Что такое светочувствительность. А вы настроили такой параметр как ISO, на своем фотоаппарате? Когда использовать низкий ISO

Главное отличие пленочного фотоаппарата от цифрового заключается в способе фиксации света, прошедшего через объектив. Там, где в традиционных пленочных фотоаппаратах располагается пленка, у цифровой камеры находится электронная матрица со светочувствительными элементами. Именно на поверхности электронно-оптического преобразователя (матрицы) создается изображение, которое затем превращается в электрические сигналы, обрабатываемые процессором камеры. От матрицы цифрового фотоаппарата напрямую зависит не только качество получаемых фотографий, но и стоимость самой камеры. Что же собой представляет светочувствительная матрица и каким образом создается цветное изображение в цифровом фотоаппарате?

Матрица: типы и принцип работы

Светочувствительная матрица является ключевым элементом любой современной цифровой камеры. Ее можно назвать «сердцем» цифрового фотоаппарата. Если же сравнивать камеру с человеческим глазом, то матрица – это сетчатка цифрового аппарата, на которой оптический сигнал преобразуется в цифровое изображение. Матрица или сенсор представляет собой сложно структурированную пластинку из полупроводникового материала. На этой микросхеме имеется упорядоченный массив светочувствительных элементов. Миллионы таких светочувствительных элементов или пикселов изолированы друг от друга и формируют только одну точку изображения. Нужно отметить, что, несмотря на высокую точность в изготовлении матриц цифровых фотоаппаратов, каждый сенсор по своему уникален и потому двух совершенно одинаковых камер по своему характеру не существует.

Основная задача матрицы фотоаппарата заключается в том, чтобы обеспечить преобразование оптического изображения в электрическое. При спуске затвора фотоаппарата на миллионы крошечных ячеек попадает свет, на них накапливается заряд, который, естественно, разнится в зависимости от количества света, попавшего на данную ячейку матрицы. Эти заряды передаются на электрическую схему, которая призвана усилить их и преобразовать в цифровой вид. Усиление сигнала выполняется в соответствии с настройками чувствительности ISO, выбираемых камерой автоматически или самостоятельно устанавливаемых пользователем. Чем больше выбираемая чувствительность ISO отличается от реальной светочувствительности матрицы, тем сильнее сигнал. Но усиление сигнала может негативно сказаться на итоговом изображении – появляется так называемый «шум» в виде случайных помех.

На сегодняшний день при производстве светочувствительных матриц для цифровых фотоаппаратов используются, главным образом, две технологии – CMOS (Complementary Metal Oxide Semiconductor) и CCD (Charge Coupled Device). В русском переводе эти два типа сенсоров известны как КМОП и ПЗС-матрицы.

КМОП-матрицы изготавливаются из комплементарных металлооксидных полупроводниковых материалов. Их ключевая особенность состоит в том, что они умеют считывать и усиливать световой сигнал с любой точки своей поверхности. КМОП-матрица может преобразовывать заряд в напряжение сразу в пикселе. Эта особенность позволяет значительно повысить скорость работы фотоаппарата при обработке информации с матрицы.

Кроме того, подобная технология дает возможность интегрировать матрицы непосредственно с аналогово-цифровым преобразователем (АЦП), что обеспечивает удешевление цифрового фотоаппарата за счет некоторого упрощения его конструкции. Плюс ко всему, КМОП-матрицы отличаются более низким энергопотреблением. Однако у них есть существенный недостаток – для того, чтобы повысить светочувствительность матрицы и улучшить, тем самым, качество изображения производителям приходится существенно увеличивать физические размеры сенсора.

ПЗС-матрицы получили большое распространение в современных цифровых фотоаппаратах любительского и профессионального уровня даже несмотря на то, что они отличаются чуть большей трудоемкостью в производстве. Принцип работы такой матрицы основывается на построчном перемещении накопленных электрических зарядов. В процессе считывания заряда осуществляется перенос зарядов к краю матрицы и в сторону усилителя, который далее передает усиленный сигнал в аналогово-цифровой преобразователь (АЦП). Поскольку информация из ячеек считывается последовательно, то сделать следующий снимок можно только после того, как предыдущее изображение сформировано целиком. В то же время преимуществом ПЗС-матриц являются их сравнительно небольшие размеры.

ПЗС-матрицы, используемые в современных цифровых фотоаппаратах, по своей конструкции делятся на полнокадровые, с буферизацией кадра, буферизацией столбцов, с прогрессивной разверткой, чересстрочной разверткой и с обратной засветкой. Например, в чересстрочных ПЗС каждый пиксель обладает как приемником света, так и областью для накапливания заряда. В свою очередь, в полнокадровых матрицах весь пиксель выполняет функцию приема светового потока, а каналы передачи заряда спрятаны под пиксель.

