Транспортировка высоковязкой нефти. Технологии интенсификации добычи высоковязкой нефти и битумов

Министерство образования и науки Российской Федерации

Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования

«Уфимский государственный нефтяной технический университет»

Кафедра «Сооружение и ремонт газонефтепроводов и газонефтехранилищ»

транспортировка высоковязкой нефти

реферат

ВВЕДЕНИЕ

Перекачка высоковязких и высокозастывающих нефтей

Гидротранспорт высокоязких нефтей

Перекачка термообработанных нефтей

Перекачка нефтей с присадками

Перекачка предварительно подогретых нефтей

Способ перекачки путем кавитационного воздействия

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Характерной особенностью современной нефтедобычи является увеличение в мировой структуре сырьевых ресурсов доли трудноизвлекаемых запасов (ТИЗ), к которым относится тяжёлая нефть с вязкостью 30 мПа*с и выше. Запасы таких видов нефти составляют не менее 1 трлн. тонн, что более чем в пять раз превышает объём остаточных извлекаемых запасов нефти малой и средней вязкости. Во многих промышленно развитых странах мира тяжёлая нефть рассматривается в качестве основной базы развития нефтедобычи на ближайшие годы. Наиболее крупными запасами тяжёлой и битуминозной нефти располагает Канада и Венесуэла, а также Мексика, США, Кувейт, Китай.

Россия также обладает значительными ресурсами ТИЗ, и их объём составляет около 55 % от общих запасов российской нефти. Российские месторождения высоковязкой нефти (ВВН) расположены в Пермской области, Татарстане, Башкирии и Удмуртии. Наиболее крупные из них: Ван-Еганское, Северо-Комсомольское, Усинское, Русское, Гремихинское и др., при этом более 2/3 всех запасов высоковязкой нефти находятся на глубинах до 2000 м. Добыча ТИЗ нефти, транспортировка её к пунктам сбора и подготовки и, наконец, переработка с целью получения конечных продуктов - одна из актуальных задач нефтедобывающей промышленности. Существуют различные способы трубопроводной перекачки высоковязких нефтей.


В настоящее время добываются значительные объемы нефтей, обладающих высокой вязкостью при обычных температурах или содержащие большое количество парафина и вследствие этого застывающие при высоких температурах. Перекачка таких нефтей по трубопроводам обычным способом затруднена. Поэтому для их транспортировки применяют специальные методы:

перекачку с разбавителями;

гидротранспорт высоковязких нефтей;

перекачку термообработанных нефтей;

перекачку нефтей с присадками;

перекачку предварительно подогретых нефтей.

Перекачка высоковязких и высокозастывающих нефтей с разбавителями

Одним из эффективных и доступных способов улучшения реологических свойств высоковязких и высокозастывающих нефтей является применение углеводородных разбавителей - газового конденсата и маловязких нефтей.

Использование разбавителей позволяет довольно существенно снизить вязкость и температуру застывания нефти. Это связано с тем, что, во-первых, понижается концентрация парафина в смеси, т. к. часть его растворяется легкими фракциями разбавителя. Во-вторых, при наличии в разбавители асфальто - смолистых веществ последние, адсорбируясь Hi поверхности кристаллов парафина, препятствуют образований прочной структурной решетки.

Первые в нашей стане опыты по перекачке нефтей с разбавителем (керосиновый дистиллят) были проведены инженерами: А. Н. Сахановым и А. А. Кащеевым в 1926 г. Полученные результаты были настолько впечатляющими, что были использованы при проектировании нефтепровода «Грозный- Черное море». В настоящее время перекачка высоковязких и высокозастывающих нефтей с разбавителями широко применяется в нашей стране и за рубежом. Например, высокопарафинистая манышлакская нефть, перекачивается в район г. Самары в подогретом состоянии, а потом смешивается с маловязкими нефтями Поволжья и закачивается в нефтепровод «Дружба».

В общем случае выбор типа разбавителя производится с учетом эффективности его действия на свойства высоковязкой и высокозастывающей нефти затрат на получение разбавителя, его доставку на головные сооружения нефтепровода и на смешение.

