слабейшие (фокусное расстояние более 25 мм).

Численная апертура объективов (и конденсоров) определяется произведением Sin половины отверстного угла, под к-рым объект «видит» центр фронтальной линзы объектива (ее «зрачок») и фронт линзы конденсора, на показатель преломления среды, заключенной между этими оптическими системами. Если этой средой является воздух, чередующийся с пластинкой предметного стекла, на к-ром лежит объект, то численная апертура не может быть выше 0,95, т. к. показатель преломления воздуха равен 1. Для того чтобы повысить численную апертуру, объектив погружают (иммергируют) в воду, глицерин или иммерсионное масло, т. е. в такую среду, показатель преломления к-рой выше 1. Такие объективы называют иммерсионными. Объективы М. для изучения объектов в проходящем свете рассчитаны на применение покровных стекол, объективы для исследований в падающем свете позволяют рассматривать объект без покровного стекла.

Рис. 4. Схематическое изображение окуляра Гюйгенса (I) и хода лучей в нем, образующих изображение (II): 1,9 - полевая линза; 2,6 - диафрагма; 3 - оправа окуляра; 4,8 - глазная линза; 5 - главная оптическая ось; 7 - выходной зрачок; 10 - первичное изображение; H и H" - основные плоскости.

Изображение, к-рое дает объектив, рассматривают через оптическую систему, называемую окуляром. Изображение в окуляре - увеличенное мнимое. Увеличение окуляров обычно указано на их оправе, напр. 5х, 10х, 15х и т.п. Окуляры можно разделить на две основные группы: нормальные, с обычным полем зрения, и широкоугольные. Из различных систем окуляров наиболее распространенными являются окуляр Гюйгенса и окуляр Рамсдена. Окуляр Гюйгенса (рис. 4), который состоит из двух плоско-выпуклых линз, обращенных выпуклой стороной к объективу, применяется при работе с ахроматическими и планахроматическими объективами при небольших увеличениях. Окуляр Рамсдена (рис. 5) состоит также из двух плоско-выпуклых линз, но обращенных выпуклыми сторонами друг к другу. Этот окуляр можно использовать и в качестве лупы (см.).

Для исправления (компенсации) остаточных хроматических аберраций объектива служат так наз. компенсационные окуляры; наиболее сильные из них дают увеличение в 20 раз.

Компенсационные окуляры состоят из комбинации склеенных и одиночных линз, подобранных таким образом, что их хроматическая ошибка обратна остаточному хроматизму апохроматического объектива, и поэтому компенсирующих остаточный хроматизм объектива. Фотоокуляры и проекционные окуляры служат для проектирования изображения на фотопленку или экран. В нек-рых случаях в М. вместо окуляров применяют так наз. гомалы - оптические системы, исправляющие кривизну изображения апохроматических объективов и предназначенные для проектирования изображения и фотографирования. Для измерения размеров изучаемых микроскопических объектов применяют окуляр-микрометр (см.).

Осветители для микроскопа

Источником света для М. могут служить самые разнообразные лампы: лампы накаливания, ртутно-кварцевые и др.

При работе с мощными источниками света для предохранения препаратов от перегревания или высыхания применяют теплозащитные фильтры (цельностеклянные или заполненные жидкостью полупрозрачные пластинки), поглощающие световые лучи неиспользуемых длин волн (напр., лучи длинноволнового участка спектра) и тепловые лучи. При исследовании препарата в проходящем свете источник света располагается под объектом, при исследовании в отраженном свете - над объектом или сбоку от него. В нек-рых, гл. обр. исследовательских, М., напр. МБИ-6, МБИ-15 и др., специальные осветители входят в состав конструкции М. В других случаях применяют выпускаемые промышленностью осветители различных марок. Нек-рые из них имеют трансформаторы, стабилизирующие напряжение, подаваемое на лампу, и реостаты для регулирования накала лампы.

Наиболее простым по устройству является осветитель ОС-14. Его применяют при наблюдении микрообъектов в проходящем свете в светлом поле. Осветитель ОИ-19 имеет более интенсивный источник света и используется для наблюдений в светлом и темном полях, методом фазового контраста и пр., а также для микрофотографирования в светлом поле. Осветитель ОИ-25 предназначен для наблюдений в проходящем свете. Он устанавливается непосредственно под конденсором вместо зеркала. Этот осветитель часто используют при работе с портативными моделями М. Осветитель ОИ-9М применяют гл. обр. при работе в проходящем свете с поляризационными М.; осветитель ОИ-24 используют при работе с биологическими и поляризационными М. Он предназначен для фотографирования микрообъектов и имеет набор светофильтров. Люминесцентный осветитель СИ-18 применяют для работы с биол., люминесцентными и другими М. Источником света в нем служит ртутно-кварцевая лампа, позволяющая работать со светом УФ-части спектра, как проходящим, так и отраженным.

