Как понимать бинарные часы. Простые бинарные часы на микроконтроллере

Пожелав собрать бинарные часы, я так и не нашел приемлемой готовой конструкции в сети. Большинство часов обладали серьезным недостатком – при отключении питания, настройки времени сбивались. По счастливой случайности, незадолго до этого, я начал осваивать язык Си и микроконтроллеры AVR. Итак, было решено подкрепить полученные знания практическим опытом, а заодно изобрести велосипед. А еще я очень люблю зеленые мигающие светодиоды.



Схема



RTC

Проблему сохранения текущих настроек прекрасно решают часы реального времени (RTC). Мой выбор пал на микросхему DS1307 .

По заверениям производителя, при отключении питания, она может сохранять время и дату в течении 10 лет, потребляя энергию одной лишь литиевой батарейки типа CR2032. Т.е часы продолжают тикать, сохраняя приемлемую точность хода. Время не сбивается, снова включив часы, мы получаем реальное время на циферблате, а не время на момент выключения. Микросхема общается с микроконтроллером через «квадратную шину» I 2 C, сообщая точное время и принимая новые его значения.

Сердце устройства

Выбор микроконтроллера Mega32a был продиктован следующими факторами:
Достаточное количество портов, чтобы не использовать динамическую индикацию, которую я не люблю, в первую очередь из-за того, что она раздражает зрение (мигание с высокой частотой в любом случае неестественно). С ней я познакомился, играясь с микроконтроллерами PIC на языке Proton PICBasic, и если есть возможность не использовать динамическую индикацию, я предпочту так и сделать.
Относительно низкая стоимость в 130 рублей (Mega16a, например, стоит столько же), а со скидкой так вообще 104 рубля.
Четкий QPF-44 корпус, с удобным расположением выводов


Порт «А» отображает секунды, порт «В» - минуты и порт «С» - часы. Очень удобно то, что можно присвоить портам значения времени, принятые из DS1307, без каких – либо изменений. К порту «D» подключены кнопки (пины 3 – 7), пины 0 и 1 работают как линия тактирования (SCL) и линия последовательной передачи данных (SDA) соответственно. Микросхема RTC настроена так, что выдает на своей седьмой ноге импульсы с частотой 1 герц. Эта нога подключена к 3-му пину порта «D». Сам этот порт сконфигурирован на вход, и на всякий случай включены внутренние подтяжки к плюсу питания, продублированные SMD резисторами снаружи. Такие действия в полной мере защищают от всяких неожиданностей.

Светодиоды


Светодиоды я выбрал в матовом корпусе с низкой светимостью. Сначала были опробованы яркие диоды в прозрачном корпусе, но даже при токе в 3 мА они слишком ярко и неравномерно светили, что опять таки вызывало дискомфорт. При падении напряжения на диоде в 2 вольта, напряжении питания 5 вольт и резисторе 1 кОм, значение тока, текущего через диод будет равно (5 – 2)/1000 = 3 мA. Это значение было подобрано эмпирически, а яркость свечения отлично подходит для полутемной комнаты. Если планируется устанавливать часы под прямой солнечный свет, то номинал резисторов следует уменьшить, вплоть до 200 ом, для более яркого свечения (спасибо кэп).

Кнопки

На отдельной плате с кнопками, предусмотрен «предохранитель» (он убережет нас от случайного выстрела в голову), в виде еще одной кнопки Bt6. Время можно редактировать, предварительно зажав ее.

Софт

Код написан в среде CodeVisionAvr.
Программа начинается с того, что мы настраиваем периферию микроконтроллера.
Конфигурируем порты (A,B,C – выход, D – вход)
На всякий случай предусмотрена пауза 300 мс, чтобы DS1307 успела «очухаться»
Инициализируем «квадратную шину»
Настраиваем микросхему RTC так, чтобы она выдавала прямоугольные импульсы каждую секунду на выводе SQW/OUT
Проверяем, нажата ли кнопка CLR. Если да, то сбрасываем все значения в 0
Разрешаем глобальные прерывания
Да, пару слов про них. Мы используем внешние прерывания INT0 на PD2 по спаду, т.е. каждую секунду программа будет уходить в обработчик прерываний, в котором мы считываем значения времени из DS1307 и выводим их на светодиодные индикаторы.
Уходим в бесконечный цикл, где опрашиваем кнопки
Если кнопка нажата, прибавляем (отнимаем) час (минуту) и посылаем новое значение по I2C
Попутно проверяем, вписываются ли новые значения времени в 24-х часовой и 60-ти минутный диапазоны.

