Радиолокаторы. Радиолокационные станции: история и основные принципы работы

История радио, которомусто лет, полна драматических событий, в которых переплелись технические достижения и человеческие судьбы.Расскажем об истории появлениянекоторых радиоустройств.

Одна из важнейших задач военного радио состоит в дальнем обнаружении самолетов и ракет противника, в заблаговременном предупреждении об авианалете. С самого начала аспекты этой области техникиобсуждались в очень высоких кабинетах.

Идея создания радиолокатора принадлежит военному инженеру Павлу Кондратьевичу Ощепкову. В 1933 году вышла его статья об «электровидении», в которой предлагалось обнаруживать самолет по отраженному радиоимпульсу. П.К. Ощепков добился обсуждения идеи «электровидения» у начальника вооружений РККА М.Н.Тухачевского. На совещании присутствовалипрезидент АН СССР А.П.Карпинский, академик А.Ф.Иоффе и другие выдающиеся ученые.Одобрение идеи «электровидения» (на современном языке - радиолокации) на таком представительном форумедало возможность быстро создать невиданное устройство - электровизор.

В рассказах об этом совещании осталось«особое мнение» А.Ф.Иоффе, который, одобряя идею «электровизора», считал, что для обнаружения самолетов следует применятьне дециметровые, а более длинные радиоволны, например, метровые. Метровые волны соизмеримы с самолетом.Для метровых волн самолет - рассеивающая неоднородностьс размерами порядка длины волны. Такая неоднородностьрассеивает радиоволну в пространстве равномерно во всех направлениях, в частности, в направлении «назад», обратно, к «электровизору». В этом случае можно принять отраженный от самолета импульс.Для дециметровых и сантиметровых волн детали самолета - отражающие поверхности (плоскости), поэтому пришедшие от «электровизора» к самолету радиоволны отразятся от плоских поверхностей направленно и назад к «электровизору» не попадут.

80 лет назад обсуждались вопросы, которые в дальнейшем исследовались при составлении «радиолокационных портретов» различных летательных аппаратов, а сейчас относятся к технологии «стелс», к созданию самолетов-невидимок!

Решениесовещания быстро воплотилось в жизнь. В 1934 годув присутствии ученых и военноначальников был испытан «электровизор». В связи с этим осталась еще одна «академическая» история.М.Н.Тухачевский перед испытаниями поинтересовался уакадемика М. В. Шулейкина, каково его мнение о новинке, и получил ответ: «Все это чепуха! В этом я уверен больше, чем в том, что стою на земле!».В ходе испытаний П.К. Ощепков попросил академика сесть за пульт «электровизора», после чего М.В Шулейкин сказал: «Я ошибся. Мы присутствуем при рождении совершенно новой техники и нового направления в науке».

После успешных испытанийприбора было создано конструкторскою бюро (КБ УПВО) во главе с П.К. Ощепковым. Деятельность КБ УПВО РККА состояла как в самостоятельных разработках, так и в координации деятельности всех предприятий, занятых созданием «электровизора». КБ разрабатываломощные генераторы и лампы к ним, регистрирующие устройства и т.д. Но еще КБвыдавало НИИ и заводамзаказы на исследования, разработку и изготовление отдельных узлов аппаратуры радиообнаружения. Даже задание на разработку тактико-технических вопросов радиообнаружения выдавало КБ Ощепкова.Кроме того, КБ УПВО было обязано оборудовать новейшей аппаратурой командные пункты ПВО.

Работа шла в КБ ПВО, в Ленинградском физико-техническом институте (ЛФТИ), во Всесоюзном электротехническом институте (ВЭИ), в Ленинградском электрофизическом институте (ЛЭФИ), в Центральной радиолаборатории (ЦРЛ) и других научных и инженерных центрах страны.

Потом настал 1937 год, М.Н.Тухачевский погиб, погибли или пострадали многие его соратники. П.К. Ощепков получил 10 лет лагерей. Свой срок он отсидел полностью и вышел, когда СССР отстал в области радиолокации от США и Великобритании.

Послеареста Ощепкова КБ продолжало работать под руководством Ю.Б.Кобзарева. В результате перед самой войной появился первый советский радиолокатор РУС-2 (радиоулавливатель самолетов).


РУС-2 был принят на вооружение, сыграл определенную роль при обороне Москвы, однако массового использования этого радиолокатора в Великой Отечественной войне не было. Даже фотографию РУС-2 я не смог найти, только рисунок

Можно считать, что первый период истории советской радиолокации закончился в 1941/42 годах. Потом начался новый период, практически, «с нуля»: отзыв с фронта инженеров, организация предприятий, перевод с английского научной литературы (так называемая «массачусетская серия»).

У нас в Советском Союзе, в России первые отечественные радиолокационные станции были реально созданы в 1939 году. Первая опытная установка радиообнаружения самолетов была создана в Ленинградском физико-техническом институте. Ее установили на двадцатиметровой вышке в поселке Токсово. На ней отрабатывались варианты конструкции ряда функциональных устройств создаваемых радиолокационных станций (РЛС). В этот же период времени в этом же Институте был создан и мобильный вариант первого нашего отечественного радиолокатора. Он получил условное наименование "РУС-2" и был направлен в Москву на государственные испытания… Это произошло, примерно, в середине 1938 года.

Что предшествовало этому?

Этому предшествовало создание в 1937-1938 г.г. системы радиообнаружения самолетов типа "РУС-1" - "РЕВЕНЬ". Аббревиатура расшифровывается так: "РадиоУловитель Самолетов".

Система РУС-1 по существу и по принципиальным признакам не являлась радиолокатором. По аналогии с существовавшими в то время ЗвукоУлавливателями, систему радиообнаружения назвали РадиоУловитель Самолетов. Не очень удачное название, т.к. звук уловить можно, а "уловить" самолет, каким бы то ни было способом, не представляется возможным. Система РУС-1 - это система радиообнаружения самолетов, перелетающих условную линию, образованную длиннннной цепью станций типа РГО и РПО.

…РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО <- РГО -> РПО-РПО…

Расшифровка аббревиатур: РГО – РадиоГенератор-Обнаружитель, РПО – РадиоПриемник-Обнаружитель.

Станция РГО работала в режиме непрерывного излучения высокочастотных колебаний. Каждая РГО была оснащена двумя направленными антенными системами. С ней были связаны две станции РПО, антенные системы которых были направлены на "свою" РГО. Совокупность станций РГО - РПО, устанавливаемых в линию, образовывала в охраняемом воздушном пространстве, как бы, "радиозабор" – нечто сходное со "следовой полосой", которая в то время строилась вдоль всей линии государственной границы Советского Союза - от одной пограничной заставы к другой. Не следует думать, что этот "радиозабор" должен бы быть строго прямолинейной конструкцией. "Радиозабор" мог быть образован и в виде некой "ломаной линии", повторяя линию государственной границы. Все зависело от устанавливаемого угла направленности антенных систем соответствующих сопряженных РГО и РПО. Для этого, в частности, станции РПО устанавливались парами.

Факт пересечения каким-либо самолетом "радозабора" между какой-либо из РГО – РПО фиксировался на соответствующей РПО по факту возникновения в приемном устройстве допплеровских биений прямого радиосигнала, принятого от "своей" РГО, и радиосигнала, отраженного от летящего самолета и принятого здесь же приемным устройством.

Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО обнаруживать не могли.

Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи или по радио непосредственно на ГП ВНОС, расположенный в Ленинграде.

Система РУС-1 предназначалась для охраны неподвижной линии государственной границы. При пересечении вражеским самолетом линии государственной границы СССР на станции РПО соответствующего участка охраняемой линии границы должны были уловить этот факт перелета и по радио сообщить о нем на Главный Пост ВНОС по принадлежности. Все станции системы РУС-1, которые в Ленинградском военном округе начали устанавливать вдоль линии границы с Финляндией с апреля 1941 года, должны были передавать свои донесения по телефонным линиям связи и по радио на ГП ВНОС, расположенный в Ленинграде. Фиксация факта перелета линии границы осуществлялась по появлению сигнала звуковой частоты на выходе приемного устройства соответствующей станции РПО. Эти звуковые колебания могли быть зафиксированы и на бумажной ленте автоматического самописца. Никаких данных о самолетах нарушителях (количество самолетов, высота, курс и т.п.) станции РПО определять не могли.

Первым отечественным импульсным радиолокатором явилась радиолокационная станция (РЛС) типа РУС-2, аббревиатура названия которой неправомерно унаследована от системы РУС-1. Это был самый первый отечественный импульсный радиолокатор, принятый на вооружение в конце лета 1940 года. Именно на первом опытном образце этой РЛС, который после окончания государственных испытаний под Москвой был отправлен в 28-й Радиополк ВНОС в г. Баку, автор этих строк обучался работе старшего оператора.

Здесь в 28 Радиополку ВНОС в учебной роте полковой школы готовили специалистов для эксплуатации систем РУС-1. Для обучения работе на радиолокаторах типа РУС-2 в учебной роте был создан спецвзвод. Вся информация о радиолокаторах типа РУС-2 была строго засекречена. В те годы процесс обучения в этом спецвзводе был организован так, что о РЛС типа РУС-2 в других взводах учебной роты никто не мог знать ничего. В конце марта 1941 года автор этих строк был аттестован, как старший оператор станции РУС-2. В первых числах апреля 1941 года всю нашу учебную роту эшелоном переправили в Ленинградский военный округ.

13 апреля 1941 года в Советском Союзе были созданы войска ПВО. В это же время в Ленинградском военном округе был создан 72-й Отдельный Радиобатальон ВНОС, на вооружение которого должны были поступать станции системы РУС-1 и в дальнейшем РЛС типа РУС-2.

Станции РГО и РПО системы РУС-1 стали поступать в нашу часть уже во второй половине апреля 1941 года. Их сразу же укомплектовывали боевыми расчетами и направляли для развертывания к местам дислокации вдоль линии советско-финляндской границы.

Первые два серийных радиолокатора типа РУС-2 были получены в наш 72 Отдельный Радиобатальон ВНОС прямо с завода-изготовителя через 5-6 дней после начала Отечественной войны.

Радиолокатор типа РУС-2 состоял из двух аппаратных кабин. Две небольшие кабины (приемная и передающая) были смонтированы на автомобильном шасси типа ЗИС-5 с возможностью кругового вращения. На крыше каждой из кабин была установлена антенная система. В передающей кабине располагался передатчик высокочастотных импульсов. В приемной кабине располагался приемник и индикаторное устройство. Вся работа по обнаружению целей происходила в приемной кабине. Передающая кабина в своем вращении строго синхронно и синфазно следовала за приемной, как собачка на поводке так, что ее антенная система всегда была направлена в ту же сторону, что и антенная система приемной кабины.