Оптическая схема и принцип действия микроскопа

Построение изображения в М. можно объяснить с точки зрения геометрической оптики. Лучи света от источника света через зеркало и конденсор попадают на объект. Объектив строит действительное изображение объекта. Это изображение рассматривается через окуляр. Общее увеличение М. (Г) определяется как произведение линейного увеличения объектива (β) на угловое увеличение окуляра (Г ок) : Г = β*Г ок; β = Δ/f" об, где Δ - расстояние между задним фокусом объектива и передним фокусом окуляра, a f" об - фокусное расстояние объектива. Увеличение окуляра Г ок = 250/f" ок, где 250 - расстояние от глаза до изображения в мм, f" ок - фокусное расстояние окуляра. Увеличение объективов обычно составляет от 6,3 до 100, а окуляров - от 7 до 15. Общее увеличение М. находится в пределах 44-1500; его можно подсчитать путем умножения величин, характеризующих увеличение окуляра и объектива. Технически возможно создать М., объективы и окуляры к-рых дадут общее увеличение, значительно превышающее 1500. Однако обычно это нецелесообразно. Существенный вклад в построение изображения в М. вносят явления дифракции и интерференции света. Каждая малая точка освещенного объекта, согласно теории Гюйгенса, сама становится как бы центром новой световой волны, распространяющейся по всем направлениям. Все возникающие волны при этом интерферируют, образуя дифракционные спектры, при этом возникают темные и светлые участки (минимумы и максимумы). По теории Аббе изображение в М. получается подобным объекту лишь в том случае, если в объектив попадут все достаточно интенсивные максимумы. Чем меньше максимумов участвует в построении изображения объекта, тем меньше изображение сходно с объектом.

Типы микроскопов

Кроме биологического М. различают стереоскопический, контактный, темнопольный, фазово-контрастный, интерференционный, ультрафиолетовый, инфракрасный, поляризационный, люминесцентный, рентгеновский, сканирующий, телевизионный, голографический, микроскопы сравнения и другие типы М. Нек-рые из них, напр, фазово-контрастный и люминесцентный, могут быть при необходимости созданы на базе обычного биол. М. с помощью соответствующих приставок.

Стереоскопический микроскоп представляет собой, по сути дела, два М., объединенных единой конструкцией таким образом, что левый и правый глаза видят объект под разными углами. Это дает стереоскопический эффект, облегчающий исследование многих объемных объектов. Этот М. широко применяется в различных сферах медико-биологических исследований. Особенно необходим он при проведении микроманипуляций в ходе наблюдения (биол, исследования, микрохирургических операций и т. п.). Удобство ориентировки в поле зрения М. создается включением в его оптическую схему призм, к-рые играют роль оборачивающих систем: изображение в таких стереоскопических М. прямое, а не перевернутое.

Стереоскопические М. имеют, как правило, небольшое увеличение, не более чем в 120 раз. Выпускаемые М. можно разделить на две группы: М. с двумя объективами (БМ-56 и др.) и М. с одним объективом (МБС-1, МБ С-2, МБС-3 и др.). Бинокулярный М. БМ-56 является наиболее простым из стереоскопических М. и состоит из двух самостоятельных оптических систем, каждая из к-рых дает отдельное изображение.

Стереоскопический М. МБС-1 работает в проходящем и отраженном свете (рис. 6). Стереоскопический М. МБ С-2 имеет универсальный штатив, к-рый позволяет работать с объектами больших размеров. Стереоскопический М. МБС-3 отличается от предыдущих оптической конструкцией, в к-рой в значительной степени уменьшена сферохроматическая аберрация, исправлена кривизна изображения.

Существуют также специальный бинокулярный налобный М., предназначенный для микрохирургических операций (см. Микрохирургия , Микрургия), и операционный микроскоп (см.).

Микроскопы сравнения состоят из двух конструктивно объединенных обычных М. с единой окулярной системой. В таком М. в двух половинах поля зрения видны изображения сразу двух объектов, что дает возможность сравнивать их по цвету, структуре, распределению элементов и т. д. М. такого типа применяют при сравнительном изучении каких-либо объектов в норме и патологии, прижизненном состоянии и после фиксации или окраски различными методами. М. сравнения используются и в судебной медицине.

Контактный микроскоп , используемый для прижизненного изучения различных биол, структур, отличается от других М. наличием особых контактных объективов, к-рые представляют собой видоизмененные иммерсионные объективы. К ним первоначально приклеивали тонкую пластинку стекла и создавали непосредственный контакт с поверхностью изучаемого объекта. В 1963 г. А. П. Грамматин предложил и рассчитал объективы, предназначенные специально для контактной микроскопии. Фокусировка в контактном М. осуществляется специальной оптической системой, т. к. объектив неподвижно прижат к объекту. В флюоресцентном контактном М. изучаемый участок объекта освещается коротковолновыми лучами через контактный объектив с помощью опак-иллюминатора с интерференционным светоделителем.