Печатная плата

Плата выполнена по Великой Космической Лазерно – Утюжной Технологии на одностороннем текстолите. При изготовлении верхней платы, использовалась обычная бумага (неудачный эксперимент).


Существует много вариаций этой технологии. На мой взгляд, вот этот самый лучший:
1. Выпиливаем нужного размера кусок текстолита.
2. Шкурим торцы, избавляясь от вредных заусенцев.
3. Смазываем будущую плату чистящим порошком или зубной пастой и жесткой стороной губки драим ее до блеска.
4. Окунаем наш кусок на пару десятков секунд в слабый раствор теплого хлорного железа, до появления равномерной, матовой, бардово-коричневой поверхности. При вытаскивании из раствора, жидкость должна полностью смачивать поверхность.
5. Смываем каку, аккуратно сушим, не прикасаясь к поверхности пальцами, или чем другим жирным. Сразу кладем на чистую бумагу медью вниз, чтобы избежать попадания пыли или волос.
6. Распечатываем отзеркаленный рисунок на тонкой(!) глянцевой бумаге, можно вырезать из журнала, например. Не прикасаемся к рисунку руками. Аккуратно вырезаем, кладем рисунком вниз.
7. Прикладываем к подготовленному куску текстолита, проглаживаем через 1-2 слоя чистой бумаги, выставив утюг на максимальную температуру. Секунд 10 должно быть достаточно, ибо если передержать, дорожки расплющатся и затекут друг на друга. Тонер должен полностью прилипнуть к меди.
8. Отмачиваем под струей теплой воды, можно оставить в воде на 10 минут. Аккуратно отдираем, соскребаем бумагу. Мне в этом помогает старая зубная щетка. Удаляем оставшиеся кусочки бумаги иголкой. Тонер остается на текстолите.
9. Нагреваем на водяной бане крепкий раствор хлорного железа, бросаем туда нашу плату и бултыхаем в течении нескольких минут (по правилу Вант-Гоффа, при увеличении температуры на 10 градусов, скорость реакции увеличивается в 2 раза. Медь исчезает прямо на глазах. Можно и не греть, но ждать придется дольше.
10. Как только вся ненужная медь исчезла, выключаем газ, вытаскиваем (например пинцетом) плату, пытаемся отмыть плиту и пальцы от хлорного железа. Смываем его с платы проточной водой.
11. Берем ацетон (жидкость для снятия лака) и оттираем тонер. Можно попробовать соскрести его шкуркой или губкой.
12. Сверлим отверстия.
13. Лудим. В качестве флюса использую ЛТИ, и вам советую, однако после лужения и пайки этот флюс нужно обязательно смыть (тем же ацетоном, а лучше смесью спирто-бензин 1:1), т.к. ЛТИшка обладает некоторой проводимостью.
Все работы обязательно проводить в проветриваемом помещении, в процессе
выделяется много вредных паров.


Платы соединяются между собой PBS и PLD разъемов. Первые соединяются с верхней платой при помощи тонкого монтажного провода, его можно выковырять, например, из старого LPT кабеля или переходника.


Вторые припаиваются к нижней плате, причем штырьки, ведущие к клавиатуре загибаются (см. фото).

Печатные платы в формате SprintLayout5.0 прилагаются. На фотографиях есть пару косяков, но они уже исправлены в приложенных файлах.

Прошивка микроконтроллера

Для этого дела был собран программатор USBasp , который можно увидеть на фото сверху. Довольно приятная штука, прост в использовании и можно всегода носить его с собой в кармане(надеюсь, никто так делать не станет). Для прошивки mega32 придется установить джампер «Slow SCK».
Фьюзы:
Low fuse = 0xC4
High fuse = 0xD9
Наш микроконтроллер тактируется от внутреннего RC генератора с частотой 8 МГц. Пришлось отключить JTAG интерфейс на PortC, иначе некоторые светодиоды не будут светиться.
На плате предусмотрен ISP10 разъем, для быстрой прошивки/отладки.

Лицевая панель

Выполнена из алюминиевой пластины, шириной 40 мм и толщиной 1,5 мм. В ней просверлены 18 отверстий диаметром 5 мм, и 4 отверстия диаметром 3 мм для крепления стоек.