Довольно долгое время считалось, что ПЗС-матрицы обладают большей светочувствительностью, более широким динамическим диапазоном и лучшей устойчивостью к шумам, по сравнению с КМОП-сенсорами. Поэтому цифровые фотоаппараты с ПЗС-матрицами использовались там, где требуется обеспечить высокое качество изображения, а камерам с КМОМ-сенсорами отводилась роль недорогих любительских устройств. Однако за последние годы производителям вследствие улучшения качества кремниевых пластин и схемы усилителя удалось существенно повысить характеристики КМОП-матриц. И теперь по качеству изображения камеры на основе КМОП-матриц практически ни в чем не уступают фотоаппаратам, в которых используются ПЗС-сенсоры.

Новейшие КМОП-сенсоры способны гарантировать профессиональное качество снимков. А потому с точки зрения качества фотоизображения, собственно, тип матрицы уже мало о чем говорит, гораздо более важным фактором являются конкретные характеристики данного сенсора — его физические размеры, разрешающая способность, светочувствительность, соотношение сигнал — шум.

Как мы уже выяснили, матрица цифрового фотоаппарата состоит из огромного количества светочувствительных полупроводниковых элементов прямоугольной формы, называемых пикселями. Каждый такой пиксель собирает электроны, возникающие в нем под действием фотонов, пришедших от источника света. Но как же происходит процесс формирования изображения матрицей фотоаппарата?

В упрощенном виде об этом можно рассказать на примере ПЗС-матрицы. Во время экспозиции кадра, регулируемой с помощью затвора фотоаппарата, каждый пиксель постепенно заполняется электронами пропорционально тому количеству света, которое попало на него. Далее затвор фотоаппарата закрывается, и столбцы с накопленными в пикселях электронами начинают сдвигаться к краю сенсора, где размещается аналогичный измерительный столбец.

В этом столбце заряды сдвигаются уже в перпендикулярном направлении и, в конечном счете, попадают на измерительный элемент. В нем создаются микротоки, пропорциональныепопавшим на него зарядам. Благодаря такой схеме становится возможным определить не только значение накопленного заряда, но и какому пикселю на матрице, то есть номер строки и номер столбца, он соответствует. На основе этого строится картинка, соответствующая сфокусированному на поверхности светочувствительной матрицы изображению. В матрицах, построенных по технологии КМОП, заряд преобразуется в напряжение прямо в пикселе, после чего он может быть считан электрической схемой фотоаппарата.

Формирование цветного изображения

Сенсоры цифровых фотоаппаратов способны реагировать только на силу попадающего на них света. То есть они могут определять исключительно градации интенсивности света — от полностью белого до полностью черного. Чем больше фотонов попало на пиксель, тем, соответственно, выше яркость света. Но как в таком случае цифровой фотоаппарат распознает цветовые оттенки? В традиционных пленочных фотокамерах используется негативная пленка, состоящая из трех слоев, которые позволяет пленке сохранять различные цветовые оттенки света. В цифровых же камерах реализуются иные технические решения для формирования цветного изображения.

Для того, чтобы сенсор цифрового фотоаппарата мог различать цветовые оттенки, над его поверхностью устанавливают блок микроскопических светофильтров. Если в матрице используются микролинзы, служащие для дополнительной фокусировки света на пикселях с целью повышения их чувствительности, то фильтры размещаются между каждой микролинзой и ячейкой.

Как хорошо известно, любой цвет в спектре можно получить путем смешения всего нескольких основных цветов (красного, зеленого и синего). Распределение светофильтров по поверхности сенсора для формирования цветного изображения может быть разным, в зависимости от выбранного алгоритма. В большинстве цифровых фотоаппаратов сегодня применяется цветовая модель Байера (Bayerpattern).

В рамках этой системы цветовые фильтры над поверхностью матрицы располагаются вперемежку между собой, в шахматном порядке. Причем количество зеленых фильтров в два раза больше, чем красных или синих, поскольку человеческий глаз более чувствителен к зеленой части светового спектра. В результате, получается так, что красные и синие фильтры располагаются между зелеными. Шахматный порядок в расположении фильтров необходим для того, чтобы одинаковые по цвету изображения получались вне зависимости от того, как пользователь держит фотокамеру – вертикально или горизонтально.


Цветовая модель Байера (ист. www.figurative.ru)

Таким образом, цвет каждого пикселя определяется прикрывающим его светофильтром. В получении информации о цвете участвуют все экспонированные элементы ячейки. Само же цветное изображение строится электроникой камеры уже после того, как снимаемый с ячеек сенсора камеры электрический сигнал преобразуется в цифровой код аналого-цифровым преобразователем (АЦП). Впрочем, КМОП-сенсоры могут и самостоятельно обрабатывать цветовую составляющую сигнала.

Аналого-цифровой преобразователь (АЦП)

Как мы уже поняли, работа светочувствительной матрицы тесно связана с аналого-цифровым преобразователем камеры (АЦП). После того, как каждый из миллиона светочувствительных элементов матрицы преобразует энергию падающего на него света в электрический заряд, этот накопленный заряд усиливается до необходимого уровня для последующей его обработки аналого-цифровым преобразователем.

Аналогово-цифровой преобразователь – это устройство, отвечающее за преобразование входного аналогового сигнала в цифровой сигнал. АЦП переводит аналоговые величины полученного каждым светочувствительным элементом электрического заряда в цифровые величины, которые далее автоматика камеры, в частности, встроенный микропроцессор, получает уже в двоичном коде.