Темнопольный микроскоп , используемый в работе по методу темного поля (см. Темнопольная микроскопия), позволяет наблюдать изображения прозрачных, не поглощающих свет объектов, не видимых при освещении по методу светлого поля. Такими объектами часто являются биол. объекты. В темнопольном М. свет от осветителя и зеркала направляется на препарат специальным конденсором, так наз. конденсором темного поля. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса, к-рый не попадает в объектив, находящийся внутри этого конуса. Изображение в темнопольном М. создается лишь небольшой частью лучей, рассеянных микрочастицами препарата внутрь этого полого конуса и прошедшими через объектив. Темно-польные М. применяют при микрургических операциях на отдельных клетках, при изучении механизма репарационного процесса, регистрации различного состояния клеточных элементов и т. п. Методом темнопольной микроскопии можно также исследовать объекты, размеры к-рых гораздо меньше разрешающей способности светового М. (см. Ультрамикроскоп).

Фазово-контрастный микроскоп и его разновидность - аноптральный М. служат для получения изображений прозрачных и бесцветных объектов, не видимых при наблюдении по методу светлого поля. Обычно эти объекты не могут быть окрашены, т. к. окраска губительно действует на их структуру, локализацию хим. соединений в клеточных органеллах и т. п. (см. Фазово-контрастная микроскопия). Этот метод широко применяется в микробиологии. В клинико-диагностических лабораториях он используется для исследования мочи, нефиксированных тканей (напр., при диагностике злокачественных опухолей), нек-рых фиксированных гистол. препаратов (cм. Гистологические методы исследования).

Рис. 7. Оптическая схема фазово-контрастного микроскопа с осветителем: 1 - осветитель; 2 - апертурная диафрагма; 3 - конденсор; 4 - изучаемый объект; 4" - изображение изучаемого объекта; 5 - объектив; 6 - фазовая пластинка, на поверхности которой имеется кольцевой выступ или кольцевая канавка, так называемое фазовое кольцо (сплошными стрелками показан ход обычных лучей, пунктирными - диафрагмированных).

В фазово-контрастном М. (рис. 7) в переднем фокусе конденсора устанавливают апертурную диафрагму, отверстие к-рой имеет форму кольца. Изображение, построенное ею, образуется вблизи заднего фокуса объектива, и там же устанавливают фазовую пластинку. Она может быть установлена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но лучи света от осветителя, проходя через объект, должны полностью проходить через фазовое кольцо, к-рое значительно их ослабляет и изменяет их фазу на четверть длины волны. Лучи, даже немного отклоненные (рассеянные) в препарате, не попадают в фазовое кольцо и не претерпевают сдвига фазы. С учетом фазового сдвига лучей света в материале препарата разность фаз между отклоненными и неотклоненными лучами усиливается; в результате интерференции света в плоскости изображения лучи усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата.

Промышленность выпускает различные фазово-контрастные устройства к М. Фазово-контрастное устройство КФ-4 состоит из конденсора и набора объективов. Его можно применять с биол., поляризационными, люминесцентными и другими М. Фазово-контрастное устройство КФ-5 отличается от КФ-4 тем, что фазовые пластинки на его объективах нанесены в виде двух колец, контрастность изображения также несколько выше. Фазово-контрастное устройство МФА-2 отличается от КФ-4 размером фазовых колец и способом их нанесения.

Аноптральный М. является разновидностью фазово-контрастного М. и позволяет исследовать малоконтрастные живые объекты (простейшие, бактерии, вирусы), но дает более контрастное изображение, чем обычный фазово-контрастный микроскоп. Нежелательным при применении аноптрального М. можно считать появление в нек-рых случаях ореолов вокруг изображения объектов. Промышленностью выпускается комплект для аноптральной микроскопии КАФ-2 и др.

Интерференционный микроскоп предназначен для решения тех же задач, что и фазовоконтрастный М., однако между ними имеются и существенные различия. В интерференционном М. можно наблюдать участки объектов не только с большими, но и с малыми градиентами показателя преломления или толщины, т. е. можно изучать детали прозрачных объектов независимо от их формы и размеров, а не только их контуры, как в фазово-контрастном М.

Принцип, лежащий в основе конструкции интерференционного М., состоит в том, что каждый луч, входящий в М., раздваивается: один из полученных лучей направляется сквозь наблюдаемую частицу объекта, а другой - мимо нее по той же или дополнительной оптической ветви М. (рис. 8). В окулярной части такого М. оба луча вновь соединяются и интерферируют между собой.

Интерференционный М. пригоден для изучения живых и нефиксированных тканей, он позволяет с помощью различных устройств производить измерения, на основании к-рых можно вычислить, напр., массу сухого вещества растительной: или животной клетки, концентрацию, размеры объекта, содержание белков в живых и фиксированных объектах и т. п. (рис. 9).

