Самый прочный метал. Самый прочный металл

Когда речь идет о твердом и прочном металле, то в своем воображении человек сразу же рисует воина с мечом и в доспехах. Ну или с саблей, и обязательно из дамасской стали. Но сталь, хоть и прочный, но не чистый металл, ее получают путем сплава железа с углеродом и некоторыми другими металлами-добавками. И при необходимости сталь подвергают обработке, чтобы изменить ее свойства.

Легкий прочный металл серебристо-белого цвета

Каждая из добавок, будь то хром, никель или ванадий, отвечают за определенное качество. А вот для прочности добавляют титан – получаются самые твердые сплавы.

По одной версии, металл получил свое название от Титанов, могучих и бесстрашных детей богини Земли Геи. Но по другой версии, серебристое вещество названо в честь королевы фей Титании.

Титан открыли немецкий и английский химики Грегор и Клапрот независимо друг от друга с разницей в шесть лет. Произошло это в конце 18-го века. Вещество тут же заняло место в периодической системе Менделеева. Спустя три десятилетия был получен первый образец металлического титана. И довольно долго металл не использовали из-за его хрупкости. Ровно до 1925 года – именно тогда, после ряда опытов, иодидным методом был получен чистый титан. Открытие стало настоящим прорывом. Титан оказался технологичным, на него тут же обратили внимание конструкторы и инженеры. И сейчас металл из руды получают, в основном, магниетермический способом, который предложили в 1940 году.

Если затрагивать физические свойства титана, то можно отметить его высокую удельную прочность, прочности при высоких температурах, маленькую плотность и коррозийную стойкость. Механическая прочность титана в два раза выше прочности железа и в шесть – алюминия. При высоких температурах, где легкие сплавы уже не работают (на основе магния и алюминия), на помощь приходят титановые сплавы. К примеру, самолет на высоте в 20 километров развивает скорость в три раза выше, чем скорость звука. И температура его корпуса при этом около 300 градусов по Цельсию. Нагрузки такие выдерживает только титановый сплав.

По распространенности в природе металл занимает десятое место. Титан добывают в ЮАР, России, Китае, Украине, Японии и Индии. И это далеко не полный перечень стран.

Титан - прочный и легкий металл в мире

Перечень возможностей применения металла вызывает уважение. Это военная промышленность, остепротезы в медицине, ювелирные и спортивные изделия, платы мобильных телефонов и многое другое. Постоянно возносят титан конструкторы ракето, авиа, кораблестроения. Даже химическая промышленность не оставила металл без внимания. Титан отличен для литья, ведь очертания при отливке точны и имеют гладкую поверхность. Расположение атомов в титане аморфное. И это гарантирует высокую прочность при растяжении, ударную вязкость, превосходные магнитные свойства.

Твердые металлы с наибольшей плотностью

Одними из самых твердых металлов, так же, являются осмий и иридий. Это вещества из платиновой группы, у них самая высокая, почти одинаковая, плотность.

Иридий открыли в 1803 году. Обнаружил металл химик из Англии Смитсон Теннат, во время исследования природной платины из Южной Америки. Кстати, с древнегреческого «иридий» переводится как «радуга».


Самый твердый металл добыть довольно сложно, поскольку в природе его почти нет. И часто металл находят в метеоритах, которые упали на землю. По словам ученых, на нашей планете содержание иридия должно быть намного больше. Но из-за свойств металла – сидерофильности – он находится на самой глубине земных недр.

Иридий довольно сложно обработать и термическим, и химическим способом. Металл не вступает в реакцию с кислотами, даже сочетаниями кислот при температуре меньше 100 градусов. При этом, вещество подвержено процессам окисления в царской водке (это смесь соляной и азотной кислот).

Интерес, как к источнику электрической энергии, представляет изотоп иридия 193 m 2. Поскольку период полураспада металла составляет 241 год. Нашел широкое применение иридий в палеонтологии и промышленности. Его используют при изготовлении перьев для ручек и определение возраста разных слоев земли.

А вот осмий открыли на год позже, чем иридий. Этот твердый металл нашли в химическом составе осадка платины, которая была растворена в царской водке. И название «осмий» получилось из древнегреческого слова «запах». Металл не подвержен механическому воздействию. При этом, один литр осмия в разы тяжелее, чем десять литров воды. Впрочем, это свойство пока осталось без применения.


Осмий добывают на американских и российских рудниках. Богато его месторождение и в ЮАР. Довольно часто металл находят в железных метеоритах. Для специалистов представляет интерес осмий-187, который экспортируется только из Казахстана. С его помощью определяют возраст метеоритов. Стоит отметить, что всего один грамм изотопа стоит 10 тысяч долларов.