Любопытно, что на геологические свойства нефтяной смеси оказывает влияние температура смешиваемых компонентов. Однородная смесь получается, если смешение производится при температуре на 3-5 градусов выше температуры застывания вязкого компонента. При неблагоприятных условиях смешения эффективность разбавителя в значительной степени уменьшается и может произойти даже расслоение смеси.

2. Гидротранспорт высокоязких нефтей

Гидротранспорт высоковязких и высокозастывающих нефтей может осуществляться несколькими способами:

перекачка нефти внутри водяного кольца;

перекачка водонефтяной смеси в виде эмульсии типа «нефть в воде»;

послойная перекачка нефти и воды.

Рисунок 1 - Гидроперекачка нефти внутри водяного кольца:

а - с применением винтовой нарезки; б - с применением кольцевых муфт; в - с использованием перфорированного трубопровода.

Еще в 1906 г И. Д.Исаак осуществил в США перекачку высоковязкой (п = 25 102 /c) калифорнийской нефти с водой по трубопроводу диаметром "6 мм на расстояние 800 м. К внутренней стенке трубы была приварен спирально свернутая проволока, обеспечивающая закрутку потока (рисунок 1). В результате более тяжелая вода отбрасывалась непосредственно к стенке, а поток нефти двигался внутри водяного кольца, испытывая минимальное трение. Было установлено, что максимальна производительность трубопровода при постоянном перепаде давление достигалась при соотношении расходов нефти и воды, равном9:1. Результаты эксперимента были использованы при строительстве промышленного нефтепровода диаметром 203 мм и протяженностью 50 км. Винтовая дорожка в нем имела высоту 24 мм и шаг около 3 м.

Однако широкого распространения данный способ транспорта не получил из-за сложности изготовления винтовых нарезок на внутренней поверхности труб. Кроме того, в результате отложения парафина нарезка засоряется, водяное кольцо у стенки не формируется, что резко ухудшает параметры перекачки.

Сущность другого способа гидротранспорта состоит в том, что высоковязкая нефть и вода смешиваются перед перекачкой в такой пропорции, чтобы образовалась эмульсия типа «нефть в воде» (рисунок 2). В этом случае капли нефти окружены водяной пленкой и поэтому контакта нефти со стенкой трубы не происходит.

Рисунок 2 - Гидроперекачка в виде эмульсии:

а - типа «нефть в воде»; б - типа «вода в нефти»

Для стабилизации эмульсий и придания стенкам трубопровода гидрофильных свойств, т.е. способности удерживать на своей поверхности воду, в них добавляют поверхностно - активные вещества (ПАВ). Устойчивость эмульсии типа «нефть в воде» зависит от типа и концентрации ПАВ, температуры, режима течения потока, соотношения воды и нефти в смеси.

Уменьшение объема слюды в смеси ухудшает устойчивость эмульсии. В результате экспериментов установлено, что минимально допустимое содержание воды 1авно 30 %.

Недостатком данного способа гидротранспорта является опасность инверсии фаз, т. е. превращения эмульсии «нефть в воде» в эмульсию «вода в нефти» при изменении скорости или температуры перекачки. Такая эмульсия имеет вязкость даже большую, чем вязкость исходной нефти. Кроме того, при прохождении эмульсии через насосы она очень интенсивно перекачивается и впоследствии ее сложно разделить на нефть и воду.

Наконец, третий способ гидротранспорта - это послойная перекачка нефти и воды (рисунок 3). В этом случае вода, как более тяжелая жидкость, занимает положение у нижней образующей трубы, а нефть - у верхней. Поверхность раздела фаз в зависимости от скорости перекачки может быть как плоской, так и криволинейной. Уменьшение гидравлического сопротивления трубопровода в этом случае происходит в связи с тем, что часть нефти контактирует не с неподвижной стенкой, а с движущейся водой. Данный способ перекачки также не может быть применен на трубопроводах с промежуточными насосными станциями, т.к. это привело бы к образованию стойких водонефтяных эмульсий.