Главной характеристикой АЦП является его разрядность, то есть количество дискретных уровней сигнала, которые кодируются преобразователем. К примеру, одноразрядный аналогово-цифровой преобразователь может классифицировать сигналы светочувствительных датчиков только как черные (0) или белые (1). А восьмиразрядный АЦП способен построить уже 256 различных значений яркости для каждого датчика. В современных моделях цифровых фотоаппаратов с сенсорами большого размера используются 12-, 14- либо 16-разрядные аналого-цифровые преобразователи. Высокая разрядность установленного в камере АЦП может свидетельствовать о том, что данный цифровой фотоаппарат способен создавать изображения с широким тональным и динамическим диапазонами.

После того, как АЦП выполнит преобразование аналоговых напряжений, полученных с датчиков, в двоичную кодированную метку, состоящую из нулей и единиц, он передает эти оцифрованные данные нацифровой процессор сигналов камеры. В процессоре эти данные уже преобразуются в цветную картинку в соответствии с внесенными производителем алгоритмами, включающими в себя, в частности, определение координат точек изображения и присвоения им определенного цветового оттенка. При построении цветового изображения встроенная электроника камеры обеспечивает регулировку яркости, контрастности и насыщенности картинки. Также она убирает с него различные помехи и «шумы».

Безусловно, сенсор и связанный с ним аналого-цифровой преобразователь – это не единственные составляющие цифровой камеры, которые определяют ее качество. Оптика, электроника и другие элементы также очень важны для обеспечения высокого качества создаваемых фотоизображений. Тем не менее, уровень современного цифрового фотоаппарата принято определять именно исходя из технического совершенства установленной в нем светочувствительной матрицы. Более того, развитие фототехники в целом сегодня во многом определяется скоростью разработки все более совершенных сенсоров.

ISO или уровень светочувствительности – это значение, определяющее чувствительность фотоплёнки или сенсора цифровой камеры к свету. Его обозначение можно найти на катушке фотоплёнки или же в настройках цифровой камеры.

Так что же скрывается за этими буквами: ISO? На самом деле, ISO — аббревиатура, которая расшифровывается как International Standards Organization (Международная организация по стандартизации), а значение ISO наряду с выдержкой и значением диафрагмы – это три основных фактора, которые в итоге определяют экспозицию снимаемого кадра.

Значение ISO, которое колеблется в районе от 25 до 6400 (и более), указывает на конкретную светочувствительность. Чем ниже значение – тем менее чувствительна к свету плёнка или сенсор камеры. И наоборот: более высокое значение ISO указывает на высокую чувствительность к свету, что свидетельствует о том, что данная плёнка или камера пригодна для съёмки в условиях низкой освещённости.

Чувствительность ISO и шумы изображения

Во времена фотоплёнки, низкие значения ISO также означали, что концентрация светочувствительных кристаллов соли на поверхности плёнки очень высока, что позволяло получать более гладкое и чистое изображение. Чем выше было значение ISO, тем крупнее били кристаллы соли на пленке, что приводило к получению более грубых, зернистых изображений.

В современной цифровой фотографии действует тот же принцип: чем ниже значение ISO, тем меньше чувствительность сенсора камеры и, следовательно, плавнее получаемое изображение, поскольку уровень цифрового шума ниже.

Чем выше значение ISO (выше светочувствительность) тем больше усилий должен приложить сенсор для получения качественного изображения, поскольку ему будет необходимо бороться с большим количеством цифрового шума (всем известные разноцветные крапинки в тенях и полутонах).

Так что же такое цифровой шум? Это любой световой сигнал, порождённый не объектом съёмки и, следовательно, создающий на изображении случайный цвет.

Конструкторы современных цифровых камер разработали сенсоры, позволяющие получать отличные изображения на самых низких значениях ISO. На большинстве цифровых камер минимальный порог чувствительности ISO составляет 100, хотя некоторые топовые и профессиональные камеры способны снимать с чувствительностью ISO 50 и даже ISO 25.

Есть еще одна вещь, которую вам будет полезно узнать о зернистости изображения. В нецифровой фотографии многие фотографы нашли творческий способ использования зернистости изображения для придания изображению своеобразного тона и настроения. К сожалению, цифровой шум имеет иную природу – он проявляется в виде хаотичных скоплений цветных точек – и его художественное использование маловероятно. Тем не менее, некоторые фотографы нашли оригинальные творческие решения для использования цифрового шума.

Чувствительность ISO и Размытие в движении

Съёмка на низких значениях ISO позволяет получить качественные и эстетически привлекательные изображения с точной цветопередачей, однако, она требует идеальных условий освещения.

Тем не менее, существуют вещи, которые вы хотели бы сфотографировать в условиях низкой освещённости. Или же вы можете захотеть , например, колибри, скачущую лошадь или движущуюся карусель. В обеих ситуациях для захвата подобных предметов с приемлемой экспозицией, вам потребуются более высокие значения ISO.