Ну а используют осмий в промышленности. И не в чистом виде, а в виде твердого сплава с вольфрамом. Производят из вещества лампы накаливания. Осмий является катализатором при изготовлении нашатырного спирта. Редко из металла изготавливают режущие части для нужд хирургии.

Самый твердый металл из чистых

Самый твердый из чистейших металлов на планете – хром. Он отлично поддается механической обработке. Металл голубовато-белого цвета обнаружили в 1766 году в окрестностях Екатеринбурга. Минерал тогда получил название «сибирский красный свинец». Его современное название – крокоит. Через несколько лет после открытия, а именно, в 1797 году, французский химик Воклен выделил из металла новый металл, уже тугоплавкий. Специалисты сегодня полагают, что полученное вещество – карбид хрома.


Название этого элемента образовано от греческого «цвет», ведь сам металл славится разнообразием окраски своих соединений. Хром довольно просто встретить в природе, он распространенный. Найти металл можно в ЮАР, которая по добыче занимает первое место, а так же в Казахстане, Зимбабве, России и Мадагаскаре. Присутствуют месторождения в Турции, Армении, Индии, Бразилии и на Филиппинах. Специалисты особенно ценят некоторые соединения хрома – это хромистый железняк и крокоит.

Самый твердый металл в мире - вольфрам

Вольфрам – это химический элемент, самый твердый, если рассматривать его в ряду с другими металлами. Его температура плавления необычайно высока, выше – только у углерода, но это не металлический элемент.

Но природная твердость вольфрама в то же время не лишает его гибкости и податливости, что позволяет выковывать из него любые необходимые детали. Именно его гибкость и теплоустойчивость делает вольфрам идеально подходящим материалом для выплавки мелких деталей осветительных приборов и деталей телевизоров, например.


Используется вольфрам и в более серьезных областях, например, оружестроении - для изготовления противовесов и артиллерийских снарядов. Этим вольфрам обязан высокому показателю плотности, что делает его основным веществом тяжелых сплавов. Плотность вольфрама близка по показателю к золоту – всего несколько десятых составляют разницу.

На сайте сайт можно прочитать какие же металлы являются самыми мягкими , как их используют, и что из них делают.
Подпишитесь на наш канал в Яндекс.Дзен

Металлы использовались человеком еще на заре цивилизации. Одним из первых известных была медь, благодаря своей легкости в обработке и широкой распространенности. Археологи находили в процессе раскопок тысячи медных изделий. Прогресс не стоит на месте, и вскоре человечество научилось производить прочные сплавы, чтобы изготавливать оружие и сельскохозяйственные инструменты. По сей день эксперименты с металлами не прекращаются, так что стало возможным выявить, какой самый прочный металл в мире.

Иридий

Итак, самый прочный металл ‒ это иридий. Получают его путем выпадения осадка от растворения платины в серной кислоте. По прошествии реакции вещество приобретает черный цвет, в дальнейшем в процессе различных соединений может менять цвет: отсюда и название, в переводе означающее "радуга". Иридий открыли в начале XIX века, и с тех пор было найдено всего два способа растворить его: расплавленная щелочь и перекись натрия.

Иридий очень редко встречается в природе, в составе земли его количество не превышает 1 к 1 000 000 000. Вследствие этого, одна унция материала стоит как минимум 1000 долларов.

Иридий широко применяется в разных сферах деятельности человека, особенно в медицине. Из него производят глазные протезы, слуховые аппараты, электроды для мозга, а также специальные капсулы, которые вживляют в раковые опухоли.

По теории ученых, столь малое количество вещества говорит о том, что оно имеет инопланетное происхождение, а именно, принесено каким-либо астероидом.

Другой самый крепкий металл в мире, наименование которого произошло от названия нашей страны. Впервые его обнаружили на Урале. Вернее там нашли платину, в составе которой русские ученые позднее выявили новый металл. Это было 200 лет назад.

Благодаря своей красоте рутений нередко применяется в ювелирном деле, но не в чистом виде, ведь он очень редок

Рутений относится к благородным металлам. Он обладает не только твердостью, но и красотой. По твердости он лишь немного уступает кварцу. Но при этом он весьма хрупкий, его легко раскрошить в порошок или разбить, уронив с высоты. Кроме того, это самый легкий и прочный металл, его плотность едва ли составляет тринадцать граммов на сантиметр в кубе.

При всем своем плохом сопротивлении ударам рутений прекрасно противостоит высоким температурам. Чтобы его расплавить, необходимо нагреть более чем до 2300 градусов. Если сделать это при помощи электрической дуги, вещество может перейти сразу в газообразное состояние, миновав стадию жидкости.