Рисунок 3 - Структурные формы водонефтяного потока при послойной перекачке нефти и воды: а - линзовая; б - раздельная с плоской границей; в - раздельная с криволинейной границей; г - кольцевая эксцентричная; д - кольцевая концентричная

Каждая структурная форма течения устанавливается самопроизвольно, как только достигаются условия для ее существования.

Связь структурных форм водонефтяного потока с величиной гидравлического уклона. Согласно экспериментальным исследованиям Ф.М.Галина, она такова (рисунок 4).

Рисунок 4 - Зависимость гидравлического уклона от расхода при перекачке смеси нефти и воды

3. Перекачка термообработанных нефтей

Термообработкой называется тепловая обработка высокопарафинистой нефти, предусматривающая ее нагрев до температуры, превышающей температуру плавления парафинов, и последующее охлаждение с заданной скоростью, для улучшения реологических параметров.

Первые в нашей стране опыты по термообработке нефтей были выполнены в 30-х годах. Так, термическая обработка нефти Ромашкинского месторождения позволила снизить ее вязкость более чем в 2 раза и уменьшить температуру застывания на 20 градусов.

Установлено, что улучшение реологических свойств нефтей связано с внутренними изменениями в них, происходящими в результате термообработки. В обычных условиях при естественном охлаждении парафинистых нефтей образуется кристаллическая парафиновая структура, придающая нефти свойства твердого тела. Прочность структуры оказывается тем больше, чем выше концентрация парафина в нефти и чем меньше размеры образующихся кристаллов. Осуществляя нагрев нефти до температуры, превышающей температуру плавления парафинов, мы добиваемся их полного растворения. При последующем охлаждении нефти происходит кристаллизация парафинов. На величину, число и форму кристаллов парафина в нефти оказывает влияние соотношение скорости возникновения центров кристаллизации парафина и скорости роста уже выделившихся кристаллов. Асфальто-смолистые вещества, адсорбируясь на кристаллах парафина, снижают его поверхностное натяжение. В результате процесс выделения парафина на поверхности уже существующих кристаллов становится энергетически более выгодным, чем образование новых центров кристаллизации. Это приводит к тому, что в термообработанной нефти образуются достаточно крупные кристаллы парафина. Одновременно из-за наличия на поверхности этих кристаллов адсорбированных асфальтенов и смол силы коагуляционного сцепления между ними значительно ослабляются, что препятствует образованию прочной парафиновой структуры.

Рисунок 5 - Восстановление эффективной вязкости озексуатской (1) и жетыбайской (2) нефтей во времени после термообработки

Эффективность термообработки зависит от температуры подогрева, скорости охлаждения и состояния нефти (статика или динамика) в процессе охлаждения. Оптимальная температура подогрева при термообработке находится экспериментально, наилучшие условия охлаждения - в статике.

Следует иметь в виду, что реологические параметры термообработанной нефти с течением времени ухудшаются и в конце концов достигают значений, которые нефть имела до термообработки (рисунок 5). Для озексуатской нефти это время составляет 3 суток, а для мангышлакской - 45. Так что не всегда достаточно термически обработать нефть один раз для решения проблемы ее трубопроводного транспорта. Кроме того, капитальные вложения <#"214" src="/wimg/16/doc_zip7.jpg" />

Рисунок 6 - Принципиальная технологическая схема «горячей» перекачки

По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25-100 км устанавливают пункты подогрева. Промежуточные насосные станции размещают в соответствии с гидравлическим расчетом, но обязательно совмещают с пунктами подогрева, чтобы облегчить их эксплуатацию. В конце концов нефть закачивается в резервуары конечного пункта, также оборудованные системой подогрева.

Перекачка нефти по «горячим» трубопроводам ведется с помощью обычных центробежных насосов. Это связано с тем, что температура перекачиваемой нефти достаточно высока, и поэтому ее вязкость невелика. При выталкивании остывшей нефти из трубопроводов используются поршневые насосы, например марки НТ-45. Для подогрева нефти используют радиантно-конвекционные печи, КПД которых достигает 77 %.