В отличие от плёночного фотоаппарата, используя цифровую камеру, вы можете изменить чувствительность ISO нажатием всего лишь одной кнопки, эта гибкость позволяет вам гораздо легче получить желаемое изображение.

Так, с высоким ISO вы можете использовать более короткие выдержки, чтобы устранить размытость изображения и/или дрожания фотокамеры. В случае, если вы хотите использовать творческое размытие изображения, то, просто уменьшая чувствительность ISO, вы можете уменьшить выдержку (до значений меньше 1/30 сек), тем самым получить размытое изображение движущихся объектов, при этом сведя количество шумов к минимуму.

Чувствительность ISO и размер сенсора камеры

От размера сенсора цифровой камеры напрямую зависит – насколько низким будет уровень шумов при тех или иных параметрах ISO.

Следует понимать, что размер сенсора – это не то же самое, что количество мегапикселей. Размер сенсора – это его фактические физические размеры. На протяжении большей части истории цифровой фотографии, размер сенсоров цифровых камер был меньше, размера кадра 35-мм плёнки. На цифровых «мыльницах» сенсор был очень маленьким (да и продолжает оставаться таковым), а на большинстве цифровых зеркалок размер сенсора равнялся размеру кадра APC-фотоплёнки (23×15 мм).

Сенсоры меньшего размера производят гораздо больше шума на высоких значениях ISO (800 и выше), главным образом, потому, что высокое количество пикселей, размещённых на небольшой площади, производят больше зерна на всех значениях ISO, исключая самые низкие.

В настоящее время многие производители цифровых зеркальных камер выпускают сенсоры того же размера, что и размер кадра 35-мм фотопленки (так называемые Full Frame или полнокадровые).

Чем больше размер сенсора, тем большее число пикселей может быть размещено на нём, без ущерба для качества изображения вплоть до ISO 1600 (для некоторых камер). На полнокадровом сенсоре более крупные пиксели индивидуально более чувствительны к свету, так что электрическая энергия, необходимая для имитации ISO 800 не создает такое же количество шума, как в случае сенсоров меньшего размера. Поэтому полнокадровые камеры способны захватывать динамичные и эффектные изображения без большого количества цифрового шума даже в условиях низкой освещенности.

Чувствительность ISO и качество изображения

Важно помнить, что чем ниже значение ISO – тем лучше будет качество изображения.

Большинство цифровых камер по умолчанию имеют параметр «Auto ISO», а это уменьшает ваш контроль над качеством изображения, поскольку камера может автоматически установить более высокое значение ISO, что приведет к возникновению большого количества шума, в то время как, более низкое значение чувствительности ISO, установленное вручную, могло бы дать более качественное изображение.

Увеличение ISO влияет на качество изображения по двум основным направлениям:

  • снижается контрастность мелких деталей изображения;
  • при увеличении изображения или его печати, или же при конвертации его в JPEG (который имеет большую степень сжатия), высокий уровень цифрового шума может сделать фотографию «грязной» и неэстетичной.

Как мы писали выше, чем ниже значение ISO, тем более качественными, гладкими и эстетически привлекательными будут ваши изображения.

Значения ISO от 100 до 200 даст вам наилучшие результаты. А если размер сенсора вашей камеры позволяет, то ваши фотографии будут оставаться таковыми и до ISO 400 сохраняя возможность крупноразмерной печати (от 20×24 и выше).

Заключение

При съёмке любого изображения важно учитывать светочувствительность сенсора камеры (ISO), поскольку, чем ниже ISO, тем более гладкое изображение с минимальным количеством шумов вы получите.

Учитывать светочувствительность сенсора важно и при подготовке к съёмке. Например, для того, чтобы снимать на максимально низком значении ISO, вам могут понадобиться дополнительные источники света.

Поэтому, когда вы столкнулись с неблагоприятными условиями освещения (т.е. низкой освещенностью или высокой контрастностью освещения) или вам требуется использовать более короткую выдержку, вам стоит пожертвовать гладкостью изображения, доступной на низких ISO, и сделать снимок с более высоким значением ISO.

Другими словами, лучше увеличить ISO и бороться с последствиями этого, чем не сделать снимок.

Больше полезной информации и новостей в нашем Telegram-канале «Уроки и секреты фотографии» . Подписывайся!

Здравствуйте уважаемые читатели моего сайта! Сегодня поговорим про такой важный параметр, как ISO и как этот параметр влияет на шумы?

Раньше, когда цифровые фотоаппараты не были столь популярны, под ISO понимали светочувствительность пленки . Фотографу приходилось постоянно иметь в запасе несколько ее типов: более светочувствительную для съемок в помещении, другую для солнечных зарисовок. Много кадров терялось, так как после изъятия пленки из фотоаппарата дощелкать их потом уже было нельзя.

Сейчас все просто, вместо фотопленки в зеркальном фотоаппарате мы имеем цифровую матрицу. Подробнее про я писал в прошлых статьях. Однако, говорить про ISO как про светочувствительность матрицы фотокамеры не корректно. Чувствительность матрицы величина постоянна, как и ее ! А вот ее восприимчивость к свету зависит от усиления сигнала электроникой фотоаппарата и программной обработкой.