В составе сплавов его применение чрезвычайно широко, даже в космической механике, к примеру, сплавы металлов рутения и платины были избраны для изготовления топливных элементов для искусственных спутников Земли.

Первым на Земле этот металл открыл шведский ученый Экеберг. Но выделить его в чистом виде химику так и не удалось, с этим возникли трудности, поэтому он и получил название греческого героя мифов, Тантала. Активно использоваться тантал начал лишь в период Второй мировой войны.

Тантал ‒ твердый долговечный металл серебристого цвета, при обычной температуре проявляет мало активности, окисляется лишь при нагреве свыше 280°С, а плавится лишь при почти 3300 Кельвин.


Невзирая на свою прочность, тантал довольно пластичен, приблизительно как золото, и работа с ним не вызывает затруднений

Допускается использование тантала в качестве заменителя нержавеющих сталей, срок службы может отличаться на целых двадцать лет.

Также тантал применяется:

  • в авиации для изготовления жаропрочных деталей;
  • в химии в составе антикоррозийных сплавов;
  • в ядерной энергетике, поскольку он крайне устойчив к парам цезия;
  • медицине для изготовления имплантатов и протезов;
  • в вычислительной технике для производства сверхпроводников;
  • в военном деле для разного рода снарядов;
  • в ювелирном деле, поскольку при окислении он может приобретать различные оттенки.

Этот металл считается биогенным, значит, способен положительно влиять на живые организмы. К примеру, количество хрома регулирует уровень холестерина. Если хрома в организме меньше шести миллиграммов, то это приводит к резкому увеличению холестерина в крови. Получить ионы хрома можно, к примеру, из перловки, утятины, печёнки или свёклы.
Хром тугоплавок, не реагирует на влагу и не окисляется (только при нагревании выше 600°С).


Металл активно используют для создания хромированных покрытий, зубных коронок

Этот долговечный металл ранее назывался глюцинием, потому что люди отметили его сладковатый вкус. Кроме того, у этого вещества еще много удивительных свойств. Он неохотно вступает в химические реакции. Чрезвычайно прочен: опытным путем установлено, что бериллиевая проволока толщиной в миллиметр способна удержать на весу взрослого человека. Для сравнения, алюминиевая проволока выдерживает лишь двенадцать килограммов.

Бериллий очень ядовит. При попадании в организм он способен заменять магний в костях, это состояние носит название бериллиоз. Он сопровождается сухим кашлем и отечностью легких, может привести к смерти. Ядовитость, пожалуй, единственный существенный недостаток бериллия для человека. В остальном же у него масса плюсов и масса способов применения: тяжелая промышленность, ядерное топливо, авиация и космонавтика, металлургия, медицина.


Бериллий очень легок, в сравнении с некоторыми щелочными металлами

Этот прочный металл еще более дорогой, чем иридий (а уступает лишь калифорнию). Однако применяется он в таких областях, где важнее результат, чем затраты на него: для производства медицинского оборудования в самые лучшие мировые клиники. Кроме того, может использоваться для изготовления электрических контактов, деталей измерительной техники и дорогих часов вроде "Ролекс", электронных микроскопов, военных боеголовок. Благодаря осмию они становятся прочнее и выдерживают более высокие температуры, вплоть до экстремальных.

Осмий не встречается в природе самостоятельно, только в паре с родием, так что после добычи предстоит задача разделить их атомы. Реже встречается осмий в "комплекте" с платиной, медью и некоторыми другими рудами.


В год на планете вырабатывается лишь несколько десятков килограммов вещества

Этот металл обладает очень прочной структурой. Сам он беловатого цвета, а при измельчении в порошок становится черным. Металл очень редок и добывается в совокупности с другими рудами и минералами. Концентрация рения в природе ничтожно мала.

Из-за невероятной дороговизны вещество используются лишь в случаях крайней необходимости. Ранее его сплавы благодаря своей жаростойкости использовались в авиации и ракетостроении, в том числе для оснащения сверхзвуковых истребителей. Именно эта сфера и была основным пунктом мирового потребления рения, сделав его материалом военно-стратегического назначения.

Из рения делают нити накаливания и пружины для измерительных приборов, самоочищающиеся контакты и специальные катализаторы, необходимые для получения бензина. Именно это в последние годы повысило спрос на рений в разы. Мировой рынок готов буквально сражаться за этот редкий металл.