Но практически все магистральные нефтепроводы неизотермические. От температуры зависит вязкость перекачиваемой нефти, гидравлическое сопротивление трубопровода, подача Q и давление P центробежных насосов (ЦБН). Следовательно, себестоимость перекачки также зависит от температурного режима трубопровода. Поэтому расчет эксплуатационных режимов для летних и зимних условий, квазистационарных и нестационарных, должен выполняться с учетом теплообмена трубопровода с окружающей средой. Неизотермичность потока может быть вызвана различными причинами:

Температура вязкой нефти может повышаться по мере ее следования на перегонах между насосными станциями за счет выделения тепла трения. Анализ фактического материала по 19-ти магистральным трубопроводам, включая нефтепроводы "Дружба", Шаим - Тюмень, Александровское - Анжеро - Судженск, Усть - Балык - Омск, нефтепроводы Западной и Северо-Западной Сибири, Верхне - Волжские, нефтепроводы Тэбук - Ухта, Уса - Ухта и др., выявил явные, в 1,5-2 раза по отношению к среднему значению, изменения коэффициента теплопередачи. Этот факт свидетельствуют также о нестационарности теплообмена трубопроводов с окружающей средой. Нестабильность теплогидравлических режимов магистральных нефтепроводов приводит к перерасходу электроэнергии на перекачку и превышению эксплуатационных затрат.

При закачке в трубопровод нефти с температурой, отличающейся от температуры окружающей среды вдоль трассы, формируется неизотермический начальный участок, длина которого может быть соизмерима или равна длине перегона между насосными станциями. Нефть, добытая из недр Земли, обработанная присадками (температура ввода присадок порядка 50…70°С) или прошедшая специальную термообработку, улучшающую ее транспортабельные свойства, перекачивается в неизотермическом режиме. Так как температурные режимы начальных участков трубопроводов нестабильны, сильно зависят от климатических условий, то теплогидравлический расчет таких участков должен выполняться с учетом нестационарного теплообмена. Характерная ситуация сложилась на нефтепроводе Кумколь - Каракоин Восточного филиала НКТН КазТрансОйл. В условиях глубокой недогрузки по производительности расчет эксплуатационных режимов и обоснование способов перекачки вязкопластичной нефти, обладающей тиксотропными свойствами, весьма проблематичен. Введение депрессорных присадок в поток требует подогрева нефти и делает перекачку нефти по трубопроводу неизотермической. Следует отметить, что использование присадок не решает проблемы. В холодные зимние периоды создаются ситуации, когда нефть прокачать невозможно. В условиях Средней Азии способ "горячей" перекачки Кумкольских нефтей, не требующий дорогостоящих присадок, может оказаться экономически выгодным. Следует отметить, что имеется богатый опыт эксплуатации в подобных условиях крупнейшего "горячего" нефтепровода большого диаметра (720-1020 мм) Узень - Гурьев - Куйбышев, по которому перекачивалась высокозастывающая мангышлакская нефть с температурой застывания tз = 28 °С и температурой нагрева tн = 65 °С. В настоящее время этот трубопровод также неизотермический, но работает на пониженных температурных режимах, порядка 30 °С, так как смесь нефтей, идущая по трубопроводу, имеет умеренную вязкость. С увеличением доли высоковязких нефтей температура перекачки будет соответственно возрастать. Для магистрального нефтепровода Уса - Ухта, по которому перекачиваются высокозастывающие нефти Тимано - Печерской нефтегазоносной провинции с добавлением депрессорных присадок, также остро стоит проблема расчета и обоснования режимов перекачки нефтей по трубопроводу. Дело в том, что доля тяжелой и высокопарафинистой нефти, обладающей вязкопластичными свойствами, в перспективе будет колебаться в пределах 37…56 % , а использование депрессорных присадок может не дать ожидаемого эффекта. Способ "горячей" перекачки в настоящее время рассматривается как альтернативный.