Светочувствительность фотопленки и матрицы фотоаппарата - это не одно и тоже!

В настройках цифрового фотоаппарата значение ISO можно задавать вручную. Например в его разрешено выставлять в диапазоне от 100 до 3200. Есть еще 2 значения супер ISO - Hi1 и Hi2, но уровень шумов на них зашкаливает.

Как работать с ISO?

Из фотографии сверху достаточно понятно, что если недостаточно света на фотографии, то устанавливаем ISO больше и наооборот, если все засвечено, то меньше. Правда, есть важный нюанс, безболезненно увеличивать "светочувствительность" матрицы не получится, поэтому читаем статью до конца.

Рассмотрим влияние параметра ISO на примере

Мной проделан небольшой эксперимент. Съемка зеленого автомобильчика велась со штатива при равных условиях в режиме приоритета диафрагмы. Следовательно, после моей установки значения ISO, автоматически выставлялась длительность выдержки. Внимательно смотрим на изображение снизу, как изменяется количество шумов.

Несложно заметить, что шумом на фотографии с ISO 100 значительно меньше, чем на остальных, особенно, чем на Hi2, поэтому стараемся фотографировать на низких значения параметра. Но не всегда такое возможно. Например, на вечеринках, выступлениях, ночных съемках приходиться вставлять более высокий параметр «светочувствительности» матрицы, чтобы хоть что-то было видно на фотографии.

Отчего же появляются шумы на снимке?

Цифровая матрица - это сложная схема, состоящая из фотодиодов и других узлов электроники, поэтому при усилении полезного сигнала усиливаются и дефекты изображения.Так что, чем лучше инженеры компаний по производству фотоаппаратов позаботились об алгоритмах обработки параметра ISO, тем качественнее будут снимки, но и стоимость зеркального фотоаппарата вырастет. При этом, чем шире диапазон возможных значений, тем проще фотографу играть настройками во время процесса съемки.

На практике бывает экономически выгодно использовать более высокие значения ISO. Например, фотографируя внешней вспышкой, можно завысить значение «светочувствительности матрицы», но при этом снизить мощность вспыхивания. При таких настройках увеличивается срок службы импульсной лампы, находящейся во вспышке, потому что она работает в более щадящем режиме, а изменение ISO со значения 100 до 400 бывает не всегда заметно глазу.

Если у Вас возникли вопросы или Вы с чем-то не согласны, то прошу оставить свой комментарий.

Светочувствительность фотоматериала - характеристика фотографического материала , отражающая его способность изменять свою оптическую плотность под воздействием света и последующего проявления . Светочувствительность обратно пропорциональна экспозиции , которая требуется для получения заданной оптической плотности . Раздел метрологии , изучающий светочувствительность фотоматериалов, называется сенситометрией . Единицы ISO , использующиеся для обозначения светочувствительности в настоящее время, являются международными, и стандартизированы одноимённой организацией.

Понятие светочувствительности, применяемое в цифровой фотографии не имеет ничего общего с чувствительностью фотоматериалов, поскольку к электронным способам регистрации изображения принципы сенситометрии неприменимы. Кроме того, в цифровой фотографии используется величина, которая отражает не столько чувствительность матрицы , сколько степень усиления её электрических сигналов и их последующую цифровую обработку .

Однако, в экспонометрических системах цифровых фотоаппаратов используется эквивалент светочувствительности ISO, позволяющий применять классические принципы управления экспозицией, заимствованные из аналоговой фотографии .

Энциклопедичный YouTube

    1 / 5

    Светочувствительность (ISO). Основы фотографии. Урок 26.

    Видео #10. Что такое светочувствительность

    Авто исо iso и режим приоритета диафрагмы Av

    Урок 5. Чувствительность ISO

    Экспозиция в фотографии (Выдержка, диафрагма, ISO) | Урок 1

    Субтитры

Критерии светочувствительности

Поиск наиболее точной системы измерения светочувствительности начался сразу же после изобретения фотографии для количественной оценки экспозиции, необходимой для получения качественного изображения. Однако, главная сложность заключалась в том, что оптическая плотность получаемого негативного или позитивного изображения зависит не только от интенсивности экспонирования, но и от режима проявления. Увеличение времени проявления приводит к повышению оптической плотности, однако на светочувствительность влияет в гораздо меньшей степени. Поэтому, главный вопрос любой сенситометрической системы - критерий светочувствительности , позволяющий наиболее точно определять способность фотоэмульсии реагировать на свет, и не зависящий от других факторов.