В приемной кабине было два рабочих места. Рабочее место оператора телефониста располагалось у левого окна, которое во время работы всегда было закрыто брезентовой шторой. Рабочее место старшего оператора было в центре кабины, над токосъемником. В небольшой кабине было тесновато. Если во время работы в кабину входил инженер РЛС, то ему приходилось неподвижно стоять за спиной старшего оператора у входной двери кабины. Долго так стоять в неудобной позе было трудно. Убедившись, что аппаратура работает нормально, он быстро уходил. Не каждый из операторов мог выдержать почти непрерывное круговое вращение и рыскание кабины при пеленгации целей в течение долгих четырех часов дежурства. На меня это круговое вращение кабины никак не сказывалось, и я полностью отдавался работе. Моим помощником оператором-телефонистом в то время был Павел Шакалов. Во время работы он чувствовал себя плохо - его укачивало. После смены, после четырех часов непрерывного кругового вращения (один оборот кабины в минуту), мне приходилось вести его в землянку отлеживаться…

Радиус действия радиолокатора РУС-2 не превышал 120-150 км. Экран индикаторного устройства был выполнен на электронно-лучевой трубке с белым цветом свечения. Наблюдать за экраном нужно было через узкую продольную щель в фронтальной панели пульта управления. Цели на экране индикаторного устройства выглядели, как белая узкая вертикальная полоска на темном фоне линии развертки. (яркостная модуляция!). Координаты цели определялись в системе "азимут-расстояние". По характеру засветки импульса цели и его мерцанию можно было определить одиночный самолет, пару и тройку. Далее можно было определить "много".

В конце июля или в первых числах августа 1941 года прямо на боевой позиции под Нарвой радиолокатор "РУС-2" нам заменили на новейший радиолокатор типа "РЕДУТ", который пригнали к нам прямо с завода буквально сразу же после окончания его изготовления. Это был самый, самый первый радиолокатор типа "РЕДУТ"!

Радиолокатор типа "РЕДУТ" по своей технической сущности является нашим первым полномасштабным отечественным импульсным радиолокатором дальнего обнаружения. По новизне, использованной в нем совокупности новых технических решений, по составу аппаратуры, по техническим возможностям и внешнему виду он никак не являлся усовершенствованным вариантом первого отечественного импульсного радиолокатора типа РУС-2. Создание в 1941 году радиолокатора типа "РЕДУТ" и его практическое использование в начальный период Отечественной войны выводило в то время Россию на передовые позиции в мире в области создания радиолокаторов дальнего обнаружения самолетов. Однако, по соображениям сохранения строжайшей секретности на наши новейшие технические решения патентов не испрашивали и потому юридически доказать приоритет России в создании и практическом использовании этого вида вооружения теперь, очевидно, уже невозможно.

Иной раз в соответствующей литературе высказывается такое мнение, что радиолокатор типа "РЕДУТ" является несколько усовершенствованным вариантом радиолокатора типа РУС-2. Это ошибочное мнение! По составу функциональных устройств, по ряду новых прогрессивных технических решений, реализованных в радиолокаторе типа "РЕДУТ", по надежности, по удобству в эксплуатации и дальности уверенного обнаружения целей ему, надо полагать, в то время (в 1941 году) не было равного в мире! Радиолокатор "РЕДУТ" по существу являлся новой, более высокой ступенью, в развитии отечественной радиолокации.

Вся аппаратура на "РЕДУТЕ" располагалась в одном типовом неподвижном аппаратном фургоне, закрепленном на шасси грузового автомобиля ЗИС-5. Во время работы вращалась только одна антенная система на крыше фургона. Одна и та же антенная система использовалась для передатчика и для приемника. Отключение приемника от антенны на время генерации передатчиком мощного зондирующего радиоимпульса осуществлялось специальным высокочастотным разрядником. Радиус уверенного обнаружения целей радиолокатором "РЕДУТ" достигал 200 - 210 км. Однажды (в 1942 году) на РЛС "РЕДУТ-7" уходящую цель вели наблюдением до 270 км. На радиолокаторе типа "РЕДУТА", как и в радиолокаторе РУС-2, еще не было индикатора кругового обзора. Картина воздушной обстановки в зоне обзора складывалась в голове старшего оператора по мере кругового вращения антенной системы. Старший оператор обязательно должен был обладать способностью пространственного (объемного) мышления и иметь хорошую память. Наблюдая на экране импульсы целей, он должен был мысленно представлять себе реальную воздушную обстановку. Хороший старший оператор мог помнить координаты (азимут - расстояние) 4 - 5 целей, количество самолетов в каждой из целей, направление их движения и некоторые индивидуальные особенности целей, если таковые имелись. Если целей было больше 4 - 5, то приходилось периодически посматривать и на планшет-картоплан. На планшете под листом прозрачного плексигласа была закреплена карта местности – Ленинград и окружающие его районы. Карта была разделена на квадраты с кодированными номерами.. На поверхность плексигласа оператор-телефонист наносил отметки целей обычными чернилам, обыкновенной перьевой ручкой. Фломастеров в то время не было.

Экран электронно-лучевой трубки индикаторного устройства на "РЕДУТЕ" был полностью открыт для старшего оператора. Цели на экране наблюдались в зеленом свечении в виде вертикальных пульсирующих импульсов, пересекающих горизонтальную линию развертки (амплитудная модуляция!), Зеленое свечение экрана лучше воспринималось глазами старших операторов.

Именно потому, что в приемном устройстве сигналы целей на промежуточной частоте не детектировались, а после усиления подавались прямо на электронно-лучевую трубку (амплитудная модуляция!), на радиолокаторе "РЕДУТ" оказалось возможным, оценивая структуру импульсов и характер их пульсаций на экране, точно определять количество самолетов – один, двойка, тройка. Такой способ показа целей на экране радиолокатора, как я полагаю, был реализован у нас в России впервые в мире, но никаких доказательств этому у меня нет. США пошли несколько по иному пути. У них в радиолокаторах к этому времени уже были индикаторы кругового обзора.

Определение количества самолетов в групповых целях не предусматривалось разработчиком. В соответствии с Инструкцией по эксплуатации, если в группе было более трех самолетов, количество самолетов в группе следовало называть "Много".

Методика точного определения количества самолетов в группах родилась у меня в сознании буквально в первые же дни после того, как я сел на свое рабочее место за экран индикаторного устройства радиолокатора "РЕДУТ". Видимо в этом проявился уже большой опыт работы, приобретенный в реальных боевых условиях на радиолокаторе РУС-2.

В конце июля 1941 года РЛС типа "РЕДУТ", введенная в эксплуатацию на нашей "точке" взамен радиолокатора РУС-2, была первой и единственной на всем Ленинградском фронте. С того времени нашу "точку" стали называть "РЕДУТ-3". С того же времени стационарному радиолокатору, установленному на вышке в пос. Токсово было присвоено наименование "РЕДУТ-1". Несколько позднее радиолокатор типа РУС-2, дислоцированный на Карельском перешейке в пос. Агалатово, тоже заменили на радиолокатор "Редут" и он получил условное наименование "РЕДУТ-2". .

Когда я впервые после РУС-2 сел за экран на "РЕДУТЕ", я сразу почувствовал, что это новая техника прекрасна! Даже сравнивать ее с РУС-2 невозможно было!

К тому времени опыт боевой работы у меня, как старшего оператора РЛС, уже был немалый. С большим увлечением я занялся определением точного количества самолетов в групповых целях. Буквально в первые же дни после практического знакомства с "РЕДУТОМ" я усмотрел в нем возможность точного определения количества самолетов в групповых целях. На разработку соответствующей методики, на практическую проверку ее эффективности у меня ушло дней 7 -10. Естественно, что я не делал никакого секрета из этой моей методики. Рассказал о ней моим друзьям-товарищам - сменным старших операторам нашего "РЕДУТА-3".

Все это происходило в начале августа 1941 года под Нарвой. С того времени мы стали успешно использовать ее в нашей повседневной работе. В последующие дни крупная группировка немецких войск из под Котлов и Кингисеппа, преодолев упорное сопротивление наших войск, начала быстрое продвижение к Ленинграду. Чтобы мы с нашей секретнейшей техникой не оказались под Нарвой в глубоком немецком тылу, по приказу командования нашего 72-го ОРБ ВНОС мы свернули нашу станцию и двинулись к Ленинграду… С первых чисел сентября мы, РЛС "РЕДУТ-3", дислоцировались уже на "Ораниенбаумском пятачке" в дер. Большая Ижора. Наши донесения о движении самолетов противника мы передавали по радио на Главный Пост ВНОС в Ленинград и по прямому проводу непосредственно на командный Пункт ПВО КБФ.

Во время вражеских налетов на корабли и Кронштадт 21- 23 сентября 1941 года я успешно пользовался этой своей методикой и точно (+-2 самолета в группе из 70 самолетов) определял количество самолетов во всех группах. В дальнейшем, уже после Кронштадтского Сражения об этой моей методике прослышали и в Ленинграде, в штабе нашего батальона. Потому в самом конце октября или даже в начале ноября 1941 года меня решили отозвать с "РЕДУТА-3" в батальон для того, чтобы я ознакомил с этой методикой других старших операторов нашего батальона. Я же об этом ничего не знал и не понимал для чего меня вдруг вызвали с боевой "точки" в Ленинград.

Добраться с "Ораниенбаумского пятачка" в Ленинград в то время было совсем непросто. Для этого из Большой Ижоры, где мы располагались, я на попутном транспорте добрался в Ораниенбаум, а затем катером в Кронштадт. Оттуда ночью в Ленинград отправлялся караван кораблей. Впереди шел ледокол "Тазуя". Я находился на другом кораблике (названия уже не помню) где-то ближе к голове каравана. У Петергофа фарватер простреливался немцами. Скажу правду – я очень боялся. Было очень страшно. Вокруг лед. Плавать я не умел и не умею… Тонуть очень не хотелось… До нас тут вчера немцы потопили буксир и баржу. На барже с "пятачка" в Ленинград переправляли госпиталь… Погибли много раненных и персонал госпиталя. Мне и сейчас (Мороз по коже!!!) страшно вспоминать все это. Одно дело – погибнуть в бою. Совсем другое дело быть расстрелянным невидимым противником и утонуть в ледяной воде, не имея возможности даже выстрелить в сторону противника…

Ярко светила Луна, но еще до подхода к траверзу Петергофа Луна зашла за горизонт. Стало темно. Немцы зажгли прожектор и его луч положили на воду так, что он пересекал фарватер. Незаметно проскочить было невозможно. Но вот над прожектором вдруг появился наш "Кукурузник" У-2 и луч прожектора поднялся вверх. С самолета обстреляли прожектор и его луч погас. В это время головная часть нашего каравана проскочила опасный участок пути. Потом, когда немцы снова зажгли прожектор, последние корабли нашего каравана уже покидали опасную зону. По ним немцы открыли огонь из орудий крупного калибра, но существенных потерь наш караван не понес. Так я благополучно добрался до Ленинграда. Только здесь, в штабе нашего батальона я узнал для чего, собственно, меня вызвали в Ленинград. Командир нашего батальона капитан Б.К. Бланк захотел, чтобы я поделился своим опытом работы с другими старшими операторами нашего батальона. Мне это "хотение" командира батальона вполне могло стоить жизни!… К ноябрю 1941г. у нас в батальоне уже были созданы "РЕДУТЫ" № 4, № 5. В штабе батальона в ноябре 1941 года я несколько раз проводил беседы со старшими операторами "РЕДУТОВ" № 1, № 2, № 4 и № 5, которых специально для этих бесед поочередно вызывали в штаб батальона. По ходу этих бесед рассказывал о своей методике определения количества самолетов в группах и рисовал на бумаге картинки импульсов разных целей, отвечал на все вопросы старших операторов. Командир батальона капитан Б.К. Бланк был очень доволен мною и перед строем объявил мне благодарность. Таким образом, с ноября 1941 года, моя методика точного определения самолетов в групповых целях стала использоваться почти всеми старшими операторами нашего батальона, а имя автора этой методики, как у нас тогда водилось, было позабыто. Моя методика стала достоянием всего батальона и жила уже сама по себе... Я воспринимал это, как должное.