Особую сложность представляют собой расчеты "горячих" трубопроводов, по которым перекачка высоковязких и высокозастывающих жидкостей осуществляется при более высоких температурах, порядка 60-120 °С. При "горячей" перекачке осуществляется подогрев нефти в печах промежуточных тепловых станций, что не только увеличивает себестоимость трубопроводного транспорта нефти или нефтепродуктов, но и ставит специфические проблемы надежности и экологической безопасности системы. Так как подогретая нефть со временем остывает, а специально обработанная нефть теряет временно улучшенные транспортабельные свойства, то как для "горячих", так и для любых неизотермических трубопроводов, должны рассчитываться:

) время безопасной остановки τбо и пусковые параметры центробежных насосов (подача Q и давление Р) на момент возобновления перекачки;

) время прогрева трубопровода τпр при пуске его из холодного состояния;

) время безопасной работы τбр трубопровода на пониженных режимах (при временном уменьшении подачи насосов, снижении температуры нагрева перекачиваемой нефти и т.д.).

При расчетах эксплуатационных режимов неизотермических трубопроводов необходимо считаться с тем, что подобные системы практически не работают в проектных режимах по ряду причин, таких, как климатические изменения окружающей среды (температуры, свойств грунта и т.п.), сезонность загрузки системы, поэтапный ввод мощностей, старение и износ оборудования, падение производительности вследствие истощения месторождений, изменение грузопотоков и т.д. Поэтому, как для "горячих", так и просто неизотермических трубопроводов, характеризующихся менее интенсивной теплоотдачей, реальна опасность "замораживания" трубопровода или "сбрасывания" подачи вследствие чрезмерного роста гидравлического сопротивления. Поэтому к теплогидравлическим расчетам таких трубопроводов предъявляются повышенные требования. Кроме обычного проектировочного теплогидравлического расчета необходимо выполнять расчеты нестационарных режимов, таких, как пуск, остановка и возобновление перекачки. Динамические характеристики могут быть построены для жидкостей с различными реологическими моделями. Большим преимуществом данного метода является то, что он позволяет учесть изменение подачи центробежных насосов вследствие изменения гидравлического сопротивления трубопровода. При использовании соответствующей программы на ЭВМ становится возможным учесть при этом также изменение и других параметров перекачки и теплообмена.

В настоящее время в мире эксплуатируются более 50 «горячих» магистральных трубопроводов. Крупнейшим из них является нефтепровод «Узень-Гурьев-Куйбышев».

6. Способ перекачки путем кавитационного воздействия

Большой интерес представляют результаты экспериментального исследования изменения вязкости нефти путем кавитационного воздействия по способу, в котором предложено устройство, содержащее в линии трубопровода полый цилиндрический корпус переменного сечения, включающий плавное сужение, обеспечивающее возникновение кавитации. В качестве высокоамплитудных колебаний в жидкости выступают кавитационные пузырьки, обладающие высокой скоростью, за счет чего происходит снижение вязкости нефти.

Может быть рассчитан кавитационной модуль обработки парафинистой нефти с целью снижения её вязкости, на ее основе которого разработана гидродинамическая проточная установка и проведены ее испытания. Эксперименты показали, что после сонохимической обработки нефти вязкость нефти была снижена на 35%.

Основным недостатком этого устройства является интенсивный кавитационный износ его рабочих поверхностей, генерирующих (из зародышевых ядер) кавитационные пузырьки, большая часть которых схлопывается на этих поверхностях. Другим недостатком является слабая степень регулирования интенсивности кавитационной обработки, так как количество ядер кавитации в исходной нефти регулировать затруднительно. Кроме того, размеры образующихся в таких устройствах кавитационных пузырьков, от которых в основном зависит интенсивность кавитационно-куммулятивной обработки также практически не поддаются регулированию. Время нахождения ядра кавитации в зоне разрежения, необходимое для образования пузырька требуемых размеров, в таких устройствах может изменяться в очень малых пределах и связано с частотой пульсаций, вибраций и т. д. Основной параметр, определяющий кинетику кавитационного воздействия - первоначальный (перед схлопыванием) размер кавитационных пузырьков может изменяться в весьма нешироких пределах и зачастую далек от максимального. Перечисленные недостатки негативно проявляются в обработанной нефти - незначительное снижение вязкости, малое время тиксотропного восстановления.