Самым первым критерием, использовавшимся начиная с 1870-х годов, стал порог почернения, то есть минимальная экспозиция, дающая регистрируемую плотность . Такой критерий использовался в большинстве систем отсчёта, например, Шайнера (нем. Julius Scheiner ), Эдера (нем. Josef Maria Eder ) и Винна. В 1890 году английскими учёными Хёртером (англ. Ferdinand Hurter ) и Дриффилдом (англ. Vero Charles Driffield ) было сформулировано понятие характеристической кривой . В качестве критерия светочувствительности была выбрана точка инерции (критерий Хёртера-Дриффилда) - точка пересечения касательной к прямолинейному участку характеристической кривой с осью логарифма экспозиций. В СССР шкала светочувствительности Хёртера и Дриффилда, сокращённо «Х и Д» (англ. H&D ), официально использовалась с 1928 года вплоть до перехода на единицы ГОСТ в соответствии со стандартом ГОСТ 2817-50 . При этом, шкала H&D, использовавшаяся в Великобритании, не совпадала с советской . Стандарт «Х и Д» был заменён в СССР шкалой ГОСТ в октябре 1951 года .

В современной сенситометрической системе ISO в качестве критерия используется нормированная оптическая плотность , то есть плотность, превышающая суммарную плотность вуали и подложки на определённую пороговую величину. Экспозиция, необходимая для получения такой плотности, и служит точкой отсчёта для определения светочувствительности. Для разных сортов светочувствительных материалов: негативных, позитивных, обращаемых и т. д., в одних и тех же системах измерения принимаются разные значения этого критерия. Например, для чёрно-белых негативных фотокиноматериалов пороговой плотностью считается 0,1 над вуалью . Дальнейшее развитие технологий фотопроцесса потребовало совершенствования сенситометрии, от которой потребовалось измерение светочувствительности цветных многослойных плёнок и бумаг. Каждый из светочувствительных слоёв таких материалов обладает своей светочувствительностью, зачастую отличающейся от соседних. Кроме того, оптическая плотность в цветных материалах создаётся не металлическим серебром , как в чёрно-белых, а красителями , из которых состоит цветное изображение.

Основные понятия

Общая светочувствительность - количественная мера светочувствительности, определяемая экспериментально при стандартизированных условиях экспонирования фотоматериала белым светом и последующей лабораторной обработки. Измеряется на основе характеристик получаемой сенситограммы. Также называется интегральной или фотографической чувствительностью. Для краткости именно общая светочувствительность обычно называется светочувствительностью или чувствительностью фотоматериала.

Цветочувствительность - для чёрно-белых фотоматериалов относительная светочувствительность к различным цветам видимого спектра и прилегающих областей. Цветочувствительность определяется через эффективную чувствительность и часто выражается кратностью нормированного цветного светофильтра .

Эффективная чувствительность - светочувствительность к излучению определённого спектрального состава .

Спектральная чувствительность - светочувствительность, измеренная при экспонировании монохроматическим светом определённой длины волны.

Число светочувствительности (экспозиционный индекс ) - количественное выражение общей светочувствительности, которым маркируется фотоматериал. Это число и измеренное значение яркости или освещённости снимаемых объектов служат для нахождения правильной экспозиции .

Шкала светочувствительности - принятая в конкретной сенситометрической системе последовательность значений чисел светочувствительности. Наносится на калькуляторы экспонометрических устройств. Существуют шкалы двух разновидностей: арифметические и логарифмические.

Стандарты светочувствительности

Сравнение светочувствительности в различных стандартах

В таблице приведены сравнительные значения основных систем измерения светочувствительности ГОСТ, «Х и Д», Weston, ASA, ISO, APEX и DIN