"Операторы "Редутов" быстро освоили приемы определения количества самолетов в группе по характеру пульсаций отраженных импульсов. Помню рядового Г.И. Гельфенштейна с "Редута-9", который особенно хорошо проявил себя в этом тонком деле и редко ошибался"…

В конце января 1942 года на какое-то время я был включен в состав боевого расчета новой РЛС – "РЕДУТ-9". Эту станцию по Дороге Жизни вывозил на Волховский фронт, в Волховский дивизионный район ПВО, командир роты молодой старший лейтенант Сергей Николаевич Скворцов… Помню, как он иной раз долго, час-полтора, молча стоял у меня за спиной и смотрел как я работаю. Потом молча хлопал меня по плечу и уходил из аппаратной. Он так и не узнал тогда, что именно я и являлся автором методики точного определения самолетов в групповых целях…

В конце лета 1942 года по решению командования нашего батальона я был отозван с "РЕДУТА-9" в Ленинград.

Г. Гельфенштейн

10. Первые отечественные радиолокаторы

В 1932 году из Военно-технического управления (ВТУ) РККА в Главное артиллерийское управление (ГАУ) Народного комиссариата обороны (НКО) были переданы заказы на средства обнаружения самолетов. ГАУ с согласия Главного управления электрослаботочной промышленности поручило проведение эксперимента по проверке возможности использования отраженных радиоволн для обнаружения самолетов Центральной радиолаборатории (ЦРЛ) в г. Ленинграде. В октябре 1933 г. между ГАУ и ЦРЛ был заключен договор. И уже 3 января 1934 г. было осуществлено на практике обнаружение самолета с помощью РЛС, работающей в непрерывном режиме излучения группой дециметровых волн ЦРЛ под руководством Юрия Константиновича Коровина. И хотя самолет обнаруживался всего на расстоянии 600–700 м, это был успех в решении важнейшей оборонной задачи. Проведенный эксперимент принято считать началом рождения отечественной радиолокации.

Следующий этап поисковых и исследовательских работ в области радиолокации относится к 1934 году, когда Управлением противовоздушной обороны (УПВО) был заключен договор с Ленинградским физико-техническим институтом (директор академик А. Ф. Иоффе) на проведение исследований по измерению электромагнитной энергии, отраженной от предметов различных форм и материалов . Этому же институту совместно с ОКБ Управления ПВО РККА (руководитель П. К. Ощепков) поручалось изготовить передатчик и приемник для проведения опытов по фактическому обнаружению самолета по отраженной от него волне. Все работы проводились по заранее составленному плану и рассматривались как дело большой государственной важности. При этом рассматривалось создание двух типов РЛС непрерывного и импульсного излучения.

Первое направление вылилось в появление РЛС «Ревень», первая партия которых под названием РУС-1 (сокращение от слов РадиоУлавливатель Самолетов) была принята на вооружение в 1939 г. и во время войны с белофиннами прошла боевую проверку.

К 1939 году появилась научная и экспериментальная база в Ленинградском физико-техническом институте (ЛФТИ) и по второму направлению в виде макета импульсной РЛС «Редут», созданного под руководством Ю. Б. Кобзарева (впоследствии академика).

В развитии отечественной радиолокационной техники РЛС «Редут» по сравнению с РЛС «Ревень» была значительным шагом вперед, так как позволяла не только обнаруживать самолеты противника на больших расстояниях и практически на всех высотах, но и непрерывно определять их дальность, азимут и скорость полета. Кроме того, при круговом синхронном вращении обеих антенн станция «Редут» обнаруживала группы и одиночные самолеты, находившиеся в воздухе на разных азимутах и дальностях, в пределах своей зоны действия и следила с перерывами по времени (один оборот антенны) за их перемещениями.

Таким образом, с помощью нескольких таких РЛС командование ПВО могло наблюдать за динамикой воздушной обстановки в зоне радиусом до 100 км, определять силы воздушного противника и даже его намерения, подсчитывая, куда и сколько в данное время направляется самолетов. За научно-технический вклад в создание первой РЛС дальнего обнаружения Ю.Б. Кобзареву, П.А. Погорелко и Н.Я. Чернецову была присуждена Сталинская премия 1941 года (рис. 44).

Рис. 44. Лауреаты Сталинской премии 1941 г. по радиолокации Ю. Б. Козарев , П. А. Погорелко и Н. Я. Чернецов

В связи с низкой эффективностью выпуск РЛС РУС-1 («Ревень») был прекращен. Назрела настоятельная потребность в привлечении к разработке и изготовлению импульсных РЛС типа «Редут» научно-исследовательской организации, имеющей опыт работы в создании сложных радиотехнических систем. В качестве такой организации правительством был выбран НИИ-20 Остехуправления. Всю работу в НИИ-20 предполагалось разбить на ряд этапов, в том числе провести дополнительные испытания макета РЛС «Редут» ЛФТИ.

Однако управление связи РККА внесло предложение в Комитет обороны при СНК СССР о включении в план НИИ-20 срочного задания по разработке РЛС «Редут». Согласно этому заданию, НИИ-20 должен был разработать и изготовить, а затем представить на государственные испытания два образца РЛС «Редут» в январе 1940 года. Пришлось преодолевать огромные трудности: не было нужной измерительной аппаратуры, отсутствовала кооперация с внешними предприятиями по комплектующим изделиям; не было специальных автомобильных кузовов с вращающимися кабинами, аппаратуры синхронной передачи для обеспечения синфазного вращения кабин. И, тем не менее, к концу 1939 года был разработан проект станции, а к апрелю 1940 года изготовлены два опытных образца РЛС «Редут». Это был двухантенный вариант РЛС с двумя синхронно вращающимися кабинами.

Рис. 45. Первая отечественная РЛС дальнего обнаружения «Редут » (РУС-2), двухантенный вариант с синхронным вращением кабин. Передатчик на ЗИС-6, приемник на ГАЗ-ААА, 1940 г.

Совместные полигонные испытания прошли успешно. Приказом Наркома обороны от 26 июля 1940 г. под шифром РУС-2 РЛС были приняты на вооружение войск ПВО.

Разработка, регулировка, испытания первых двух образцов РЛС «Редут» в НИИ-20 проводились под руководством и при непосредственном участии А. Б. Слепушкина (рис. 46). Создать в столь сжатые сроки первую РЛС удалось отчасти потому, что за два года до этого А. Б. Слепушкин со своими сотрудниками проводил серьезные исследования, связанные с созданием радиотелемеханической линии на ультракоротких сигналах (УКС). Опыт, полученный при разработке УКС в «Остехбюро», пригодился.

Рис. 46. А. Б. Слепушкин , главный конструктор первой отечественной серийной РЛС РУС-2

В соответствии с постановлением Комитета Обороны при СНК СССР от 27 декабря 1939 года НИИ-20 было получено изготовить и сдать наркомату обороны 10 комплектов РЛС «Редут» (РУС-2).

К 10 июня 1941 года все десять комплектов заказчику были сданы. В 1941 году в НИИ-20 был создан опытный образец одноантенного варианта РЛС «Редут-41», который был испытан уже в боевых условиях. Что же из себя представляла первая отечественная РЛС дальнего обнаружения «Редут»? Вот ее технические характеристики. РЛС «Редут» (РУС-2) позволяла обнаруживать самолеты на больших, для того времени, расстояниях (предельная дальность обнаружения - 150 км), определять дальность до них (точность определения - 1000 м), азимут (точность определения - 2…3°), вычислять скорость полета. Станция распознавала группы и одиночные самолеты при нахождении их на разных азимутах и дальностях в пределах зоны обнаружения РЛС.

Используя информацию от РЛС РУС-2, командование частей ПВО впервые могло контролировать значительный объем воздушного пространства (радиус до 120–150 км в секторе обзора 0 - 360°), оценивать и прогнозировать формы и способы боевого применения авиации противника, планировать боевые действия своей авиации и зенитной артиллерии.

Не могу не привести тактико-технические требования на эту РЛС, цитируя их: «Станция предназначается для обнаружения самолетов, определения их местоположения, курса и скорости, а также для непрерывного наблюдения за их маршрутами. Станция должна работать на принципе отражения от самолетов электромагнитной энергии, посылаемой в пространство в виде кратковременных радиоимпульсов. Визуальный отсчет расстояний производится наблюдением на катодном осциллографе». И далее: «Станция должна быть рассчитана на непрерывную работу как со стороны аппаратуры, так и со стороны источников питания. Станция должна допускать нормальную работу при любых метеорологических условиях в любое время суток и года. Вся станция изготавливается из материалов отечественного производства, все приборы и машины должны быть также отечественного производства. В станции должны быть применены высококачественные изоляционные материалы. Не допускается применение эбонита, карболита, сопротивлений типа Каминского и парафинированных конденсаторов».

Последние строки особенно важны, так как опровергают утверждения некоторых историков, что в советской военной серийной аппаратуре использовались радиодетали бытовых радиоприемников, собранные у населения в начале войны.

Что же предшествовало созданию первых серийных образцов РУС-2 в НИИ-20 под руководством главного конструктора

А.Б. Слепушкина? В научно-технических отчетах ЛФТИ с 1935 по 1938 год приводятся результаты первых в СССР исследований по импульсной радиолокации. При этом были решены проблемы как принципиального характера по выбору длины волны РЛС для получения максимального рассеяния самолетами различной конструкции, так и технические вопросы по построению высокочувствительного приемного устройства и мощного импульсного передатчика.

Приведу лишь заголовки параграфов одного из отчетов того времени: 1) Принципы действия радиодистанциомера; 2) Разрешающая сила и предельная точность; 3) Дальность действия; 4) Влияние направленности антенны; 5) Основные параметры и их выбор; 6) Основные задачи разработки.