Во всем мире есть лишь одно его полноценное месторождение, и находится оно в России, второе, гораздо меньше, - в Финляндии

Ученые изобрели новое вещество, которое по своим свойствам может стать прочнее известных металлов. Его назвали «Ликвид-металл». Эксперименты с ним начались совсем недавно, но он уже зарекомендовал себя. Вполне возможно, в скором времени «Ликвид-металл» потеснит так хорошо известные нам металлы.

Сегодня мы рассмотрим самые прочные металлы в мире и обсудим их свойства. И открывает "рейтинг прочности" титан.

Не самый прочный?

Название металла, предположительно, произошло от имени древнегреческого героя Титана. Поэтому данный металл ассоциируется у нас с несокрушимостью. Многие считают титан самым прочным металлом в мире. Однако на самом деле это далеко не так.

Чистый титан был впервые получен в 1925 году. На новый материал сразу же обратили внимание благодаря ряду свойств. Титан начали очень активно применять в промышленной сфере.

Сегодня титан находится на 10 месте среди природных металлов по распространенности. В земной коре его содержится около 700 млн тонн. То есть нынешнего сырья хватит еще на 150 лет.

Титан отличают превосходные свойства. Это легкий и прочный металл, устойчивый к коррозии. Он с легкостью поддается термической обработке, имеет широкий диапазон применения. Он взаимодействует с другими элементами таблицы Менделеева только при нагревании. В природе содержится в рутиловых и ильменитовых рудах. Чистый титан получают путем спекания руды с хлором.

Он способен выдерживать огромные нагрузки. Отличается металл высокой прочностью и сопротивляемостью ударному действию. Его используют при изготовлении транспортных средств, ракет и даже подводных лодок. Титан выдерживает силу давления даже на больших глубинах.

Популярен он и в медицинской промышленности. Протезы на его основе не взаимодействуют с тканями организма и не подвержены коррозии. Но через годы он начинает изнашиваться, что заставляет заменять протез на новый.

Новые разработки

В 2016 году ученые отыскали способ усовершенствовать свойства титана и сделать его еще более прочным. Основная цель исследований - найти более стойкий материал, при этом совместимый с тканями организма. И тут вспомнили о золоте, которое долгие годы применяется в протезировании.

Сплав титана и золота, после нескольких попыток найти идеальное соотношение составляющих, оказался невероятно прочным. В 4 раза прочнее других металлов, использующихся сегодня для протезирования.

Тантал

Один из самых прочных металлов. Назван в честь древнегреческого бога Тантала, который прогневил Зевса и был низвержен в ад. Имеет серебристо-белый цвет с синеватым отливом. Является характерным элементом гранитной и щелочной магмы. Его добывают из минерала колтана, наиболее крупные месторождения которого находятся в Бразилии и Африке.

Он был открыт в далеком 1802 году. Тогда его считали разновидностью колумбия, но позже установили - это два разных металла, схожих по свойствам. Лишь через 100 лет удалось получить чистый тантал. Стоимость его сегодня достаточно высокая - 150 долларов за 1 кг металла.

Тантал - тугоплавкий металл с достаточно высокой плотностью. С химической точки зрения он стабилен, так как не растворяется в разбавленных кислотах. В виде порошка тантал неплохо горит на воздухе. Используется для изготовления электролитических конденсаторов, нагревателей в вакуумных печах. Танталовые конденсаторы увеличивают срок эксплуатации электронных систем до 10-12 лет. Примечательно, что нашли применение ему даже ювелиры - им заменяют платину.

Испытание металлов на прочность показало - сплав тантала и вольфрама имеет почти стопроцентную крепость.

Осмий - самый-самый...

Осмий - еще один невероятно прочный металл. Он также входит в список самых редких и дорогих. В составе земной коры он присутствует в мизерных количествах. Относится к рассеянным, то есть не имеет собственных месторождений. Поэтому добыча его сопровождается огромными сложностями.

Осмий принадлежит к группе платиновых металлов. Стоимость его составляет около 10 000 долларов за 1 грамм. По цене он уступает лишь искусственному калифорнию. Он состоит из нескольких изотопов, которые невероятно сложно разделить. При этом наиболее востребованным является изотоп осмий-187. Его цена за 1 грамм доходит до 200 000 долларов!

Осмий - рекордсмен по плотности среди металлов. Кроме этого, он является высокопрочным металлом. Сплавы, в составе которых присутствует осмий, приобретают устойчивость к коррозии, становятся более прочными и долговечными. Применяют металл и в чистом виде, к примеру, для изготовления дорогих авторучек, которые практически не изнашиваются и пишут годами.