Промышленность выпускает большое число различных интерференционных М., предназначенных для биол., мед., металлографических и других исследований. Примером может служить интерференционный биол, микроскоп МБИН-4, предназначенный для исследования образцов в проходящем свете интерференционным методом. Он позволяет так-же измерять разности хода- лучей, возникающие при их прохождении через различные участки объекта.

Метод интерференционного контраста часто сочетают с другими методами микроскопии, напр. с наблюдением объектов в поляризованном свете, в УФ-свете и т. п., что позволяет, напр., определить содержание нуклеиновых к-т в общей сухой массе объекта.

Ультрафиолетовый и инфракрасный микроскопы предназначены для исследования объектов в ультрафиолетовых (УФ) и инфракрасных (ИК) лучах. Эти М. снабжены фотокамерами, флюоресцирующими экранами или электронно-оптическими преобразователями для фиксации изображения. Разрешающая способность УФ-микроскопов значительно выше, чем разрешающая способность обычных М., т. к. их предельное разрешение, зависящее от длины волны, ниже. Длина волны света, используемого в УФ-микроскопии, 400 - 250 нм, тогда как длина волны видимого света 700-400 нм. Однако главное преимущество УФ-микроскопов заключается в том, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ-излучение определенных длин волн и, следовательно, легко различимы в УФ-изображениях. Характерными спектрами поглощения в УФ-области спектра обладает ряд веществ, содержащихся в растительных и животных клетках. Такими веществами являются белки, пуриновые основания, пиримидиновые основания, ароматические аминокислоты, нек-рые липиды, витамины, тироксин и другие биологически активные соединения.

Исследовательский УФ-микроскоп МУФ-6 (рис. 10) предназначен для биол, исследований в проходящем и отраженном свете. Он позволяет проводить фотографирование объектов, а также фотографическую регистрацию оптической плотности и спектров поглощения участков образца при освещении их монохроматическим светом.

Микрофотометрическая ультрафиолетовая установка МУФ-5 предназначена для исследования биол, объектов в проходящем свете. На ней можно производить автоматическую запись спектров поглощения, с помощью сканирующего предметного столика записывать изменения оптической плотности вдоль выбранного направления в нужном спектральном интервале, фотографировать флюоресценцию объектов.

Наблюдение объектов с помощью инфракрасного микроскопа также требует преобразования невидимого для глаза изображения в видимое путем его фотографирования или с помощью электронно-оптического преобразователя. Инфракрасный микроскоп, напр. МИК-1 (рис. 11), позволяет изучить внутреннюю структуру непрозрачных для видимого света объектов (напр., зоол., палеонтол., антропол, препаратов и пр.). Выпускаемый промышленностью инфракрасный микроскоп МИК-4 позволяет рассматривать объекты при свете с длиной волн от 750 до 1200 нм, в т. ч. и в поляризованном свете.

Поляризационный микроскоп позволяет наблюдать изучаемые объекты в поляризованном свете и служит для изучения препаратов, оптические свойства к-рых неоднородны, т. е. так наз. анизотропных объектов (см. Анизотропия). Такими объектами являются мио- и нейрофибриллы, коллагеновые волокна и т. п. Свет, излучаемый осветителем в системе такого М., пропускают через поляризатор; поляризация (см.), сообщенная при этом свету, меняется при последующем его прохождении через препарат (или отражении от него). Это дает возможность выделить различные элементы в препарате и их ориентацию в пространстве, что особенно важно при изучении медико-биол. объектов. В поляризационном М. исследования можно производить как в проходящем, так и в отраженном свете. Узлы поляризационных М. предназначены для точных количественных измерений: окуляры имеют перекрестия, микрометрические шкалы и т. п.; вращающийся предметный столик имеет угломерный лимб.

Промышленность выпускает поляризационные М. различного назначения. Примером такого М. является универсальный поляризационный микроскоп МИН-8 (рис. 12), к-рый имеет необходимое оснащение и дополнительные принадлежности для других поляризационных исследований, кроме микроскопических. Лучшими зарубежными приборами такого типа являются универсальные микроскопы «Ортолюкс-Поль» фирмы «Лейтц» (ФРГ) и «Поль» фирмы «Оптон».

Люминесцентный микроскоп. Устройство люминесцентных М. основано на нек-рых физ.-хим. законах люминесценции (см. Люминесцентная микроскопия). Высокая чувствительность люминесцентных М. используется в микробиол., иммунол., цитол, и биофизических исследованиях.

Выпускаемый промышленностью люминесцентный микроскоп МЛ-3 предназначен для наблюдения и фотографирования объектов в свете их видимой флюоресценции в отраженном свете. Люминесцентный микроскоп МЛ-2 отличается от МЛ-3 возможностью наблюдения объектов в проходящем свете. Люминесцентные устройства, используемые чаще вместе с обычными М., содержат осветитель с ртутной лампой, набор светофильтров и так наз. опак-иллюминатор для освещения препаратов сверху. В сочетании с обычными люминесцентными М. используют фотометрическую наладку ФМЭЛ-1, к-рая служит для количественного измерения интенсивности видимой флюоресценции. Микрофлюориметр МЛИ-1 применяют для исследования ультрафиолетовой и видимой флюоресценции в отраженном свете. Прибор позволяет производить количественные измерения флюоресценции, фотографирование, измерение спектров флюоресценции, возбуждения флюоресценции.