Сначала был распечатан шаблон и наклеен на пластину. Далее, были просверлены пилотные отверстия сверлом 1,5 мм, после чего уже сверлами нужных диаметров были просверлены основные отверстия.


В завершении, пластина была загнута, ошкурена мелкой шкуркой и отполирована пастой ГОИ.
Шаблон прилагается к приложенным файлам в виде файла layout5.0

Красный светодиод в левом верхнем углу

Повторяет импульсы, генерируемые DS1307 на 7-ой ноге, т.е. мигает каждую сегунду. Маленький p-канальный MOSFET транзистор работает в ключевом режиме, открываясь и закрываясь в такт импульсам. Сначала я хотел сделать фоновую подсветку (как Ambilight), для чего был слеплен КМОП инвертор на комплиментарной паре транзисторов(чтоб уж наверняка). Но мне не понравилось. Для одного светодиодика вполне достаточно одного транзистора, можно использовать даже pnp типа bc857. Я использовал бескорпусные mosfet irlml6402 или irlml6302.

Файлы

Исходники, hex-файл, печатные платы, схемы, схема в proteus и фьюзы заключены вот в эту картинку в виде архива. Я не доверяю файлохранилищам, своего сервера у меня пока нет, поэтому, на мой дилетантский взгляд, самым надежным местом для хранения будет Хабр. Пользователи windows могут добраться до файлов открыв сохраненную картинку с помощью WinRar.
Да, вот эта картинка.

Видео

Заключение

Источник питания можно использовать любой, способный выдать 5 вольт при токе в 70 мА. USB-порт вполне для этого подойдет. Главное, чтобы питание было «чистым», и не превышало 5 вольт. Питая часы от DC-DC преобразователя из на микросхеме mc34063 с уровнем помех ~50 мВ, я заметил глюки при установке времени. Сейчас устройство питается от свича, висящего рядом. Он выдает строго 5 вольт. По хорошему, нужно еще сделать защиту от дурака в виде диода, и какой-нибудь линейный стабилизатор на 3.3 - 5 вольт.
Отсутствие в часах функций будильника и отображения даты вполне обосновано: и то и другое присутствует в телефоне, а значит, пользоваться ими в бинарных часах с большой долей вероятности никто не будет (спасибо дядюшке Оккаму за этот вывод).

Пожелав собрать бинарные часы, я так и не нашел приемлемой готовой конструкции в сети. Большинство часов обладали серьезным недостатком – при отключении питания, настройки времени сбивались. По счастливой случайности, незадолго до этого, я начал осваивать язык Си и микроконтроллеры AVR. Итак, было решено подкрепить полученные знания практическим опытом, а заодно изобрести велосипед. А еще я очень люблю зеленые мигающие светодиоды.



Схема



RTC

Проблему сохранения текущих настроек прекрасно решают часы реального времени (RTC). Мой выбор пал на микросхему DS1307 .

По заверениям производителя, при отключении питания, она может сохранять время и дату в течении 10 лет, потребляя энергию одной лишь литиевой батарейки типа CR2032. Т.е часы продолжают тикать, сохраняя приемлемую точность хода. Время не сбивается, снова включив часы, мы получаем реальное время на циферблате, а не время на момент выключения. Микросхема общается с микроконтроллером через «квадратную шину» I 2 C, сообщая точное время и принимая новые его значения.

Сердце устройства

Выбор микроконтроллера Mega32a был продиктован следующими факторами:
Достаточное количество портов, чтобы не использовать динамическую индикацию, которую я не люблю, в первую очередь из-за того, что она раздражает зрение (мигание с высокой частотой в любом случае неестественно). С ней я познакомился, играясь с микроконтроллерами PIC на языке Proton PICBasic, и если есть возможность не использовать динамическую индикацию, я предпочту так и сделать.
Относительно низкая стоимость в 130 рублей (Mega16a, например, стоит столько же), а со скидкой так вообще 104 рубля.
Четкий QPF-44 корпус, с удобным расположением выводов


Порт «А» отображает секунды, порт «В» - минуты и порт «С» - часы. Очень удобно то, что можно присвоить портам значения времени, принятые из DS1307, без каких – либо изменений. К порту «D» подключены кнопки (пины 3 – 7), пины 0 и 1 работают как линия тактирования (SCL) и линия последовательной передачи данных (SDA) соответственно. Микросхема RTC настроена так, что выдает на своей седьмой ноге импульсы с частотой 1 герц. Эта нога подключена к 3-му пину порта «D». Сам этот порт сконфигурирован на вход, и на всякий случай включены внутренние подтяжки к плюсу питания, продублированные SMD резисторами снаружи. Такие действия в полной мере защищают от всяких неожиданностей.