Но наиболее значимым из всех этих отчетов следует считать отчет об испытаниях действующего макета РЛС на подмосковном полигоне Донино НИИСТ РККА в марте - мае 1937 г. В испытательной установке было применено приемное устройство с двойным преобразованием частоты (второй гетеродин имел кварцевую стабилизацию частоты), схему которого я уже приводил ранее. В передатчике использовались лампы серийные Г-165, обеспечивающие импульсную мощность 1 кВт. На прием и передачу использовались антенны типа «волновой канал» (система Удо-Яги).

Главный результат испытаний - возможность наблюдения отраженных сигналов от самолета типа Р-5 до расстояний 15–17 км. Как писал в своих воспоминаниях академик Юрий Борисович Кобзарев: «17 апреля 1937 года были впервые проведены успешные испытания импульсного радиолокатора. Это был день рождения импульсной радиолокации».

К августу 1938 года макет радиолокационной установки был существенно усовершенствован. В его состав был введен новый мощный передатчик на лампах ИГ-8 с импульсной мощностью 40–50 кВт при длительности импульса 10 мкс. На полигоне в Мытищах были проведены испытания РЛС с новым мощным передатчиком. Они показали надежное обнаружение бомбардировщика типа СБ на дальностях до 55 км. По результатам испытаний встал вопрос о создании опытных образцов радиолокаторов и их серийном производстве.

Остановимся более подробно о передатчике и приемнике отечественной РЛС по мере их усовершенствования. Напомню, что для построения импульсного передатчика, работающего на 75–81 МГц в первом экспериментальном образце «Редут» применялись следующие лампы Г-165 (двухтактный УКВ генератор 1 кВт) и тиратрон ТР-40 (модулятор), в усовершенствованном экспериментальном образце «Редута» две ИГ-8 (генератор 50 кВт) две М-100 (модулятор), в опытном образце «Редут-40» две ИГ-8 (генератор 50 кВт) и три М-400 (модулятор), в опытном образце «Редут-С» две ИЛ-2 (генератор 100 кВт) две. Г-3000 (модулятор). Все эти лампы появились до Великой Отечественной войны. Уникальная радиолампа ИГ-8 была разработана в вакуумной лаборатории Опытного сектора НИИСТКА В. В. Цимбалиным на основе им же созданной генераторной лампы ИГ-7, которая, в свою очередь, явилась усовершенствованием лампы Г-100 М. А. Бонч-Бруевича, примененной им в ходе работ по импульсному зондированию ионосферы.

С радиолампами в приемник было все сложнее. В первый экспериментальный образец для получения чувствительности в несколько микровольт приемник был с двойным преобразованием часто ты, при этом в УПЧ были применены новые по тому времени пентоды СО-182, а во входном смесительном каскаде и первом гетеродине - лампы типа «Жёлудь». Такие лампы, как пишет в своих воспоминаниях академик Ю. Б. Кобзарев «кустарно изготавливал в ЛЭТИ Ю. А. Кацман в лаборатории Шапошникова, старого специалиста вакуумной промышленности, с которым я был знаком. «Жёлуди» Кацмана делались в единичных экземплярах. Но получить их было очень просто: оплати счет на 200 рублей и увози лампочку».

Второй смесительный каскад был собран на гептоде-преобразователе СО-183, у которого гетеродин был кварцованный. В опытных образцах «Редута» схема приемника была усовершенствована за счет добавления усилителя высокой частоты, первого гетеродина с удвоителем частоты, увеличением до трех каскадов усилителя второй ПЧ и, самое главное, за счет использования новых шести вольтовых ламп октальной серии. Практически из 11 ламп 6 ламп были типа 6Ж2М - высокочастотный пентод с высокой крутизной 9 мА/В - аналог американской лампы 1851. Первая ПЧ 5680 кГц, вторая ПЧ - 1720 кГц. Была применена усиленная автоматическая регулировка усиления. Габариты приемника 145< 120x520 мм. Все эти усовершенствования были выполнены в НИИ-20 НКЭП.

В мае 1939 года был выпущен аванпроект на РЛС «Редут», а в феврале 1940 года завершен технический проект с изготовлением двух образцов РЛС дальнего обнаружения. Это был двухантенный вариант РЛС с двумя синхронно вращающимися кабинами. Совместные полигонные испытания прошли успешно. Приказом наркома обороны от 26 июля 1940 г. под шифром РУС-2 РЛС были приняты на вооружение войск ПВО. В соответствии с постановлением Комитета обороны при СНК СССР НИИ-20 было поручено изготовить и сдать наркомату обороны еще 10 комплектов РЛС «Редут» (РУС-2). К 10 июня 1941 года все десять комплектов заказчику были сданы.

Эти РЛС и вошли в состав ПВО на подступах к Москве.

Почему так подробно необходимо останавливаться на исторической последовательности всех этих событий? Дело в том, что некоторые историки утверждают следующее: «К началу войны Ленинградский радиозавод (имеется в виду завод им. Коминтерна, - прим. авт. ) успел выпустить всего 45 комплектов РУС-1. Первые два военных года радиолокационные станции в СССР больше не выпускались. 4 июля 1943 года Государственным комитетом обороны было принято постановление «О радиолокации». Созданный согласно этому постановлению Всесоюзный научно-исследовательский институт радиолокации получил название ЦНИИ-108 (ныне «ЦНИРТИ им. академика А. И. Берга»). Его руководителем стал А. И. Берг. Институт занимался созданием радиолокаторов и методов борьбы с ними». Это строки статьи Рудольфа Попова из Фрязино растиражированной в Интернете, которая рассказывает об истории легендарного НИИ-160 (ныне «Исток») и заодно об отечественной радиолокации. Искажая историю, этот автор утверждает, что радиолокация в СССР возникла в 1943 году после указанного выше постановления ГКО и первая станция, которая была в СССР разработана, была скопированная английская станция орудийной наводки. Неосведомленность подмосковного журналиста можно легко опровергнуть известным историческим фактом. Первый налет на Москву фашистская авиации совершила 22 июля 1941 года. Однако истребительная авиация и зенитная артиллерия Московской зоны ПВО, дислоцирующиеся в Москве и Подмосковье, успешно отразили этот массированный налет на столицу Советского Союза.

Задачу сравнять Москву с землей авиация противника не выполнила потому, что контроль воздушного пространства осуществлялся РЛС РУС-2, развернутыми вокруг Москвы. В частности, РЛС под городом Можайском своевременно обнаружила полет более 200 немецких бомбардировщиков и передала информацию о них для наведения истребителей и целеуказания зенитной артиллерии. В результате умелых действий воинов 1-го корпуса ПВО и 6-го истребительного авиационного корпуса часть фашистской авиации была уничтожена, а оставшаяся часть, сбросив бомбы на дальних подступах к столице, удалилась. В битве за Москву в войсках ПВО могли быть только отечественные РЛС РУС-2. В этой битве войсковыми единицами, осуществлявшими боевое применение РЛС РУС-2, были радиовзводы воздушного наблюдения, оповещения и связи (ВНОС). В системе ПВО Москвы эти радиовзводы входили в 337-й отдельный радиобатальон ВНОС по директиве штаба 1-го корпуса ПВО № 1602 от 26 марта 1941 года.

К началу войны в радиобатальоне было 9 РЛС дальнего обнаружения, которые занимали позиции в районе городов Клин, Можайск, Калуга, Тула, Рязань, Мытищи, Владимир, Ярославль, Кашин. Под Можайском в деревне Колычево 14 июня 1941 года была развернута РЛС «Редут-С», то есть 1-й экспериментальный образец стационарного одноантенного варианта РУС-2С . Она была поставлена на боевое дежурство с боевым расчетом во главе с командиром лейтенантом Г. П. Лазуном. Техническое руководство боевым расчетом осуществляла группа специалистов НИИ-20 под руководством инженера Я. Н. Немченко. Этот расчет успешно выполнил боевую задачу, передавая в главный пост ВНОС данные о воздушной обстановке в условиях круглосуточно чередовавшихся дневных и ночных массированных налетов.

Аппаратура РЛС РУС-2С работала безотказно. После занятия г. Можайска противником, боевой расчет лейтенанта Лазуна, захватив всю боевую технику проселочной дорогой вышел к Кубинке, а затем и к Москве. В НИИ-20, сдав экспериментальный образец РУС-2С, боевой расчет с новой штатной аппаратурой занял новую боевую позицию в районе Истры, где и продолжил круглосуточное боевое дежурство вплоть до конца октября 1941 г. Вот выдержки из донесений 337-го радиобатальона ВНОС только за один день 1941 года: «Старшие операторы Соловьев и Гуздь (Истра) сразу же обнаружили большую группу вражеской авиации и передали о них данные. Эту же группу на расстоянии 103 км обнаружил старший оператор РЛС Васильев (Кубинка). По их данным, истребительной авиацией было сбито 5 фашистских Ю-88. В тот же день старший оператор ефрейтор Муравьихин (Внуково) обнаружил группу самолетов. Наши самолеты были подняты в воздух и два ME-109 и три Хе-111 были сбиты».

Применение РЛС для защиты неба столицы было неожиданным для фашистов. Когда они узнали о существовании советских РЛС, началась «охота» на них. Так расчет РЛС РУС-2 во главе с лейтенантом И. В. Куликовым был подвергнут бомбовой атаке. Из 29 человек боевого расчета было убито 10 человек, тяжело ранено 6 и получили ранения 5 человек. Среди убитых был и лейтенант И. В. Куликов. В Можайске 22 июля 2001 года на митинге, посвященном 60-летию боевого применения первой отечественной РЛС РУС-2 генерал В. П. Лазун (тот самый командир боевого расчета РУС-2С на Можайском направлении) сказал: «В период немецко-фашистского наступления на Москву боевые расчеты ВНОС бесперебойно снабжали данными о воздушной обстановке командование ПВО Москвы, обеспечивая этим защиту Москвы и Подмосковья».

Хочу привести письмо с фронта на Новосибирский завод № 208 им. Коминтерна, где во время войны изготавливались РЛС РУС-2 (из архивных документов этого завода).

«Здравствуйте, дорогие товарищи! От имени экипажа радиоустановки «Редут» № 125 разрешите передать Вам пламенный фронтовой привет и пожелать наилучших успехов на трудовом фронте. Пройден боевой путь от Украины через Западную Украину, Северную Буковину, Польшу до Силезии (Германия). Установка на сегодняшний день является глазами истребительной авиации и пользуется большим авторитетом среди частей истребительной авиации…

На боевом счету нашей установки имеется 39 сбитых самолетов противника, 40 обнаруженных аэродромов противника. 11 человек нашего экипажа награждены правительственными наградами. Установка движется непосредственно за передним краем и работает на самых ответственных участках фронта по прикрытию наступающих частей Красной армии. В условиях боевой обстановки нам стало ясно, как важно изготовление Вами для фронта максимального количества станций этого типа.