Хром

Хром, кобальт и вольфрам известны науке еще с 1913 года и объединены под общим названием - стеллиты. Они сохраняют твердость даже при температуре 600 градусов по Цельсию.

В основном этот металл содержится в глубоких слоях Земли. Также он встречается в составе каменных метеоритов, которые считаются аналогами нашей мантии. Промышленную ценность представляют только хромшпинелиды. Многие минералы, в составе которых встречается хром, совершенно бесполезны. Наиболее чистый хром получают путем электролиза концентрированных водных растворов или электролиза сульфата хрома.

Металл в сочетании со сталью значительно усиливает ее прочность, а также добавляет устойчивости к окислению. Он совершенствует характеристики стали, при этом не снижая ее пластичности.

Рутений

Принадлежит к платиновой группе и относится к благородным металлам. Однако из их списка рутений считают наименее благородным... Открыл его ученый Карл-Эрнст Клаус в 1844 году. Примечательно, что профессор постоянно нюхал и пробовал на вкус результаты своих исследований. Однажды он даже получил ожог ротовой полости, когда дегустировал одно из соединений открытого им рутения.

Его мировые запасы на сегодняшний день составляет около 5 000 тонн. Рутений долгое время исследуют, однако многие его свойства пока неизвестны. Вся проблема в том, что пока не было найдено способа полной очистки рутения. Загрязненность сырья мешает исследовать его свойства. Однако медики уверены, что использование металла в обиходе способно повысить заболеваемость среди населения. Поэтому выброс изотопа рутения-106 на Урале вызвал такой резонанс в прессе. Ведь рутений-106 имеет радиоактивные свойства.

При этом стоимость его в 2017 году неожиданно превзошла все платиновые металлы.

Иридий - самый прочный металл

Именно иридий отличается наивысшей прочностью. Да, он уступает осмию по плотности, но имеет высочайший коэффициент прочности. Его также называют самым редким из металлов, однако на самом деле содержание астата в земной коре еще меньше.

Иридий изучали очень осторожно. Спустя 70 лет его основные свойства - невероятная прочность и устойчивость к коррозии, стали известны всему миру. Сегодня он применяется во множестве отраслей. Львиную долю металла эксплуатирует химическая промышленность. Оставшаяся часть распределена на множество других областей, среди которых - медицина и ювелирное дело. Иридий в сочетании с платиной создает качественные и очень долговечные украшения.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Стекло из металла

Специалистами калифорнийского института технологий получен уникальный по своим свойствам материал - это самый прочный сплав на сегодняшний день - «металлическое стекло». Уникальность нового сплава в том, что металлическое стекло сделано из металла, но имеет внутреннюю структуру стекла. Сегодня ученые выясняют, что именно придает сплаву такие необычные свойства и каким образом их можно будет внедрить в сплавы из менее дорогостоящих материалов.

Аморфная структура стекла, в отличие от кристаллической структуры металла, не защищена от распространения трещин, чем и объясняется хрупкость стекла. Этим же недостатком обладают и металлические стекла, которые также достаточно легко разрушаются, образуя сдвиговые полосы, перерастающие в трещины.

Свойства сплава

Специалистами калифорнийского института было замечено, что появление большого числа сдвиговых полос дает высокое противодействие развитию трещин, благодаря чему достигается обратный эффект: материал изгибается, не разрушаясь. Именно такой материал, энергия выработки сдвиговых полос которого намного меньше энергии, требующейся для превращения их в трещины, они и создали. «Смешивая пять элементов, мы добивались того, что при охлаждении материал «не знает», какую структуру принять, и выбирает аморфную», - пояснил участник исследования Р. Ритчи.

Металлическое стекло

Самый прочный сплав - металлическое стекло - состоит из благородного палладия, кремния, фосфора, германия с небольшим добавлением серебра (формула: Pd79Ag3,5P6Si9,5Ge2).

Новый сплав показал себя в тестах как сочетание взаимоисключающих свойств - силы и выносливости на уровне, ранее не замеченной в каком-либо другом материале. В результате, новое металлическое стекло сочетает твёрдость, свойственную стёклам, с сопротивлением развитию трещин, характерным для металлов. Причем, уровень жесткости и прочности находится в пределах досягаемости.

Использование материала

Для конструкционного металла проведенное исследование значительно отодвинуло грани переносимости нагрузок. Но, по прогнозам ученых, широкое применение самый прочный сплав, ввиду редкости и дороговизны основного его компонента – палладия, может и не найти. Тем не менее, разработчики сообщили о возможном использовании данного материала в медицинских имплантатах (например, для внутричелюстных протезов), а также в качестве деталей в автомобильной или аэрокосмической отрасли.