Светодиоды


Светодиоды я выбрал в матовом корпусе с низкой светимостью. Сначала были опробованы яркие диоды в прозрачном корпусе, но даже при токе в 3 мА они слишком ярко и неравномерно светили, что опять таки вызывало дискомфорт. При падении напряжения на диоде в 2 вольта, напряжении питания 5 вольт и резисторе 1 кОм, значение тока, текущего через диод будет равно (5 – 2)/1000 = 3 мA. Это значение было подобрано эмпирически, а яркость свечения отлично подходит для полутемной комнаты. Если планируется устанавливать часы под прямой солнечный свет, то номинал резисторов следует уменьшить, вплоть до 200 ом, для более яркого свечения (спасибо кэп).

Кнопки

На отдельной плате с кнопками, предусмотрен «предохранитель» (он убережет нас от случайного выстрела в голову), в виде еще одной кнопки Bt6. Время можно редактировать, предварительно зажав ее.

Софт

Код написан в среде CodeVisionAvr.
Программа начинается с того, что мы настраиваем периферию микроконтроллера.
Конфигурируем порты (A,B,C – выход, D – вход)
На всякий случай предусмотрена пауза 300 мс, чтобы DS1307 успела «очухаться»
Инициализируем «квадратную шину»
Настраиваем микросхему RTC так, чтобы она выдавала прямоугольные импульсы каждую секунду на выводе SQW/OUT
Проверяем, нажата ли кнопка CLR. Если да, то сбрасываем все значения в 0
Разрешаем глобальные прерывания
Да, пару слов про них. Мы используем внешние прерывания INT0 на PD2 по спаду, т.е. каждую секунду программа будет уходить в обработчик прерываний, в котором мы считываем значения времени из DS1307 и выводим их на светодиодные индикаторы.
Уходим в бесконечный цикл, где опрашиваем кнопки
Если кнопка нажата, прибавляем (отнимаем) час (минуту) и посылаем новое значение по I2C
Попутно проверяем, вписываются ли новые значения времени в 24-х часовой и 60-ти минутный диапазоны.

Печатная плата

Плата выполнена по Великой Космической Лазерно – Утюжной Технологии на одностороннем текстолите. При изготовлении верхней платы, использовалась обычная бумага (неудачный эксперимент).


Существует много вариаций этой технологии. На мой взгляд, вот этот самый лучший:
1. Выпиливаем нужного размера кусок текстолита.
2. Шкурим торцы, избавляясь от вредных заусенцев.
3. Смазываем будущую плату чистящим порошком или зубной пастой и жесткой стороной губки драим ее до блеска.
4. Окунаем наш кусок на пару десятков секунд в слабый раствор теплого хлорного железа, до появления равномерной, матовой, бардово-коричневой поверхности. При вытаскивании из раствора, жидкость должна полностью смачивать поверхность.
5. Смываем каку, аккуратно сушим, не прикасаясь к поверхности пальцами, или чем другим жирным. Сразу кладем на чистую бумагу медью вниз, чтобы избежать попадания пыли или волос.
6. Распечатываем отзеркаленный рисунок на тонкой(!) глянцевой бумаге, можно вырезать из журнала, например. Не прикасаемся к рисунку руками. Аккуратно вырезаем, кладем рисунком вниз.
7. Прикладываем к подготовленному куску текстолита, проглаживаем через 1-2 слоя чистой бумаги, выставив утюг на максимальную температуру. Секунд 10 должно быть достаточно, ибо если передержать, дорожки расплющатся и затекут друг на друга. Тонер должен полностью прилипнуть к меди.
8. Отмачиваем под струей теплой воды, можно оставить в воде на 10 минут. Аккуратно отдираем, соскребаем бумагу. Мне в этом помогает старая зубная щетка. Удаляем оставшиеся кусочки бумаги иголкой. Тонер остается на текстолите.
9. Нагреваем на водяной бане крепкий раствор хлорного железа, бросаем туда нашу плату и бултыхаем в течении нескольких минут (по правилу Вант-Гоффа, при увеличении температуры на 10 градусов, скорость реакции увеличивается в 2 раза. Медь исчезает прямо на глазах. Можно и не греть, но ждать придется дольше.
10. Как только вся ненужная медь исчезла, выключаем газ, вытаскиваем (например пинцетом) плату, пытаемся отмыть плиту и пальцы от хлорного железа. Смываем его с платы проточной водой.
11. Берем ацетон (жидкость для снятия лака) и оттираем тонер. Можно попробовать соскрести его шкуркой или губкой.
12. Сверлим отверстия.
13. Лудим. В качестве флюса использую ЛТИ, и вам советую, однако после лужения и пайки этот флюс нужно обязательно смыть (тем же ацетоном, а лучше смесью спирто-бензин 1:1), т.к. ЛТИшка обладает некоторой проводимостью.
Все работы обязательно проводить в проветриваемом помещении, в процессе
выделяется много вредных паров.