Сравнение разных систем измерения светочувствительности
APEX S v (1960–) ISO (1974–)
арифм./логар.°
«Х и Д» (1928-1951)
арифм.
Weston
арифм.
(1960–1987)
арифм.
DIN (1961–2002)
логар.
ГОСТ (1951–1986)
арифм.
Примеры фотоматериалов, обладающих
такой светочувствительностью
−2 0,8/0° 15 0,8 0 «Свема » ЦП-8Р, ЦП-11
1/1° 17,5 1 1 1
1,2/2° 25 1,2 2 1,2
−1 1.6/3° 30 1,6 3 1,4
2/4° 38 2 4 2
2,5/5° 50 2,5 5 2,4 «Свема » Микрат-300
0 3/6° 63 3 6 2,8 «Тасма » ОЧТ-Н
4/7° 75 4 7 4
5/8° 100 5 8 5 Фотобумага «Славич » Фотоцвет-4
1 6/9° 125 6 9 5,5 оригинальный Kodachrome
8/10° 150 8 10 8 Polaroid PolaBlue
10/11° 200 10 11 9 Kodachrome 8-мм
2 12/12° 250 12 12 11 Gevacolor 8-мм обращаемая, позднее Agfa Dia-Direct , «Свема » КН-1
16/13° 350 6 16 13 16 Agfacolor 8-мм обращаемая
20/14° 400 8 20 14 18 Adox CMS 20
3 25/15° 500 10 25 15 22 старый Agfacolor , Kodachrome II и Kodachrome 25 , Efke 25 , «Тасма » ЦО-22Д
32/16° 700 12 32 16 32 Kodak Panatomic-X , «Свема » ДС-5М, Фото-32
40/17° 800 16 40 17 38 Kodachrome 40 (киноплёнка), «Тасма » Панхром СЧС-1
4 50/18° 900 20 50 18 45 Ilford Pan F Plus , Kodak Vision2 50D 5201 (киноплёнка), AGFA CT18 , «Свема » ДС-4
64/19° 1400 24 64 19 65 Kodachrome 64 , ORWOCOLOR NC-19 , «Тасма » Панхром СЧС-4, «Свема » Фото-65
80/20° 1500 32 80 20 75 Ilford Commercial Ortho
5 100 /21° 2000 40 100 21 90 Kodacolor Gold , Kodak T-Max , Provia , Efke 100 , «Свема » КН-3
125/22° 2500 50 125 22 125 Ilford FP4+ , Kodak Plus-X Pan
160/23° 3000 64 160 23 130 Fujicolor Pro 160C/S , Kodak High-Speed Ektachrome , «Свема » Фото-130
6 200 /24° 4000 80 200 24 180 Fujicolor Superia 200 , «Свема » ОЧТ-180, «Тасма » ОЧ-180, ЦО-Т-180Л
250/25° 5000 100 250 25 240 «Тасма » Фото-250
320/26° 6000 125 320 26 250 Kodak Tri-X Pan Professional
7 400 /27° 8000 400 27 350 Tri-X 400 , Ilford HP5+ , Fujifilm Superia X-tra 400 , «Свема » ОЧТ-В, «Тасма » А-2Ш
500/28° 10000 500 28 500 Kodak Vision3 500T 5219 (киноплёнка), «Тасма » Панхром тип-17
640/29° 12500 640 29 560 Polaroid 600
8 800 /30° 16250 800 30 700 Fuji Pro 800Z , «Тасма » Панхром тип-15
1000/31° 20000 1000 31 1000 Kodak P3200 TMAX , Ilford Delta 3200
1250/32° 1250 32 1200 Kodak Royal-X Panchromatic
9 1600 /33° 1600 33 1440 Fujicolor 1600 , «Тасма » Изопанхром тип-42
2000/34° 2000 34 2000
2500/35° 2500 35 2400
10 3200 /36° 3200 36 2880 Konica 3200 , Fujifilm FP-3000b , «Тасма » Панхром тип-13
4000/37° 37 4000
5000/38° 38 4500 «Тасма » Изопанхром тип-24
11 6400 /39° 6400 39 5600
8000 /40°
10000 /41° 10000 Фотокомплекты для моментальной фотографии Polaroid тип-410
12 12500/42°
16000/43°
20000/44° 20000 Фотокомплекты для моментальной фотографии Polaroid тип-612
13 25000/45°

Определение чувствительности ISO для фотоматериалов

Светочувствительность чёрно-белых негативных фотоматериалов определяется по характеристической кривой, которая строится на специальных бланках или миллиметровке по результатам измерения сенситограммы при помощи денситометра . Точка кривой, по которой определяется светочувствительность (критериальная точка), обозначена на рисунке буквой «m», и для чёрно-белых негативных плёнок её плотность должна составлять 0,1 над вуалью. При этом негатив должен быть проявлен так, чтобы точка «n», экспонированная на 1,3 единицы больше «m», обладала оптической плотностью, превосходящей её на 0,8. Это является важным условием соблюдения заданного коэффициента контрастности . В этом случае, критерием светочувствительности может считаться экспозиция H m в люксах в секунду , соответствующая точке m, а арифметическое значение светочувствительности ISO определяется равенством:

S = 0.8 H m {\displaystyle S={\frac {0.8}{H_{\mathrm {m} }}}}

Способы изменения светочувствительности

Сенсибилизация

Естественная светочувствительность галогеносеребряных фотоэмульсий лежит в сине-фиолетовой области видимого спектра. Равномерная чувствительность ко всем видимым лучам достигается путём оптической сенсибилизации фотоматериалов добавлением в эмульсию сенсибилизаторов . В роли таковых обычно выступают некоторые разновидности органических красителей, осаждаемых на поверхности микрокристаллов галогенида серебра.

Таким образом получают чёрно-белые фотокиноплёнки, различающиеся по цветочувствительности, и эмульсии для разных слоёв цветных многослойных фотоматериалов. При помощи химической сенсибилизации повышают общую светочувствительность. Для этого используются соли благородных металлов: золота и платины , а также другие вещества, позволяющие повышать светочувствительность в несколько раз .

Гиперсенсибилизация

Обработка светочувствительного материала до экспонирования, изменяющая свойства фотографического слоя в сторону улучшения условия образования скрытого изображения при съёмке . Наиболее широкое распространение получили способы гиперсенсибилизации, заключающиеся в купании фотослоя в растворе азотнокислого серебра и выдерживание в атмосфере водорода . Особенности гиперсенсибилизации:

  • В наибольшей степени при гиперсенсибилизации меняется добавочная светочувствительность, нежели собственная.
  • Достигнутый гиперсенсибилизацией эффект, как правило, сохраняется в течение нескольких часов, поэтому обработку совершают непосредственно перед съёмкой или хранят гиперсенсибилизированный материал в прохладном месте между процедурой гиперсенсибилизации и экспонированием.
  • Поскольку, в отличие от производства фотографической эмульсии, гиперсенсибилизация может происходить в различных, хуже нормированных условиях, она часто даёт нестабильные, плохо воспроизводимые результаты.