Рентгеновский микроскоп предназначен для исследования объекта в рентгеновских лучах. Фокусировка лучей в рентгеновских М. имеет свои особенности: для этого в них используются изогнутые зеркальные плоскости. В рентгеновском М. имеются также микрофокусный источник рентгеновского излучения и детекторы изображения: фотопленки или электтронно-оптические преобразователи. Рентгеновские М. этого типа имеют ряд недостатков, связанных со структурными несовершенствами монокристаллов и сложностями точной обработки зеркал, ввиду чего они не получили широкого применения.

Принцип проекционных, или «теневых», рентгеновских М. основан на методе проекции в расходящемся пучке лучей от точечного сверхмикрофокусного источника рентгеновских лучей. Такие М. имеют также камеры для микрообъекта и регистрирующего устройства. Линейное разрешение М. этого типа до 0,1 мкм.

Рентгеновские М. применяют при исследовании объектов, различные участки к-рых избирательно поглощают рентгеновские лучи, а также объектов, непрозрачных для иных лучей. Нек-рые модели рентгеновских М. оснащены преобразователями рентгеновского излучения в видимое и телевизионными устройствами.

Сканирующий микроскоп позволяет осуществлять последовательный осмотр объекта в каждой точке или его изображения фотоэлектрическим преобразователем с измерением интенсивности света, прошедшего через объект или отраженного от него. Сканирование объекта сводится к последовательному измерению коэффициента пропускания или отражения лучей света от объекта в каждой его точке и преобразованию его в электрический сигнал. Вид характеристик микроструктур, получаемых в результате обработки видеосигналов, определяется алгоритмами (см.), вводимыми в соответствующие вычислительные устройства; т. о., сканирующий М. представляет собой сочетание собственно М. и информационной сканирующей системы. Он является составной частью конструкции анализаторов и счетчиков частиц, телевизионных М., сканирующих и интегрирующих микрофотометров и т. д. Сканирующие М. используют в микробиологии, цитологии, генетике, гистологии, физиологии и других областях биологии и медицины.

Является перспективным использование сканирующих М. или конструкций, в состав к-рых они входят, в диагностических целях, для изучения строения и структуры тканей, в т. ч. и крови, выявления в них возрастных и патол, изменений, обнаружения атипичных клеток в срезах тканей и т. п. В экспериментальной медицине сканирующие М. применяют с целью контроля роста и развития тканей и клеток в культурах и т. п.

Промышленность выпускает сканирующие устройства, выполненные в виде насадок к световому микроскопу.

Системы сканирования могут быть телевизионными и механическими. Телевизионные применяют в основном для анализа геометрических и статистических характеристик и классификации микрообъектов. Механические более универсальны и точны. Они позволяют работать в заданном спектральном интервале в УФ-области спектра и часто применяются для фотометрических измерений.

Телевизионный микроскоп конструктивно сочетает в себе М. с телевизионной техникой. Телевизионные М. работают по схеме микропроекции: изображение объекта преобразуется в последовательные электрические сигналы, к-рые затем воспроизводят это изображение в увеличенном масштабе на экране кинескопа. В зависимости от способа освещения исследуемого объекта телевизионные М. подразделяют на два типа: М. с передающей трубкой и М. с бегущим пятном.

Телевизионный М. с передающей трубкой представляет собой простую комбинацию оптического М. и телевизионного канала. Изображение, даваемое М., проецируется на экран кинескопа. При этом изображение сигналов можно наблюдать и на большом экране даже при малом освещении самого объекта.

В телевизионном М. с бегущим пятном используют оптическое сканирование объекта движущимся лучом света.

Телевизионные устройства часто используют в сочетании с фазовоконтрастными М. Этим достигается наибольшая контрастность изображения. Высокая яркость изображений в телевизионных М. позволяет использовать их для проведения фото- и киносъемок как неподвижных, так и движущихся объектов. Телевизионные М. можно использовать и как дистанционный прибор, т. е. сам телевизионный приемник может быть установлен на значительном расстоянии от М., что особенно важно при исследовании объектов, близость к к-рым опасна для наблюдателя (напр., радиоактивных). В телевизионном микроскопе возможно изучение объектов в УФ- и ИК-лучах; его используют также как телевизионный микроспектрофотометр. При использовании дополнительных электронных систем возможно получение цветного изображения. На основе телевизионных М. созданы автоматические счетчики микрочастиц (см. Автоанализаторы). Изображение в этом случае специальными счетными приспособлениями преобразуется в серию электрических сигналов, что позволяет просто и с большой скоростью производить подсчет числа различных частиц в препарате (эритроцитов и лейкоцитов в крови, колоний бактерий, частиц аэрозолей в воздухе, кристаллов и зерен в минералах и т. п.), а также целый комплекс других измерений.