Платы соединяются между собой PBS и PLD разъемов. Первые соединяются с верхней платой при помощи тонкого монтажного провода, его можно выковырять, например, из старого LPT кабеля или переходника.


Вторые припаиваются к нижней плате, причем штырьки, ведущие к клавиатуре загибаются (см. фото).

Печатные платы в формате SprintLayout5.0 прилагаются. На фотографиях есть пару косяков, но они уже исправлены в приложенных файлах.

Прошивка микроконтроллера

Для этого дела был собран программатор USBasp , который можно увидеть на фото сверху. Довольно приятная штука, прост в использовании и можно всегода носить его с собой в кармане(надеюсь, никто так делать не станет). Для прошивки mega32 придется установить джампер «Slow SCK».
Фьюзы:
Low fuse = 0xC4
High fuse = 0xD9
Наш микроконтроллер тактируется от внутреннего RC генератора с частотой 8 МГц. Пришлось отключить JTAG интерфейс на PortC, иначе некоторые светодиоды не будут светиться.
На плате предусмотрен ISP10 разъем, для быстрой прошивки/отладки.

Лицевая панель

Выполнена из алюминиевой пластины, шириной 40 мм и толщиной 1,5 мм. В ней просверлены 18 отверстий диаметром 5 мм, и 4 отверстия диаметром 3 мм для крепления стоек.


Сначала был распечатан шаблон и наклеен на пластину. Далее, были просверлены пилотные отверстия сверлом 1,5 мм, после чего уже сверлами нужных диаметров были просверлены основные отверстия.


В завершении, пластина была загнута, ошкурена мелкой шкуркой и отполирована пастой ГОИ.
Шаблон прилагается к приложенным файлам в виде файла layout5.0

Красный светодиод в левом верхнем углу

Повторяет импульсы, генерируемые DS1307 на 7-ой ноге, т.е. мигает каждую сегунду. Маленький p-канальный MOSFET транзистор работает в ключевом режиме, открываясь и закрываясь в такт импульсам. Сначала я хотел сделать фоновую подсветку (как Ambilight), для чего был слеплен КМОП инвертор на комплиментарной паре транзисторов(чтоб уж наверняка). Но мне не понравилось. Для одного светодиодика вполне достаточно одного транзистора, можно использовать даже pnp типа bc857. Я использовал бескорпусные mosfet irlml6402 или irlml6302.

Файлы

Исходники, hex-файл, печатные платы, схемы, схема в proteus и фьюзы заключены вот в эту картинку в виде архива. Я не доверяю файлохранилищам, своего сервера у меня пока нет, поэтому, на мой дилетантский взгляд, самым надежным местом для хранения будет Хабр. Пользователи windows могут добраться до файлов открыв сохраненную картинку с помощью WinRar.
Да, вот эта картинка.

Видео

Заключение

Источник питания можно использовать любой, способный выдать 5 вольт при токе в 70 мА. USB-порт вполне для этого подойдет. Главное, чтобы питание было «чистым», и не превышало 5 вольт. Питая часы от DC-DC преобразователя из на микросхеме mc34063 с уровнем помех ~50 мВ, я заметил глюки при установке времени. Сейчас устройство питается от свича, висящего рядом. Он выдает строго 5 вольт. По хорошему, нужно еще сделать защиту от дурака в виде диода, и какой-нибудь линейный стабилизатор на 3.3 - 5 вольт.
Отсутствие в часах функций будильника и отображения даты вполне обосновано: и то и другое присутствует в телефоне, а значит, пользоваться ими в бинарных часах с большой долей вероятности никто не будет (спасибо дядюшке Оккаму за этот вывод).