Эти основные свойства ограничивают применение гиперсенсибилизации. Долгое время гиперсенсибилизацию массово применяли для повышения чувствительности инфракрасных плёнок. Однако, по мере развития электронных светочувствительных элементов, были достигнуты лучшие результаты в этой области спектра.

Латенсификация

Изменение чувствительности обработкой после экспонирования

  • Пуш-процесс (англ. Push ) - увеличение светочувствительности негативных фотоматериалов при помощи более интенсивного проявления за счёт увеличения его времени, повышения температуры проявителя и подбора его рецептуры. Удвоение времени проявления по сравнению со стандартным для данного материала приводит к увеличению эффективной чувствительности в 1,4-1,7 раза, в зависимости от кинетики конкретных веществ, и к увеличению коэффициента контрастности в 1,1-1,3 раза. Одновременно с этим растёт плотность вуали. Подбор состава проявителя - наиболее безопасный способ повышения чувствительности. Самые удачные рецептуры дают выигрыш в одну-две-три ступени (до 8 раз) по сравнению со стандартным проявителем.
К позитивным фотоматериалам пуш-процесс не применим вследствие других принципов позитивного фотопроцесса , в котором проявление происходит не до промежуточных значений контрастности, а «до конца», то есть до получения максимальных оптических плотностей и контраста. Кроме того, область применения позитивных эмульсий не предполагает необходимости высокой чувствительности. Цветные негативные и обращаемые фотоматериалы пригодны для пуш-процесса в меньшей степени, чем чёрно-белые, поскольку изменение режима проявления приводит к нарушению цветового баланса и к необратимому разбалансу светочувствительных слоёв по контрасту. Некоторые производители допускают обработку цветных материалов с интенсивным проявлением, но его параметры строго регламентируются. Снижение светочувствительности пониженной интенсивностью проявления называется пулл-процесс (англ. Pull ). Результат достигается сокращением времени проявления. Такую технологию применяют, главным образом, для снижения контраста изображения или при обработке заведомо переэкспонированных фотоматериалов.

Термины Push и Pull ведут своё происхождение от первых десятилетий кинематографа, когда исправление ошибок экспонирования происходило при проявлении ортохроматической негативной киноплёнки при неактиничном освещении. Кинооператор , присутствующий при лабораторной обработке, мог попросить лаборанта вынуть раму с намотанной киноплёнкой из бака с проявителем (Pull) или продолжить проявку, опустив её обратно (Push).

Экспозиционный индекс

Экспозиционный индекс EI применяется в случаях, когда прямое использование значения светочувствительности затруднительно. EI применим для компенсации неточностей экспонирования фотоаппарата или при нестандартной обработке. Экспозиционный индекс можно назвать «установленной светочувствительностью» в противовес номинальной светочувствительности. Например, фотоплёнку со светочувствительностью ISO 400 можно экспонировать при слабом освещении при EI 800, а затем увеличить время проявления, чтобы получить пригодные для печати негативы. Другим примером может служить съёмка камерой с затвором , дающим постоянную ошибку в ту или иную сторону. В этом случае можно использовать соответствующий EI, отличающийся от значения ISO в сторону постоянной ошибки, или экспокоррекцию , чтобы скомпенсировать ошибку.

Завышение чувствительности плёнки производителями

У некоторых плёнок высокой чувствительности «штатным» режимом проявления считается проявка, приводящая к увеличению чувствительности («пуш-процесс»). Стандартное проявление таких фотоматериалов позволяет получать более низкую чувствительность при пониженном контрасте. Например, в стандартном проявителе получается чувствительность 1000, в рекомендуемом - 3200. Маркировка светочувствительности некоторых цветных обращаемых плёнок может содержать индекс «P», обозначающий чувствительность, достигаемую в случае обработки по «пуш-процессу».

Светочувствительность и зерно

Светочувствительность фотографической эмульсии зависит от размера зёрен галогенида серебра, поскольку зёрна большего размера дают более высокую чувствительность. Мелкозернистые плёнки обладают низкой чувствительностью и пригодны для контратипирования или печати позитива. Негативные фотоматериалы, предназначенные для съёмки в сложных световых условиях или с короткими выдержками, обладают крупным зерном и низкой разрешающей способностью . Поэтому, одной из главных трудностей, решавшихся в процессе совершенствования негативных материалов, было получение высоких значений чувствительности при мелком зерне.

Закон взаимозаместимости

В большинстве случаев экспозиция, представляющая собой произведение освещённости на выдержку , не зависит от конкретных значений каждого из множителей.

Однако, при очень длинных экспозициях наблюдается отклонение от этого закона, приводящее к уменьшению светочувствительности, определяемой для наиболее часто употребляющихся значений выдержек, лежащих в пределах 1/1000-2 секунд. Изменение светочувствительности при длительных экспозициях имеет значение в областях фотографии, требующих длительных выдержек (например, в астрофотографии), и выражается специальными коэффициентами, используемыми в таких случаях.