От имени экипажа станции «Редут» № 125 благодарим Вас за хорошую советскую технику, которой Вы нас снабдили, и желаем Вам дальнейших успехов в Вашей работе. Да здравствует Красная армия и ее верный помощник, сплоченный тыл! Смерть немецким захватчикам! С боевым приветом: Начальник установки трижды орденоносец ст. лейтенант Ямбых А. В. Помощник начальника установки орденоносец лейтенант Гуленко И., ст. оператор орденоносец ст. сержант Муравьев П. К., ст. электромеханик орденоносец ефрейтор Кондрашкин Ф. А. ст. планшетист орденоносец, комсомолец Садовников Н. С.».

Часто в Интернете можно встретить утверждение, что отечественные РЛС РУС-2 были хуже и появились позже английских, американских и немецких РЛС. Будем в этом сравнении объективны. Начнем сравнение с американских РЛС того времени.

Первой американской РЛС была станция дальнего обнаружения СХАМ, разработанная в Naval Research Laboratory . РЛС работала на частоте 195 МГц с импульсной мощностью 15 кВт с длительностью импульсов 3 мкс и частотой повторения 1640 Гц. Она обеспечивала дальность обнаружения самолетов в 50 миль. Лабораторный макет этой станции был испытан в 1939 г., а в конце 1939 года было выпущено 6 образцов этой станции. Таким образом, первые РЛС дальнего обнаружения как советские РУС-2, так и американские СХАМ появились почти в одно и то же время. Однако первая советская РЛС имела большую дальность обнаружения (150 км) чем американская. РЛС SCR-270, появилась позже. В августе 1940 года был подписан контракт с U.S. Army Signal Corps на производство первой партии этих РЛС. SCR-270 имела следующие параметры: частота 106 МГц, импульсная мощность 100 кВт длительность импульса 1-25 мкс, частота повторения 621 Гц, дальность обнаружения 100 миль.

Чтобы понять, почему англичане предпочитают говорить о своем «превосходстве» в радиолокационной технике, рассмотрим их первую РЛС дальнего обнаружения British Home Chain. Работы над созданием этой станции начались в 1936 году и уже к 1939 году целая цепочка этих станций была построена на юге и востоке Великобритании. РЛС работала на достаточно низкой частоте 22–28 МГц. Частота повторения 25 Гц, излучаемый импульс длительностью 12 мкс. Импульсная мощность РЛС составляла 80 кВт.

Однако к концу войны, когда эти станции должны были обнаруживать фашистские ракеты ФАУ-2, выходная мощность передатчика была доведена до 1000 кВт. В РЛС использовались раздельные антенны на прием и передачу. В частности, передающая антенна подвешивалась между двумя металлическими башнями высотой 350 футов. Максимальная дальность обнаружения с 80 кВт передатчиком не превышала 120 миль. Главный недостаток английской РЛС это неудачный выбор для работы длины волны, грандиозность сооружений и отсюда уязвимость и большая дороговизна.

Что же касается английской станции орудийной наводки GL-MkII, то она была направлена Сталину по указанию самого Уинстона Черчилля, с одной стороны, чтобы продемонстрировать превосходство Великобритании в области радиолокации, а с другой стороны, как подарок Красной армии за победу под Москвой, которая разрушила планы фашистского блицкрига. По донесениям штаба ПВО Московского округа ПВО английская СОН вошла в состав специального зенитного подразделения лишь в декабре 1941 года. Таким образом, начиная с декабря 1941 года под Москвой в составе ПВО была только одна английская GL-MkII. Советская станция орудийной наводки СОН-2 (аналог GL-MkII) постановлением ГКО в декабре 1942 года была принята на вооружение и поставлена на серийное производство. За годы войны было выпущено 124 станции СОН-2 на заводе № 465 (ныне НИЭМИ, г. Москва).

Теперь о первых РЛС Третьего рейха: РЛС дальнего обнаружения FREYA. Первые 8 образцов были выпущены фирмой GEM А (Берлин) в 1938 году. Импульсная РЛС работала на частоте 120–166 МГц, дальность 60 км (позже доведенная до 120 км). Частота повторения 1000 Гц. Антенны раздельные на прием и передачу.

Станция орудийной наводки WARZBURG. Также импульсная РЛС. Первый опытный образец выпущен фирмой Telefunken в 1939 году. Рабочая частота 553–566 МГц дальность 29 км (затем увеличенная после 1941 года до 70 км). Точность измерения по азимуту 2 градуса, по углу места 3 градуса. Длительность импульса 2 мкс, частота повторения 3750 Гц. Параболическая антенна на прием и передачу диаметром 3 м (в усовершенствованном варианте после 1941 г. - 7,5 м).

Таким образом, дальность обнаружения первой немецкой РЛС дальнего обнаружения FREYA даже после модернизации уступает по этой характеристике первой советской РЛС РУС-2. Эти данные взяты из книги «RADAR SYSTEM ENGINEERING», Radiation Laboratory MIT, 1947 (Массачусетская серия).

Добавлю, что в 1941 году лампы в передатчике РУС-2С были уже не ИГ-8, как уже отмечалось, а более мощные ИЛ-2, что увеличивало дальность обнаружения РУС-2 со 150 км до 200 км.

Одновременно с изготовлением и поставкой на фронт передвижных РЛС РУС-2 военным ведомством было принято решение и дано задание НИИ-20 разработать стационарный вариант РУС-2 для войск ПВО. Опытные образцы таких станций под шифром «Пегматит» были разработаны в кратчайший срок и к концу 1941 года два комплекта РЛС под шифром «РУС-2с» («Пегматит-2») были приняты на вооружение. 10 комплектов опытных образцов и 50 комплектов серийных РЛС НИИ-20 изготовил в 1942 году будучи в эвакуации в г. Барнауле, причем с 13-го комплекта РЛС выпускалась модернизированной (главные конструкторы А. Б. Слепушкин, М. С. Рязанский).

Это был трудовой подвиг коллектива НИИ-20. Сотрудники института работали недоедая, недосыпая, в тяжелых производственных и бытовых условиях. Следует подчеркнуть, что уже первые радиолокационные станции дальнего обнаружения РУС-2 защищали небо Москвы в 41-м году и при обороне Ленинграда в октябре - ноябре 42-го станциями РУС-2 и РУС-2с было обнаружено 7900 самолетов противника, из которых 2020 уничтожено.

В 1940 году НИИ-20 было выдано задание на разработку РЛС для кораблей ВМФ. В том же году РЛС «Редут - К» (главный конструктор В. В. Самарин) была изготовлена и в апреле 1941 года начался ее монтаж на крейсере «Молотов».

Следующей, более совершенной и с высокими техническими характеристиками, была разработана станция обнаружения и наведения «П-3» (главный конструктор М. С. Рязанский). В августе 1944 года станция «П-3» успешно прошла первые полигонные испытания и в том же году институтом было изготовлено и передано в войска 14 комплектов РЛС «П-3» (рис. 47).

Рис. 47. РЛС «П-3»

Разработка первого самолетного радиолокатора «Гнейс-2» проводилась НИИ-20 в эвакуации. Возглавлял эту работу Виктор Васильевич Тихомиров. А было все это так. В 1939 г. в НИИ-20 был направлен на преддипломную практику Виктор Тихомиров, который, закончив с отличием институт, вливается в коллектив оборонного предприятия. Ему повезло - он привлекается к работам по регулировке и сдаче первой отечественной РЛС дальнего обнаружения «Редут», которая под шифром РУС-2 была принята на вооружение в 1940 году. Это был двухантенный вариант РЛС.

Однако вскоре эта станция стала одноантенной. Инженер НИИ-20 Д. С. Михайлевич предложил идею и схему антенного переключателя для одноантенной станции обнаружения. Это создало возможность для следующих радикальных упрощений (улучшений) конструкции станции: отказаться от вращения фургонов, а вращать только антенну. Разработка одноантенной станции дальнего обнаружения с шифром «Редут-41» с сохранением основных ТТХ, как у РУС-2 осуществлялась тем же коллективом инженеров (под руководством А. Б. Слепушкина), который создавал РУС-2. Активное участие в этих работах принимал и В. В. Тихомиров, который очень скоро зарекомендовал себя как талантливый инженер, и уже в начале 1941 года был назначен начальником лаборатории и заместителем руководителя работ по созданию одноантенных РЛС.

В мае 1941 года НИИ-20 сдал ГУС КА первые две станции «Редут-41», которые на полигонных испытаниях подтвердили полное соответствие их ТТХ характеристикам станции РУС-2. Впервые в мире была создана РЛС дальнего обнаружения - с одной антенной на передачу и приём. Кроме мобильной одноантенной станции «Редут-41», был разработан и вариант стационарной РЛС «Пегматит-2», которая известна под шифром РУС-2с (рис. 48).

Рис. 48. Стационарная РЛС «Пегматит-2 », (РУС-2с)

За успехи НИИ-20 в разработке РЛС дальнего обнаружения РУС-2с в 1943 году была присуждена Сталинская премия: А. Б. Слепушкину (руководитель работы), И. И. Вольману, И. Т. Зубкову, Л. В. Леонову, Д. С. Михайлевичу, М. С. Рязанскому и В. В. Тихомирову. Это была первая Сталинская премия Виктора Васильевича Тихомирова.

В июле 1941 г. начинается эвакуация НИИ-20 в Барнаул. Здесь, на новом месте, практически «с нуля» в невероятно сложных условиях при катастрофической нехватке кадров и необходимых приборов под руководством В. В. Тихомирова создается теперь уже первая отечественная авиационная РЛС «Гнейс-2». Всего через несколько месяцев были завершены испытания первых образцов, получен положительный результат. Первые опытные образцы сразу же шли на фронт.

В конце 1942 г., в самое горячее время Сталинградской битвы, Тихомиров с группой разработчиков отправляется на место боевых действий, где БРЛС устанавливаются на фронтовые бомбардировщики Пе-2 и тут же настраиваются. Тихомиров часто сам летал в качестве оператора РЛС и занимался инструктажом летчиков. Именно эти самолеты с БРЛС «Гнейс-2» позволили удержать блокаду группировки Паулюса под Сталинградом, не давая возможности доставлять туда грузы по воздуху и внесли заметный вклад в разгром фашистов под Сталинградом 70 лет назад. Приемо-сдаточные испытания Пе-2 с «Гнейс-2» прошли уже в 1943 г. под Ленинградом, и «Гнейс-2» был принят на вооружение (рис. 49). За разработку «Гнейс-2» Тихомиров получил свою вторую Сталинскую премию, которую ему вручили в 1946 г.

Рис. 49. Первая отечественная самолетная РЛС «Гнейс-2 »

О том, какими темпами создавалась РЛС «Гнейс-2» можно судить по следующим фактам. Изготовление аппаратуры вели, не дожидаясь полного выпуска документации. Монтаж производили по эскизным наброскам и принципиальной схеме, на ходу внося изменения и избавляясь от дефектов. Уже к концу 1941 года первый «летный» образец РЛС «Гнейс-2» с мощностью излучения 10 кВт, работавший на волне 1,5 м, был собран.