Длится уже много веков. За это время каких только способов определения ни было придумано изобретательными людьми - начиная с зависящих от положения Солнца в небе до электронных. Последний писк моды на данный момент - это часы бинарные, совсем непривычные на первый взгляд. Так что же это и как по загорающимся точкам определить, который час? Давайте разберемся в этой интересной новинке получше.

Что такое бинарные часы?

Популярность этих хронометров растет с необыкновенной скоростью. Впрочем, чему тут удивляться, стоит только взглянуть на эту новинку. Оригинальный внешний вид, стильный дизайн, необычный принцип работы - все это позволяет людям с нестандартным видением мира выделиться из толпы.

На своем экране, в отличие от механических или электронных, бинарные наручные часы имеют не стрелки и цифры, а разноцветные светящиеся точки (которые в некоторых моделях мигают).

Вся необычность принципа их действия заключается в том, что вместо привычной для нас десятеричной время здесь указано в в которой все цифры записываются только с помощью нулей и единиц. Именно так работает вся компьютерная техника, потому у программистов и тех, кто тесно связан с информационными технологиями, не должно возникнуть сложностей с пересчетом.

Как они появились?

Первый раз часы бинарные вышли в свет в 2008 году. Именно тогда фирма Anelace представила свою инновационную разработку всему миру. Однако появлению стильных наручных часов с LED-экраном предшествовали годы усовершенствований, проб и ошибок.

Модели-прототипы бинарных часов, созданные еще в начале 20-го века, были огромными махинами с электронными лампами (как, впрочем, и первые компьютеры). Тогда для человека они почти не представляли практического интереса.

С развитием технологий все более широкое распространение получили светодиоды, и в конструкции бинарных часов они заняли место обычных ламп.

Прошли годы, и необычной системой заинтересовался один японский профессор медицины. Его пациентами были пожилые люди, имеющие проблемы с памятью и мозговой деятельностью. Профессор включил в занятия по их реабилитации и часы бинарные в качестве развивающей головоломки. Результат оказался просто ошеломительным!

Зачем такие сложности?

Первый вопрос, который возникает при взгляде на бинарные часы: как пользоваться ими? Поначалу таким вот странным способом может показаться глупой причудой, которая понравится только или совсем уж сдвинутым на почве технологий фрикам, или гениям. Обычно ведь часы нужны для того, чтобы лишь мельком взглянуть на них и узнать время, а с бинарными хронометрами такой фокус не пройдет. Можно даже опоздать на встречу, пока пытаешься считать с них показания.

И все же стоит только отбросить всякие предрассудки, как становится понятно: вещь это исключительно полезная, прежде всего для тренировки и развития ума. Чтобы привыкнуть к бинарным часам, нужно гораздо меньше времени, чем кажется на первый взгляд, а многообразие видов не даст расслабиться.

Преимущества

Какую пользу приносят своему владельцу часы бинарные по сравнению с обычными? Ну, для начала, это отличная возможность перед всеми знакомыми (да и просто прохожими) прослыть очень умным и оригинальным человеком. Особенно если на их расспросы ничего не уточнять, а делать загадочный вид в стиле «вам, простым смертным, не понять».

А если говорить серьезно, то бинарные часы - это сразу несколько полезных гаджетов в одном.

  1. Часы. Естественно, по ним можно определять время, иначе какие же это часы?
  2. Игра-головоломка. Позволяет устроить себе развлечение в любой момент, когда заблагорассудится. К тому же разные модели таких часов основаны на немного отличающихся друг от друга системах счисления, что делает их еще интереснее.
  3. Особенно полезен этот гаджет для профилактики старческих умственных отклонений, но и молодым людям он станет отличным мозговым тренажером.
  4. Ультрамодное и современное украшение с инновационным дизайном. И да, эти часы светятся в темноте.

Настройка

Бинарные наручные часы не имеют в своем механизме ни циферблата, ни стрелок. Вместо этого вся информация о и времени выводится на LED-экран с помощью светодиодов. Из-за этого перед пользователем встает насущный вопрос: а как настроить бинарные часы?