Промышленность выпускает телевизионные М. различных типов. Ультрафиолетовый телевизионный М. амер. фирмы «Ньютроникс Рисерч» представляет собой телевизионный микроспектрофотометр. Он дает трехцветное изображение объекта, соответствующее трем выбранным длинам волн в УФ-части спектра. Такой М. позволяет производить абсорбционные измерения.

Количественный телевизионный М. «КТМ» англ. фирмы «Металз Рисерч» дает возможность измерять отдельно элементы изображения с разной освещенностью в пределах шести ступеней интенсивности, определять процент площади, занимаемой нек-рой составной частью структуры, определять среднее число частиц для расчета их среднего размера, оценивать распределение частиц по группам крупности.

Голографический микроскоп служит для построения изображений объектов голографическим методом, т. е. методом получения объемного изображения объекта, основанным на интерференции волн (см. Голография). Голограмма позволяет получить изображение, к-рое является результатом регистрации не только амплитуд (как в фотографии), но и фаз световых волн, рассеянных объектом. В голографическом М. источником волн служит лазерный луч (см. Лазер). При использовании импульсных лазерных источников возможно получение голограмм движущихся объектов. Конструктивное сочетание голографических устройств с обычным М. позволяет располагать объект вертикально, что необходимо при исследовании, напр., клеточных суспензий. Голограмма получается с изображения, созданного объективом. Восстановленная голограмма воспроизводит изображение, к-рое наблюдают через окуляр М. Применение голографического метода является перспективным для изучения прозрачных (фазовых) объектов; его можно также использовать для получения изображений микрообъектов, содержащих медленно движущиеся области в статическом окружении (циркуляция крови, поглощение пузырьков воздуха в капиллярах и т. д.). Голографический М. нашел применение в криоскопии для изучения различных клеток в норме и при замораживании (напр., наблюдение за процессами внутриклеточной кристаллизации). В голографическом М. возможно получение разрешения ок. 1 мкм, а также черно-белых и цветных голограмм.

Голографические устройства находят все более широкое применение в качестве автоматических анализаторов микрочастиц. Распознавание микрочастиц с использованием этого метода ускоряется в десятки тысяч раз. Поиск объекта ведут одновременно по всей голограмме. Для управления работой и обработки результатов голографические установки соединяют с ЭВМ.

Библиография: Барский И. Я., Поляков Н. И. и Якубенас В. А. Контактная микроскопия, М., 1976, библиогр.; Бернштейн А. С., Джохад-з e Ш. Р. и Перова Н. И. Фотоэлектрические измерительные микроскопы, М., 1976, библиогр.; Воронин В. В. Основы теории микроскопа, Тбилиси, 1965; М а й с т р о в Л. Е. Приборы и инструменты исторического значения, Микроскопы, М., 1974; Машинный анализ микроскопических объектов, под ред. Г. М.Франка, М., 1968; Панов В. А. и А н д-р e e в Л. Н. Оптика микроскопов, Л., 1976, библиогр.: Сканирующая техника в исследовании клеточных популяций, клеток, органоидов и макромолекул, под ред. Г. М. Франка, Пущино-на-Оке, 1973; Скворцов Г. Е.и др. Микроскопы, Л., 1969, библиогр.; Федин Л. А. Микроскопы, принадлежности к ним и лупы, М., 1961, библиогр.; ЧернухА. М. и др. Некоторые вопросы применения голографии в медико-биологических исследованиях, Мед. техн., № 1, с. 30, 1976, библиогр.

Ю. В. Агибалов, Н. Г. Будковская, А. Б. Цыпин.

Окуляр [okularis - глазной ] обращенная к глазу часть оптического прибора, предназначен для дополнительного увеличения изображения, созданного объективом, и построения микроскопического изображения на сетчатке глаза наблюдателя.

В общем виде окуляры состоят из двух групп линз: глазной , ближайшей к глазу наблюдателя, и полевой , ближайшей к плоскости изображения, в которой объектив строит изображение рассматриваемого объекта.

Окуляры обычно доисправляют изображение, созданное объективом.

Окуляр Гюйгенса простейший окуляр, состоящий, как минимум, из двух линз.

Термин, применявшийся первоначально для окуляра, состоящего из двух плосковыпуклых линз (коллективной линзы и глазной линзы с диафрагмой в промежутке), установленных так, что их выпуклые поверхности обращены к объективу. Оптическая схема окуляра рассчитывается таким образом, что в них практически отсутствует хроматическая разность увеличения (ХРУ). Такие окуляры применяются с объективами, в которых также отсутствует ХРУ.

В настоящее время термин применяется к любому окуляру с диафрагмой внутри.