А в январе 1942 года на аэродроме под Свердловском, станцию смонтировали на самолете Пе-2. Вскоре начались испытания. Заметим, что органы управления и индикатор «Гнейс-2» разместили в кабине оператора радиолокатора (где прежде сидел штурман), а часть блоков станции смонтировали в кабине стрелка-радиста. Самолет стал двухместным, что негативно сказалось на его боевых возможностях. Параллельно с оценкой работоспособности РЛС, являвшейся, по сути, экспериментальным образцом, отрабатывались методика и тактика боевого применения радиолокационного истребителя. Пе-2 при испытаниях пилотировал майор А. Н. Доброславский.

С «Гнейс-2» работали сами ведущие инженеры В. В. Тихомиров и от ВВС Е.С. Штейн. В качестве цели использовался самолет СБ. Доводка оборудования проводилась круглосуточно, тут же на аэродроме. Устранялись отказы, опробовались антенны разных типов, вносились изменения в конструкцию РЛС, позволившие сократить «мертвую зону» до 300 м (а затем и до 100 м) и улучшить надежность станции. В июле 1942 года программа государственных испытаний была выполнена. Вот это были темпы: в январе 1942 года в Пе-2 была смонтирована первая РЛС и начались ее испытания, а уже в конце того же года РЛС «Гнейс-2» применялась в боевых действиях в Сталинградской битве. В 1943 г. бортовая РЛС принимается на вооружение.

В середине того же года НИИ-20 возвращается из эвакуации в Москву и в этом же году Тихомиров завершает разработку БРЛС «Гнейс-2М». А в 1945 г. на серийное производство будут поставлены «Гнейс-5» и «Гнейс-5С».

РЛС «Гнейс-5» прошла государственные испытания и показала дальность обнаружения 7 км, повышенную точность вывода в атаку и широкий угол обзора 160° в вертикальной плоскости. По отзыву ВВС РЛС «Гнейс-5» по тактико-техническим характеристикам не уступала английской станции аналогичного назначения, а по дальности действия - даже превосходила ее, имея меньшие размеры «мертвой зоны». РЛС «Гнейс-5» была принята на вооружение в двух модификациях: «Гнейс-5С» устанавливалась на самолеты-истребители (рис. 50), а «Гнейс-5М» - на самолеты-разведчики морской авиации и торпедоносцы (рис. 51).

Рис. 50. Гнейс-5С »

Рис. 51. Комплект аппаратуры радиолокатора «Гнейс-5М »

В 1944 году из НИИ-20 выделяется самостоятельное предприятие - Центральное конструкторское бюро-17 (ЦКБ-17, далее НИИ-17, ныне ОАО «Концерн радиостроения «Вега»), которому целенаправленно поручается разработка самолетных РЛС и систем управления вооружением (СУВ). Заместителем начальника ЦКБ-17 по научной работе назначается В. В. Тихомиров, который остается при этом главным конструктором по нескольким темам. В 1949 году В. В. Тихомирова назначают начальником и научным руководителем НИИ-17, при этом он по-прежнему руководит целым спектром НИОКР по темам «Вибратор», «Аргон», «Селен», «Кадмий», «К-5», «Изумруд», и т. д.

В 1953 году «за создание нового типа аппаратуры» В. Тихомиров получает свою третью Сталинскую премию. За свои заслуги Виктор Васильевич Тихомиров также был награжден двумя орденами Ленина (высший орден в Советском Союзе), орденом Красной Звезды, орденом «Знак Почета», двумя орденами Трудового Красного Знамени, медалью «За оборону Москвы», медалью «За доблестный труд в Великой Отечественной войне».

В 1953 г. он был избран членом-корреспондентом АН СССР. В 1956 г. при введении в СССР звания Генеральный конструктор авиатехники, он был в числе первых 13 генеральных конструкторов, наряду с Туполевым, Сухим, Яковлевым, Микояном и др.

В соответствии с постановлением Совмина было принято решение о создании под научным руководством В. Тихомирова филиала НИИ-17 на территории ЛИИ имени Громова в г. Жуковском. Такой филиал был создан в 1955 году и уже в следующем году он был преобразован в самостоятельное предприятие - Особое конструкторское бюро № 15, которое в дальнейшем было преобразовано в НИИ приборостроения.

Главной задачей вновь созданного предприятия было создание авиационных систем управления вооружением. Работая над РЛС «Изумруд», «Изумруд-2» и «Изумруд-2М» для истребителей серии МиГ-15 и МиГ-19, разрабатывая темы «Ураган» и «Ураган-5Б» предприятие, опираясь на организаторский талант руководителя, бурно развивалось, набирая инженерные кадры и создавая свое опытное производство.

В 1958 году генеральному конструктору Тихомирову поручают разработку мобильного зенитного ракетного комплекса (ЗРК) «Куб» (шифр 2К12), предназначенного для защиты сухопутных войск от тактической авиации противника, действующей на средних и малых высотах. ЗРК «Куб» успешно прошел все испытания начавшиеся 50 лет назад и был принят на вооружение. По классификации НАТО он получил название Gainful , а также SA-6. Позднее ему присваивают экспортное название «Квадрат». Комплекс экспортировался в 25 стран мира и много раз доказывал свою эффективность в боевых конфликтах, особенно в 70-х годах.

Кстати, именно его ракетой во время балканского конфликта в 1999 году был сбит заявленный как «невидимка» американский F-117. И неудивительно, что комплекс до сих пор стоит на вооружении многих стран, и по заказу ряда из них НИИП до сих пор проводит модернизацию его систем. Это говорит о том, что заложенные Тихомировым идеи намного опередили время и даже после 40-летней эксплуатации ЗРК «Квадрат» остается востребованным. 23 декабря 2012 года исполнилось 100 лет со дня рождения выдающегося советского ученого и инженера Виктора Васильевича Тихомирова, создателя первой отечественной авиационной РЛС, трижды лауреата Сталинской премии, члена-корреспондента АН СССР.

В 1943 году перед НИИ-20 была поставлена задача в кратчайший срок разработать корабельную радиолокационную станцию обнаружения надводных и воздушных целей, пригодную для вооружения кораблей ВМФ всех классов. Образец корабельной РЛС «Гюйс-1» (Главный конструктор Голев К. В.) институтом был создан, и в апреле - мае 1944 года в Баренцевом и Белом морях при волнении от 1 до 8 баллов на эсминце «Громкий» РЛС была испытана. Трудно воздержаться от восхищения от объема успешно выполненных работ «Остехбюро» - НИИ-20 за период с 1921 по 1945 год, а особенно за годы Великой Отечественной войны.

Подведем итог: количество РЛС дальнего обнаружения типа «Редут», выпущенных до конца войны, составило: РУС-2 (двухантенная) - 12; РУС-2 (одноантенная автомобильная) - 132; РУС-2с (одноантенная разборная) - 463.

Вклад, внесенный сотрудниками НИИ-20 в победу в Великой Отечественной войне огромен и был отмечен награждением института в 1944 году орденом Трудового Красного Знамени. Научно-технический задел НИИ-20 получил развитие в новых КБ и НИИ, создаваемых за счет выделения и перевода большого числа сотрудников из НИИ-20. В частности, в созданное в 1944 году ЦКБ-17 (ныне ОАО «Концерн радиостроения «Вега») была переведена большая группа специалистов, в том числе главный конструктор первой отечественной РЛС (РУС-2) А. Б. Слепушкин, лауреат Сталинской премии и другой главный конструктор первой самолетной РЛС («Гнейс-2») В. В. Тихомиров, трижды лауреат Сталинской премии.

Большая группа специалистов НИИ-20 в 1946 году была переведена в НИИ-885 (Ныне ФГУП «Российский НИИ космического приборостроения»). В их числе главный конструктор РЛС П-2, П-3 М. С. Рязанский, лауреат Сталинской премии, главный конструктор радиолиний «Карбид» и «Бекан» Н. И. Белов, дважды лауреат Сталинской премии.

Такая практика продолжается и в последующие годы. Сотрудники НИИ-20 переводятся целыми отделами в КБ-1, НИИ-648, НИИ-101, НИИ-129 и на другие предприятия оборонного комплекса. Следует также добавить, что на базе ленинградского отделения «Остехбюро» 1 октября 1939 г. был создан институт морской телемеханики и автоматики - НИИ-49. С 1966 г. он был переименован в Центральный научно-исследовательский институт приборов автоматики - ЦНИИПА, теперь называется ОАО «Концерн «Гранит - Электрон». Часть сотрудников московского отделения «Остехбюро» пополнили коллектив созданного в 1933 году Всесоюзного государственного института телемеханики и связи (ВГИТИС), который в 1936 году был переименован в НИИ-10, а теперь называется ОАО «Морской научно-исследовательский институт радиоэлектроники «Альтаир» (ОАО «МНИИРЭ «Альтаир») и входит в концерн «ПВО «Алмаз-Антей».

И в заключение необходимо рассказать об одном историческом казусе в названиях разных двух предприятий. Дело в том, что, начиная с 1946 года в Москве наряду с НИИ-20 (впоследствии ВНИИРТом) появился еще один НИИ-20 после переименования ЦКБ-20, которое находилось на территории завода № 465. Этот новый НИИ-20 также имел радиолокационную тематику и в 1950 году вместе с заводом № 465 перебазируется из Москвы в Кунцево, а его научно-производственная база передается КБ-1 (позже известное как ЦКБ «Алмаз»). Первый НИИ-20 переименовывается в НИИ-244 в 1954 году. Кунцевский же НИИ-20 лишь в 1966 году переименовывается в НИЭМИ. В последующие годы коллектив НИЭМИ занимался разработками как зенитно-ракетных комплексов («Тор»), так и зенитно-ракетных систем («С-300В»).