Система кодировки может различаться в разных моделях бинарных часов, однако есть некоторые основные моменты, о которых стоит помнить. Обычно у таких хронометров есть 1 или 2 режима: время и, реже, дата, переключающиеся кнопкой. Для настройки нужной величины чаще всего сначала нужно нажать кнопку Set ("Установка"). Мигающие индикаторы покажут, что вы делаете все правильно. Кнопка Select ("Выбор") позволяет переключиться от установки часов к минутам и секундам, а также от месяца к числу.

Чтобы правильно выставить на часах нужные значения, стоит освоить основной принцип двоичной системы счисления. «Вес» каждого разряда можно определить, умножив предыдущий на 2. Получим следующий ряд: 1, 2, 4, 8, 16, 32. Например, чтобы число 110101 перевести в привычный нам вид, нужно сложить «вес» каждого из значимых разрядов. Получим 32 + 16 + 0 + 4 + 0 + 1 = 53.

Поскольку разные фирмы производят несколько различающиеся между собой бинарные часы, инструкция к ним поможет разобраться во всем более подробно.

Какие бывают бинарные часы?

Как и большая часть электронных гаджетов, часы бинарные - вотчина японцев и китайцев. Сейчас их производит множество фирм, модели различаются по качеству, однако все их можно разделить на несколько групп по виду отображаемой информации.

  • Хронометры с двумя рядами светодиодов. Один ряд показывает часы, второй - минуты. Кроме того, на экране есть 2 индикатора времени суток (AM и РМ).
  • Часы со светодиодами, расположенными в 6 рядов (по 2 на часы, минуты и секунды). Показывают время в формате HH:MM:SS. Чтобы узнать по ним время, нужно записать показания каждого столбика по порядку, предусмотренному этим форматом.

  • Экран часов может напоминать спидометр с двумя окружностями: внешней, показывающей часы, и внутренней, которая определяет минуты.
  • В некоторых часах имеется по 2 дорожки - справа (часы) и слева (минуты).

Есть и более навороченные варианты бинарных часов. Какой из них выбрать, зависит только от вашего желания и финансовых возможностей.

Доброго времени суток. В сегодняшней статье мы изготовим необычные бинарные часы на базе Arduino своими руками . Разобравшись с процессом создания подобной поделки , в дальнейшем вы сможете повторить бинарные часы любой конструкции.

Шаг 1: Что же такое бинарные часы?

Для начала вспомним, что же такое бинарное (двоичное) число – это число представленное в двоичной системе исчисления, числовыми значениями, что используют всего два символа: 0 (ноль) и 1 (единица).

Бинарные часы – это часы, что отображают время в двоичном формате. В проекте используются 6 колонок светодиодов для отображения нулей и единиц. Каждая колонка отображает одну цифру/разряд, такой формат известен, как двоично-десятичное число (ДДЧ). Каждая линия отображает степень двойки, от 2^0 (или 1), до 2^3 (или 8). Поэтому всё, что нужно сделать при чтении информации с часов – просуммировать значения колонок с включенными светодиодами. Например, в первой колонке включены 4-й и 1-й светодиоды. Прибавляем 8 к 1 и получаем 9 (количество секунд равное 9). Следующая колонка десятые секунды, в ней светится только 3-й светодиод, поэтому общее значение будет равно 49 секундам, точно также с минутами и часами. Пожалуйста, отметьте следующее, что часы отображают время в 24-х часовом формате.

Шаг 2: Составные части

  • Arduino Pro Mini 328 5 V использовал такую плату, но фактически можете использовать любую другую. Если вы ни разу не использовали Pro Mini, то наверняка вам будет нужен CP 2102 (программатор) для подключения платы к компьютеру;

  • DS 1302 — модуль часов реального времени ;

  • 20-ть 10 мм диффузных «тёплых» светодиодов (советую брать с запасом);

  • 20-ть резисторов с номиналом сопротивления 10Ω;

  • 2 тактовые кнопки;

  • 2 резистора с номиналом сопротивления 10kΩ (используются, как нагрузочные резисторы).

Шаг 3: Изготавливаем прототип

Начнём изготавливать прототип будущей поделки . В принципе, это не обязательное условие, но нужно же посмотреть на то, как светодиодная матрица, Arduino и часовой модуль будут работать вместе. При прототипирование использовал Arduino Mega и простые красные светодиоды. Всё работает хорошо, как и ожидалось.