Компенсационный окуляр - окуляр, который совместно с объективом исправляет хроматическую разность увеличения (ХРУ). Величина ХРУ в компенсационных окулярах колеблется, так же как и у объективов, от 0,5% до 2%, но противоположенного знака. Применяется совместно с ахроматическими и планапохроматическими объективами.

Окуляр Кельнера состоит из простой линзы и склеенной из двух линз глазной. Угловое поле увеличено до 50°.

Симметричный окуляр состоит из двух одинаковых компонентов, расположенных симметрично друг относительно друга. Окуляр имеет большой вынос зрачка, что позволяет на его основе получать окуляры для работы с очками. Угловое поле окуляров не превышает 40° - 42°.

Ортоскопический окуляр - состоит из плосковыпуклой глазной линзы и трехсклеенного компонента. Угловое поле до 40°.

Окуляр Эрфле состоит из трех компонентов. Обеспечивает большой вынос зрачка. Имеет большое расстояние до сетки, и данная схема обычно используется, когда требуется перемещение окуляра. Угловое поле увеличено до 60°.

Широкоугольный окуляр это высококачественный окуляр сложной оптической конструкции. Нередко в них применяются линзы с асферическими поверхностями. Угловое поле может быть 80°-100°.

Новые современные окуляры являются широкоугольными с линейным полем 18- 20 мм и сверхширокоугольными с полем 25-30 мм.

При работе с планобъективами используются план-окуляры , в которых исправлены кривизна поверхности изображения, астигматизм и кома, что обеспечивает резкое изображение по всему полю наблюдения.

Для проецирования изображения применяются фотоокуляры и гомали (отрицательные системы, исправляющие некоторые оптические дефекты полученного объективом изображения). Гомали не пригодны для визуального наблюдения.

Видно, что классификация окуляров не столь разнообразна как у объективов и больше касается качественных сторон. На окуляре (рис. 40) указывается тип окуляра и кратность увеличения (например, окуляр Гюйгенса – «7х», компенсационный окуляр – «К7х» или «комп7х»).

В последних моделях зарубежных микроскопов диоптрийная наводка на плоскость изображения с целью коррекции недостатков зрения производится не на окулярной трубке бинокуляра, а с помощью самого окуляра.

Если технология работы на микроскопе требует проводить точные измерения, окуляры подобных микроскопов конструктивно выполняются таким образом, что внутри их размещаются окулярные сетки . Эти оптические детали устанавливаются в плоскость полевой диафрагмы. Сетка может быть выполнена в виде шкалы окулярного микрометра, сетки с различными размерами квадратов, кругов правильной формы или логарифмической сетки, на стекло могут быть нанесены фигуры стандартной формы (для сравнения). Сетка предназначена для измерения линейных размеров, вычисления площади объекта, для количественного подсчета и т.д.

Осветительная система – это система линз, диафрагм и зеркал (при необходимости), обеспечивающая равномерное освещение объекта и полное заполнение апертуры объектива. В состав осветительной системы как правило входят: источник света (естественный или искусственный); коллектор - оптическая система, которая проецирует нить лампы в плоскость апертурной диафрагмы конденсора; конденсор - оптическая система, которая проецирует полевую диафрагму коллектора в плоскость предмета, обеспечивая требуемую числовую апертуру осветительного пучка.

Существуют различные способы освещения препарата при микроскопии. Классический способ освещения препарата в микроскопе был предложен Келером в 1893г. и используется до настоящего времени, как основной прием для получения качественного изображения

Источник света, будь то солнце, лампа накаливания, галогенная лампа или ртутная и ксеноновая лампы, выполняет основную функцию: освещение объекта микроскопического исследования таким образом, чтобы точность его воспроизведения оптическими элементами микроскопа в изображении по форме, разрешению и цвету была максимальной. Равномерность освещенности и яркость в поле зрения микроскопа (в плоскости изображения) определяется равномерностью освещения объекта в плоскости предмета и равномерностью и полнотой заполнения плоскости выходного зрачка микрообъектива изображением нити лампы.

В качестве источника света в современных осветителях микроскопов обычно используют низковольтные лампы накаливания с толстой нитью . Широкое применение получили лампы накаливания с иодным циклом (кварцево-галогенные лампы). Сила света источника должна быть велика, а площадь, занимаемая нитью накала, - мала, чтобы источник света по типу приближался к точечному . Помимо лампы, в конструкцию осветителя входит коллекторная линза , позволяющая получить при соответствующей фокусировке параллельный пучок лучей, а также ирисовая полевая диафрагма , от раскрытия которой зависит освещенное поле на препарате.