Из книги Чудо-оружие Российской империи [с иллюстрациями] автора Широкорад Александр Борисович

Глава 1. Отечественные проекты «История?- не тротуар Невского проспекта», - сказал создатель Советского государства. И в данном случае он был абсолютно прав. Очень часто великие дела начинались с фарсов. Фарсами были штурм Бастилии и взятие Зимнего, но они определили ход

Из книги Отечественные противотанковые комплексы автора Ангельский Ростислав Дмитриевич

ПЕРВЫЕ ОТЕЧЕСТВЕННЫЕ ПРОТИВОТАНКОВЫЕ РАКЕТНЫЕ КОМПЛЕКСЫ В завершившемся двадцатом столетии танки по праву стали основной ударной силой сухопутных войск. Более того, неоднократно они претендовали и на роль своего рода «абсолютного оружия», не знающего адекватных мер

Из книги Секретные автомобили Советской Армии автора Кочнев Евгений Дмитриевич

Первые опытные конструкции Один из первых экспериментальных активных автопоездов был построен на Горьковском автозаводе в 1957 – 1958 годах на базе многоцелевого седельного тягача ГАЗ-63Д с задними односкатными колесами и дополнительной коробкой отбора мощности. Эта

Из книги Полвека в авиации. Записки академика автора Федосов Евгений Александрович

Первые шаги в НИИ-2 Единственной промышленной и научной организацией, хорошо мне знакомой, был НИИ-2, куда я и пришел. Меня взяли на работу по совместительству старшим инженером.И тут мне снова повезло. Мало того, что я был единственным, кто знал в институте, что представляют

Из книги Авиация и космонавтика 2001 05-06 автора

ПЕРВЫЕ ВЫВОДЫ Еще не смолкла канонада московской битвы, а в штурмовых авиаполках Красной Армии начался процесс осмысления первого опыта боевого применения штурмовиков Ил-2. В полках шел творческий поиск наиболее эффективных тактических приемов нанесения ударов по

Из книги Бронетранспортеры и бронемашины России автора Газенко Владимир Николаевич

ПЕРВЫЕ ОПЫТЫ Идея вооружения, а потом и бронирования автомобиля возникла вскоре после его создания. В России еще в 1897 году изобретатель Двиницкий доказал возможность установки на автомобиле малокалиберного скорострельного оружия, что было подтверждено успешно

Из книги История Авиации 2002 01 автора Автор неизвестен

Первые болгарские ВВС Нынешним летом болгарской авиации исполняется 110 лет и, хотя эта дата не слишком круглая, мы решили, что история возникновения ИВС Болгарии стоит того, что бы её рассказать.РОЖДЕНИЕИстория авиации Болгарии началась в августе 1892 г., когда в Пловдиве

Из книги История Авиации 2002 02 автора Автор неизвестен

Первые Болгарские ВВС Продолжение, начало в ИА №1/2002.Вторая Балканская война официально закончилась 10 августа 1913 г. Через четыре дня началась демобилизация болгарской армии. Процесс этот затронул и авиационные части: все отделения были расформированы, а персонал и

Из книги История Авиации 2002 03 автора Автор неизвестен

Первые асы Британской Империи Продолжение, начало в ИА

Из книги Обитаемые космические станции автора Бубнов Игорь Николаевич

Первые Болгарские ВВС Продолжение, начало в ИА № 1–2/2002.В начале 1917 г. (приказом от 15 февраля) в болгарской авиации была введена «промежуточная инстанция» между дружиной и отделением - аэропланная группа [аеропланна трупа]. Возглавил её капитан Милков, передавший

Из книги История авиации 2002 04 автора Алексей Андреев

ПЕРВЫЕ ПРОЕКТЫ ОКС С 20-х годов идеи Циолковского получили широкое распространение на Западе, особенно в Германии.Проекты обитаемых космических станций стали появляться один за другим. Однако все они несли на себе печать фантастики, ибо никто из конструкторов не знал еще,

Из книги Электронные самоделки автора Кашкаров А. П.

Первые болгарские ВВС Окончание, начало в ИА № 1–3/2002.Заканчивая рассказ о первых болгарских ВВС, автор и редакция посчитали необходимым дополнительно осветить некоторые аспекты, по ряду причин оставшиеся за рамками основного текста статьи, но, тем не менее, безусловно

Из книги Мотоциклы. Историческая серия ТМ, 1989 автора Журнал «Техника-Молодёжи»

Приложение 11 Популярные отечественные диоды, стабилитроны и стабисторы. Справочные данные Радиолюбители в повседневной практике часто применяют дискретные полупроводниковые элементы - диоды, стабилитроны и стабисторы.Для того чтобы правильно подобрать электронный

Из книги Якоря автора Скрягин Лев Николаевич

Приложение 12 Отечественные и зарубежные коаксиальные кабели. Справочный обзор Среди многообразия коаксиальных кабелей наиболее популярными являются кабели с волновым сопротивлением 75 Ом (применяемые в качестве фидеров для телевизионной техники с частотами 50-862 МГц) и

Из книги автора

Самые первые …29 августа 1885 года немецкий инженер Г. Даймлер выехал за ворота своей мастерской на странной двухколесной, немилосердно трещавшей коляске. Деревянные раму и колеса он разыскал в каком-то сарае, но главное – двигатель внутреннего сгорания, работавший на

Из книги автора

Отечественные якоря-памятники Вряд ли можно точно сказать, сколько якорей украшают приморские города нашей Родины. В одном лишь Ленинграде их установлено около сорока. Из коллекции якорей города на Неве наибольший интерес для историков кораблестроения представляют

Во время опытов по радиосвязи между кораблями обнаружил явление отражения радиоволн от корабля. Радиопередатчик был установлен на верхнем мостике транспорта «Европа», стоявшем на якоре, а радиоприёмник - на крейсере «Африка». В отчёте комиссии, назначенной для проведения этих опытов, А. С. Попов писал:

Влияние судовой обстановки сказывается в следующем: все металлические предметы (мачты, трубы, снасти) должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают её правильность, отчасти подобно тому, как действует на обыкновенную волну, распространяющуюся по поверхности воды, брекватер , отчасти вследствие интерференции волн, в них возбужденных, с волнами источника, то есть влияют неблагоприятно.
…Наблюдалось также влияние промежуточного судна. Так, во время опытов между «Европой» и «Африкой» попадал крейсер «Лейтенант Ильин», и если это случалось при больших расстояниях, то взаимодействие приборов прекращалось, пока суда не сходили с одной прямой линии.

В ходе операции «Брюневаль» , проведённой английскими коммандос на побережье Франции в провинции Приморская Сена (Верхняя Нормандия), тайна немецких радаров была раскрыта. Для глушения радаров союзники применили передатчики, излучающие помеху в определённой полосе частот при средней частоте 560 мегагерц. Сначала такими передатчиками оснащали бомбардировщики. Когда немецкие летчики научились вести истребители на сигналы помех, словно на радиомаяки, вдоль южного побережья Англии расположили громадные американские передатчики «Туба» (Project Tuba ), разработанные в радиолаборатории Гарвардского университета . От их мощных сигналов истребители немцев «слепли» в Европе, а бомбардировщики союзников, избавившись от преследователей, спокойно летели к дому через Ла-Манш.

В СССР

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привело к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым , получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Большое внимание в системе ПВО уделяется решению проблемы своевременного обнаружения низколетящих воздушных целей (англ. ) .

Классификация

По сфере применения различают:

  • военные РЛС;
  • гражданские РЛС.

По назначению:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • панорамные РЛС;
  • РЛС бокового обзора;
  • метеорологические РЛС;
  • РЛС целеуказания;
  • РЛС обзора обстановки.

По характеру носителя:

  • береговые РЛС;
  • морские РЛС;
  • бортовые РЛС;
  • мобильные РЛС.

По типу действия:

  • первичные, или пассивные;
  • вторичные, или активные;
  • совмещённые.

По методу действия:

  • надгоризонтный радиолокатор;

По диапазону волн:

  • метровые;
  • дециметровые;
  • сантиметровые;
  • миллиметровые.

Первичный радиолокатор

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор, работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны (ЛБВ), а для РЛС метрового диапазона часто используют триодную лампу. РЛС, которые используют магнетроны, некогерентны или псевдо-когерентны, в отличие от РЛС на основе ЛБВ. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник, не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Различные РЛС основаны на различных методах измерения отражённого сигнала:

Частотный метод

Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. Отраженный сигнал придёт промодулированным линейно в момент времени, предшествующий настоящему на время задержки. Т. о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

Достоинства:

  • позволяет измерять очень малые дальности;
  • используется маломощный передатчик.

Недостатки:

  • необходимо использование двух антенн;
  • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
  • высокие требования к линейности изменения частоты.

Фазовый метод

Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней» .

Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

Достоинства:

  • маломощное излучение, так как генерируются незатухающие колебания;
  • точность не зависит от доплеровского сдвига частоты отражения;
  • достаточно простое устройство.

Недостатки:

  • отсутствие разрешения по дальности;
  • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям.

Импульсный метод

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

Поскольку импульс уходит далеко от радара с постоянной скоростью, между временем, прошедшим с момента посылки импульса до момента получения эхо-ответа, и расстоянием до цели - прямая зависимость. Следующий импульс можно послать только через некоторое время, а именно после того, как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели. Промежуток времени между импульсами называют интервалом повторения импульса (англ. Pulse Repetition Interval, PRI ), обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ, англ. Pulse Repetition Frequency, PRF ). Радары низкой частоты дальнего обзора обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Достоинства импульсного метода измерения дальности:

  • возможность построения РЛС с одной антенной;
  • простота индикаторного устройства;
  • удобство измерения дальности нескольких целей;
  • простота излучаемых импульсов, длящихся очень малое время, и принимаемых сигналов.

Недостатки:

  • необходимость использования больших импульсных мощностей передатчика;
  • невозможность измерения малых дальностей;
  • большая мёртвая зона.

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если, к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

Неустранимым недостатком СДЦ, работающих с постоянной ЧПИ, является невозможность обнаружения целей со специфическими круговыми скоростями (целей, которые производят изменения фаз точно в 360 градусов). Скорость, при которой цель становится невидимой для радиолокатора, зависит от рабочей частоты станции и от ЧПИ. Для устранения недостатка современные СДЦ излучают несколько импульсов с различными ЧПИ. ЧПИ подбираются такими образом, чтобы число «невидимых» скоростей было минимальным.

Импульсно-доплеровские РЛС , в отличие от РЛС с СДЦ, используют другой, более сложный способ избавления от помех. Принятый сигнал, содержащий информацию о целях и помехах, передаётся на вход блока фильтров Доплера. Каждый из фильтров пропускает сигнал определённой частоты. На выходе из фильтров вычисляются производные от сигналов. Способ помогает находить цели с заданными скоростями, может быть реализован аппаратно или программно, не позволяет (без модификаций) определить расстояния до целей. Для определения расстояний до целей можно разделить интервал повторения импульса на отрезки (называемые отрезками дальности) и подавать сигнал на вход блока фильтров Доплера в течение данного отрезка дальности. Вычислить расстояние удаётся только при многократных повторениях импульсов на разных частотах (цель появляется на различных отрезках дальности при разных ЧПИ).

Важное свойство импульсно-доплеровских РЛС - когерентность сигнала, фазовая зависимость отправленных и полученных (отражённых) сигналов.

Импульсно-доплеровские РЛС, в отличие от РЛС с СДЦ, успешнее обнаруживают низколетящие цели. На современных истребителях эти РЛС используются для воздушного перехвата и управления огнём (радары AN/APG-63, 65, 66, 67 и 70). Современные реализации в основном программные: сигнал оцифровывается и отдаётся на обработку отдельному процессору . Часто цифровой сигнал преобразуется в форму, удобную для других алгоритмов, с помощью быстрого преобразования Фурье . Использование программной реализации по сравнению с аппаратной имеет ряд преимуществ:

  • возможность выбора алгоритмов из числа доступных;
  • возможность изменения параметров алгоритмов;
  • возможность добавления/изменения алгоритмов (путём смены прошивки).

Перечисленные достоинства наряду с возможностью хранения данных в ПЗУ) позволяют, в случае необходимости, быстро приспособиться к технике глушения противника.

Вторичный радиолокатор

Вторичная радиолокация используется в авиации для опознавания. Основная особенность - использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.

Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP ) и метки Севера (англ. Azimuth Reference Pulse, ARP ). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP - для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор служит для обработки принятых сигналов.

Индикатор служит для отображения обработанной информации.

Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток .

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

Диапазоны РЛС

Обозначение
/ ITU
Этимология Частоты Длина волны Примечания
HF англ. high frequency 3-30 МГц 10-100 м Радары береговой охраны, «загоризонтные» РЛС
P англ. previous < 300 МГц > 1 м Использовался в первых радарах
VHF англ. very high frequency 50-330 МГц 0,9-6 м Обнаружение на больших дальностях, исследования Земли
UHF англ. ultra high frequency 300-1000 МГц 0,3-1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
L англ. Long 1-2 ГГц 15-30 см наблюдение и контроль над воздушным движением
S англ. Short 2-4 ГГц 7,5-15 см управление воздушным движением, метеорология, морские радары
C англ. Compromise 4-8 ГГц 3,75-7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
X 8-12 ГГц 2,5-3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
K u англ. under K 12-18 ГГц 1,67-2,5 см картографирование высокого разрешения, спутниковая альтиметрия
K нем. kurz - «короткий» 18-27 ГГц 1,11-1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны K u и K a . Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
K a англ. above K 27-40 ГГц 0,75-1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm 40-300 ГГц 1-7,5 мм миллиметровые волны, делятся на два следующих диапазона
V 40-75 ГГц 4,0-7,5 мм медицинские аппараты КВЧ , применяемые для физиотерапии
W 75-110 ГГц 2,7-4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

Обозначения диапазонов частот, принятые в ВС США и НАТО с г.

Обозначение Частоты, МГц Длина волны, см Примеры
A < 100-250 120 - >300 Радары раннего обнаружения и управления воздушным движением, напр. РЛС 1Л13 «НЕБО-СВ»
B 250 - 500 60 - 120
C 500 −1 000 30 - 60
D 1 000 - 2 000 15 - 30
E 2 000 - 3 000 10 - 15
F 3 000 - 4 000 7.5 - 10
G 4 000 - 6 000 5 - 7.5
H 6 000 - 8 000 3.75 - 5.00
I 8 000 - 10 000 3.00 - 3.75 Бортовые многофункциональные РЛС (БРЛС)
J 10 000 - 20 000 1.50 - 3.00 РЛС наведения и подсвета цели (РПН), напр. 30Н6, 9С32
K 20 000 - 40 000 0.75 - 1.50
L 40 000 - 60 000 0.50 - 0.75
M 60 000-100 000 0.30 - 0.50

См. также

  • Трёхкоординатная РЛС

Радиолокационная станция

Запрос «РЛС» перенаправляется сюда; о регистре лекарственных средств см. Регистр лекарственных средств.

Радиолокационная станция (РЛС) или рада́р (англ. radar от RA dio D etection A nd R anging - радиообнаружение и дальнометрия) - система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности, скорости и геометрических параметров. Использует метод, основанный на излучении радиоволн и регистрации их отражений от объектов. Английский термин-акроним появился в 1941 году , впоследствии в его написании прописные буквы были заменены строчными.

История

В СССР и России

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привела к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Классификация

По сфере применения различают
  • военные;
  • гражданские;
По назначению
  • РЛС обнаружения;
  • РЛС управления и слежения;
  • Панорамные РЛС;
  • РЛС бокового обзора;
  • Метеорологические РЛС;
  • РЛС целеуказания;
  • РЛС обзора обстановки;
По характеру носителя
  • Береговые РЛС
  • Морские РЛС
  • Бортовые РЛС
  • Мобильные РЛС
По типу действия
  • Первичные или пассивные
  • Вторичные или активные
  • Совмещённые
По методу действия
  • Надгоризонтный радиолокатор
По диапазону волн
  • Метровые
  • Дециметровые
  • Сантиметровые
  • Миллиметровые

Устройство и принцип действия Первичного радиолокатора

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны , а для РЛС метрового диапазона, часто используют - триодную лампу. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Различные РЛС основаны на различных методах измерения отражённого сигнала:

Частотный метод

Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. Отраженный сигнал придёт промодулированным линейно в момент времени, предшествующий настоящему на время задержки. Т.о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

Достоинства:

  • позволяет измерять очень малые дальности;
  • используется маломощный передатчик;

Недостатки:

  • необходимо использование двух антенн;
  • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
  • высокие требования к линейности изменения частоты;

Это основные её недостатки.

Фазовый метод

Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней.»

Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

Достоинства:

  • маломощное излучение, так как генерируются незатухающие колебания;
  • точность не зависит от доплеровского сдвига частоты отражения;
  • достаточно простое устройство;

Недостатки:

  • отсутствие разрешения по дальности;
  • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям;

Импульсный метод

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

Поскольку импульс уходит далеко от радара с постоянной скоростью, время, прошедшее с момента посылки импульса и до момента получения эхо-ответа, - есть прямая зависимость расстояния до цели. Следующий импульс можно послать только через некоторое время, а именно после того как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели.
Промежуток времени между импульсами называют интервалом повторения импульса , обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ) . Радары низкой частоты дальнего обзора, обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Достоинства импульсного метода измерения дальности:

  • возможность построения РЛС с одной антенной;
  • простота индикаторного устройства;
  • удобство измерения дальности нескольких целей;
  • простота излучаемых импульсов, длящихся очень малое время , и принимаемых сигналов;

Недостатки:

  • Необходимость использования больших импульсных мощностей передатчика;
  • невозможность измерения малых дальностей;
  • большая мертвая зона;

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая, движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

СДЦ, работающие с постоянной частотой повторения импульсов, имеют фундаментальную слабость: они являются слепыми к целям со специфическими круговыми скоростями (которые производят изменения фаз точно в 360 градусов), и такие цели не отображаются. Скорость, при которой цель исчезает для радиолокатора, зависит от рабочей частоты станции и от частоты повторения импульсов. Современные СДЦ излучают несколько импульсов с различной частоты повторения - такой, что невидимые скорости в каждой частоте повторения импульсов охвачены другими ЧПИ.

Другой способ избавления от помех реализован в импульсно-доплеровских РЛС , которые используют существенно более сложную обработку чем РЛС с СДЦ.

Важное свойство импульсно-доплеровских РЛС - это когерентность сигнала. Это значит, что посланные сигналы и отражения должны иметь определённую фазовую зависимость.

Импульсно-доплеровские РЛС обычно считаются лучше РЛС с СДЦ при обнаружении низколетящих целей во множественных помехах земли, это - предпочтительная техника, используемая в современном истребителе, для воздушного перехвата/управления огнём (примеры тому AN/APG-63, 65, 66, 67 и 70 радары). В современном доплеровском радаре большинство обработки выполняется отдельным процессором в цифровом виде с помощью цифровых сигнальных процессоров , обычно используя высокопроизводительный алгоритм Быстрое преобразование Фурье для преобразования цифровых данных образцов отражений кое во что более управляемое другими алгоритмами. Цифровые обработчики сигналов очень гибки, поскольку используемые в них алгоритмы могут оперативно заменяться другими, изменением только программы в памяти устройства («прошивку » ПЗУ), таким образом, в случае необходимости, быстро приспосабливаясь к технике глушения противника.

Диапазоны РЛС

Частотные диапазоны РЛС американского стандарта IEEE
Диапазон Этимология Частоты Длина волны Примечания
HF англ. high frequency 3-30 МГц 10-100 м Радары береговой охраны, «загоризонтные» РЛС
P англ. previous < 300 МГц > 1 м Использовался в первых радарах
VHF англ. very high frequency 50-330 МГц 0,9-6 м Обнаружение на больших дальностях, исследования Земли
UHF англ. ultra high frequency 300-1000 МГц 0,3-1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
L англ. Long 1-2 ГГц 15-30 см наблюдение и контроль за воздушным движением
S англ. Short 2-4 ГГц 7,5-15 см управление воздушным движением, метеорология, морские радары
C англ. Compromise 4-8 ГГц 3,75-7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
X 8-12 ГГц 2,5-3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
K u англ. under K 12-18 ГГц 1,67-2,5 см картографирование высокого разрешения, спутниковая альтиметрия
K нем. kurz - «короткий» 18-27 ГГц 1,11-1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны K u и K a . Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
K a англ. above K 27-40 ГГц 0,75-1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm 40-300 ГГц 1-7,5 мм миллиметровые волны, делятся на два следующих диапазона
V 40-75 ГГц 4,0-7,5 мм медицинские аппараты КВЧ , применяемые для физиотерапии
W 75-110 ГГц 2,7-4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

Вторичная радиолокация

«Вторичная радиолокация» используется в авиации для опознавания самолетов. Основная особенность - использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается, от принципа Первичной радиолокации. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик - служит для излучения импульсов запроса в антенну на частоте 1030 МГц

Антенна - служит для излучения и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток - служат для генерации азимутальных меток (Azimuth Change Pulse или ACP) и генерации метки Севера (Azimuth Reference Pulse или ARP ). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток(для старых систем) или 16384 малых азимутальных меток (для новых систем, их ещё называет улучшенные малые азимутальные метки (Improved Azimuth Change pulse или IACP), а также одну метку Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник - служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор - служит для обработки принятых сигналов.

Индикатор - служит для индикации обработанной информации.

Самолётный ответчик с антенной - служит для передачи импульсного радиосигнала, содержащего дополнительную информацию, обратно в сторону РЛС при получении радиосигнала запроса.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами на частоте P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2 отвечают запросившей РЛС, серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который в свою очередь определяется путём подсчёта малых азимутальных меток .

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

См. также

  • Нижегородский НИИ радиотехники

Литература

  • Поляков В. Т. «Посвящение в радиоэлектронику», М., РиС, ISBN 5-256-00077-2
  • Леонов А. И. Радиолокация в противоракетной обороне. М., 1967
  • Радиолокационные станции бокового обзора, под ред. А. П. Реутова, М., 1970
  • Мищенко Ю. А. Загоризонтная радиолокация, М., 1972
  • Бартон Д. Радиолокационные системы / Сокращенный перевод с английского под редакцией Трофимова К. Н.. - М .. - Военное издательство, 1967. - 480 с.
  • Лобанов М. М. Развитие советской радиолокации
Статьи
  • Шембель Б. К. У истоков радиолокации в СССР. - Советское радио, 1977, № 5
  • Ю. Б. Кобзарев. Первые шаги советской радиолокации. Журнал «Природа», № 12, 1985 г.

Ссылки

  • (нем.) Технология Радиолокационная станция
  • Раздел о радиолокационных станциях в блоге dxdt.ru (рус.)
  • http://www.net-lib.info/11/4/537.php Константин Рыжов - 100 великих изобретений. 1933 г. - Тейлор, Юнг и Хайланд выдвигают идею радара. 1935 г. - Радиолокационная станция CH дальнего обнаружения Уотсона-Уатта.
  • РЛС Лена-М РЛС Лена-М - фото, описание

Примечания