Шаг 4: Корпус

Корпус самоделки (состоит из двух половинок) будет изготовлен из дерева. Оно будет контрастно смотреться на фоне бинарных часов и придаст поделке ретро стиль.

Шаг 5: Схема

Светодиоды сгруппированы в матрицу, чтобы уменьшить количество задействованных выводов arduino. В нашем случае под матрицу отведено 9 выводов. После изготовления светодиодной матрицы, припаяем выводы к arduino, затем модуль часов, кнопки для настройки времени и под конец блок питания.

Шаг 6: Код

За основу кода взят пример с Arduino Playgroud post для модуля часов DS1302. После чего были внесены изменения для отображения времени на светодиодной матрице.

Многие задаются вопросом по поводу того, . Здесь дам некоторые инструкции и расскажу, как пользоваться некоторыми бинарными часами и как определять на них время. Обо всех моделях часов рассказывать не буду, а только о тех, которые сам держал когда-либо в руках. Бинарные часы отличаются от обычных тем, что не имеют как такового циферблата. Время закодировано. Но на самом деле определить время на них не составляет особого труда, а особенно владельцам, которые пользуются ими постоянно. Представленные ниже часы в интернете могут называться по-разному. Так что ориентируетесь по фотографиям.


Производство: Китай.
Определение времени : самый левый столбец, состоящий из 12 светодиодов, отображает часы; остальные 5 столбцов, состоящие из 60 светодиодов, отображают минуты. Цифры по бокам позволяют лучше ориентироваться в определение времени. На часах с фотографии: 4 часа 41 минута.
Аналогично определяется и дата. Левый столбец показывает месяц. Светодиоды в остальных столбцах показывают число. Если включен режим даты, то максимум могут загореться только 31 диод (31 число месяца).
(Virus)
Производство: Китай.
Как пользоваться бинарными часами Вирус : один красный светодиод равен одному часу, один желтый светодиод равен пяти минутам, один зеленый светодиод равен одной минуте. Время определяется посредством подсчета светодиодов. На часах Вирус с фотографии: 10 часов 54 минуты, так как горит 10 красных светодиодов (10 часов), 10 желтых светодиодов и 4 зеленых (10×5+4=54)
(Mickey mouse )
Производство: Китай.
Определение времени на часах : "мордочка", состоящая из 12 светодиодов отображает часы; "правое ухо" отображает десятки минут; каждый светодиод на "левом ухе" равен одной минуте. Цифры позволяют лучше ориентироваться в определение времени. Дата определяется следующим образом: "мордочка" показывает месяц, "правое и левое ухо" число.

(Flash Lights)
Производство: Китай.
Как пользоваться бинарными часами Спидометр : 12 верхних светодиодов отображают часы, средние 5 светодиодов отображают десятки минут, каждый светодиод из нижней части отображает 1 минуту. Цифры позволяют лучше ориентироваться в определение времени. Индикаторы AM и PM указывают на время суток (день, ночь). Дата отображается следующим образом: верхние 12 светодиодов указывают месяц, остальные - число. Настроить часы, думаю, каждый сможет самостоятельно.

Двоичные часы (Singularity)
Производство: Китай.
Определение времени на двоичных часах: вертикальная шкала с цифрами 1, 2, 4, 8 отображает часы. Чтобы узнать сколько часов, необходимо суммировать цифры, светодиоды которых подсвечены. Нижние горизонтальные светодиоды отображают минуты. Для определения количества минут необходимо сложить подсвеченные цифры. Индикаторы AM и PM указывают время суток (день, ночь). Дата определяется также с помощью арифметических подсчетов.


Определение времени на часах Winston аналогично определению времени на часах Singularity. Winston отличается от вышеупонянутых часов только присутствием на циферблате логотипа Winston.

Бинарные часы Matrix
Производство: Китай
Определение времени на бинарных часах : два левых столбца показывают часы, а два правых - минуты. Время читается слева направо.
Часы имеют несколько индикаторов: доллар говорит о том, что отображается год; солнце - отображается день недели, число и месяц.
Наглядно всё показано на схеме ниже.

Ко всем бинарным часам должна идти в комплекте инструкция. Так что если вы купили какие-то другие часы и не знаете, как пользоваться бинарными часами или как определить на них время - смотрите инструкцию.