Для выравнивания света обычно применяются светофильтры . Светофильтры, используемые в световой микроскопии биологических объектов, условно можно разделить на две группы: ослабляющие световой поток без изменения спектрального состава света (нейтральные светофильтры, матовое стекло, скрещенные поляризационные фильтры) и светофильтры, выделяющие определенную область спектра. Нейтральные светофильтры и матовые стекла используются после настройки света по Келеру, если яркость источника света слишком велика. Светофильтры, выделяющие определенную область спектра, могут быть использованы для усиления или ослабления контраста некоторых деталей в окрашенных препаратах. Для увеличения контраста необходимо использовать светофильтры дополнительные по цвету к цвету окраски. Для ослабления контраста - светофильтры аналогичные цвету окраски

Конденсор [condensare – сгущать ] - оптическая система, предназначенная для концентрации светового потока, сформированного в коллекторе осветителя, и равномерного освещения объекта (рис. 41, 42). В микроскопах проходящего света конденсор расположен между объектом (предметным столиком) и источником света (коллектор, зеркало). В микроскопах отраженного света роль конденсора выполняет объектив.

Конденсоры различаются по типу оптической коррекции , числовой апертуре , рабочему расстоянию и назначению (для реализации различных методов контрастирования ).

Конденсор Аббе - осветительная система линз, разработанная Аббе. Не исправленный по качеству изображения конденсор состоит из двух неахроматических линз: одной, двояковыпуклой, другой плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора А=1,20. Имеет ирисовую (регулируемую) диафрагму.

Апланатический конденсор состоит из трех линз, расположенных следующим образом: верхняя линза плосковыпуклая (плоская сторона направлена к объективу), далее следует вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора А = 1,40. Имеет ирисовую диафрагму.

Ахроматический конденсор полностью исправлен в отношении хроматической и сферической аберраций.

Ахроматический-аплапатический конденсор исправлен как в отношении хроматической аберрации, так и в отношении сферической аберрации и комы.

Существует разница между конденсорами прямых и инвертированных микроскопов проходящего света. Связано это, естественно, со спецификой работы с микроскопом. Для прямых микроскопов функция конденсора сводится к освещению объекта, расположенного на предметном стекле определенной толщины (1,1 мм) в соответствии с принятыми принципами освещения. Объект является только предметом освещения и наблюдения. Расстояние от фронтальной линзы конденсора до предметного стекла может составлять от 0,5 до 1,2мм с накинутой фронтальной линзой. При откинутой фронтальной линзе это расстояние может увеличиться на порядок. Числовая апертура конденсора находится в пределах от 0,3 (без фронтальной части) до 1,4 при работе с иммерсией

В инвертированном микроскопе конденсор должен выполнять более широкую функцию: обеспечивать освещение объекта в соответствии с принятыми принципами освещения и работу пользователя с объектом в пространстве между фронтальной частью конденсора и предметным стеклом. Это возможно при сверхбольшом рабочем расстоянии конденсора. Расстояние от предмета до фронтального компонента может находиться в пределах от 50 мм до 200 мм при числовой апертуре от 0,3 до 0,55 (максимально возможная апертура при расстоянии около 5 мм - 0,70).

Конденсор косого освещения предназначен для получения эффекта косого освещения. Имеет апертурную ирисовую диафрагму, которая может фиксированно смещаться в горизонтальной плоскости.

Фазово-контрастный конденсор – для получения эффекта фазового контраста. Имеет в плоскости апертурной диафрагмы световое кольцо, которое при проекции соответствует по размеру фазовому кольцу, расположенному в выходном зрачке объектива.

Конструктивно конденсор может быть выполнен: с откидной или со свинчиваемой фронтальной линзой (для увеличения числовой апертуры) или откидной линзой большого поля.

Одним из важнейших факторов, определяющих качество изображения в микроскопе, является правильная настройка освещения. Существуют различные способы освещения препарата при микроскопии. Классический способ освещения препарата в микроскопе был предложен Келером в 1893г. (рис. 43) и используется до настоящего времени, как основной прием для получения качественного изображения

Принцип освещения заключается в том, что изображение нити лампы осветителя проецируется на апертурную диафрагму конденсора, а полевая диафрагма осветителя проецируется в плоскость препарата.

Практически настройку освещения по Келеру осуществляют следующим образом:

1) устанавливают осветитель против зеркала микроскопа;

2) включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;

3) помещают препарат на предметный столик микроскопа;

4) закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;

5) убирают лист бумаги с зеркала;

6) закрывают апертурную диафрагму конденсора;

7) перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).

8) открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;

9) при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;

10) опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка)

11) слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения.

12) раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы;

13) уменьшают раскрытие апертурной диафрагмы конденсора, чтобы она закрывала поле зрения на 1/3 при наблюдении через тубус с удаленным окуляром;

14) при смене объектива необходимо проверить настройку света.

После окончания настройки света по Келеру ни в коем случае нельзя изменять положение конденсора, раскрытие полевой и апертурной диафрагмы . Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Для равномерного освещения всего поля зрения при работе с объективами малого увеличения (до 10х) необходимо снять верхнюю линзу конденсора.

Дата добавления: 2015-09-03 | Просмотры: 1680 | Нарушение авторских прав


| | | | | | | | | | | | | 14 | |