Анализ исследований по применению УЗ и гидродинамической кавитации в нефтях для интенсификации различных технологических процессов, показывает перспективность этого метода. Однако, УЗ кавитация не нашла широкого применения на предприятиях с большим объемом производства по ряду причин: значительных энергозатрат на генерацию кавитационных пузырьков, резкого затухания ультразвуковых волн в технологических суспензиях, ограничения локального воздействия зоной колебаний излучающей поверхности, разрушения рабочих поверхностей кавитацией и т. д.

ЗАКЛЮЧЕНИЕ

Наиболее изученным и распространенным способом транспорта высоковязких нефтей в настоящее время является их "горячая перекачка" по трубопроводам. Несмотря на то, что это наиболее отработанная технология, она обладает серьезными недостатками. Прежде всего, это высокая энергоемкость, т.к. в качестве топлива при подогреве, как правило, используется сама же транспортируемая среда - ценное химическое сырье и топливо (нефть, мазут).

Вторая трудность связана с тем, что при неблагоприятных погодных условиях возможно "замораживание" трубопровода. Наконец, сооружение таких трубопроводов в районах с мерзлыми и посадочными грунтами затруднено по экологическим соображениям из-за проблематичности обеспечения надежности конструкции и осложнений в технологии строительства.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1Коршак, А.А. Проектирование и эксплуатация газонефтепроводов / А.А. Коршак, А.М. Нечваль. - СПб.:Недра, 2008.- 488 с.

Гаррис, Н.А. Построение динамической характеристики магистрального трубопровода (модель вязкопластичной жидкости) // Нефтегазовое дело.- 2014. -№1.- C.10-13.

19 марта 2014 г. под председательством И.Д. Грачёва состоялось заседание Комитета Государственной Думы по энергетике на тему: «Высоковязкие нефти и природные битумы: проблемы и повышение эффективности разведки и разработки месторождений». На заседании было уделено особое внимание вопросам ресурсной базы, современным методам увеличения нефтеотдачи и технологиям добычи, трудноизвлекаемым запасам нефти в России, законодательству, стимулирующему разработку трудноизвлекаемых запасов нефти, и др. По итогам заседания были выработаны РЕКОМЕНДАЦИИ органам исполнительной и законодательной власти Российской Федерации.

Заслушав и обсудив выступления первого заместителя председателя КомитетаГосударственной Думы по энергетике В.М. Тарасюка и участников расширенного заседания, Комитет Государственной Думы по энергетике

отмечает следующее.

Ресурсная база. За последнее десятилетие в структуре российских запасов существенно возросла доля трудноизвлекаемых, в том числе тяжелых высоковязких нефтей и природных битумов. При этом добыча такого сырья растет значительно медленнее, чем его доля в общем объеме запасов. Этот дисбаланс, особенно характерный для старых добывающих регионов, ведет к сокращению ресурсной базы и ухудшению ее качества.

Мировые ресурсы тяжелых и битуминозных нефтей значительно превышают запасы легких нефтей и оцениваются в количестве 750 млрд тонн. Наиболее крупными запасами располагают Канада (386 млрд тонн, из которых 25 млрд тонн извлекаемые) и Венесуэла (335 млрд тонн, из них 70 млрд тонн извлекаемые), значительные запасы также имеют Мексика, США, Россия, Кувейт и Китай. На территории Российской Федерации основная часть ресурсов тяжелых нефтей и природных битумов приурочена к месторождениям Волго–Уральской, Тимано–Печорской и Западно–Сибирской нефтегазоносных провинций, их геологические ресурсы по разным оценкам составляют 30–75 млрд. тонн. Вопрос освоения ресурсов таких нефтей особенно актуален сейчас, в связи со снижением в последнее время объемов прироста запасов кондиционных нефтей.

Тяжелые нефти и природные битумы характеризуются высоким содержанием ароматических углеводородов, смолистоасфальтеновых веществ, высокой концентрацией металлов и сернистых соединений, высокими значениями плотности и вязкости, повышенной коксуемостью, что приводит к высокой себестоимости добычи, практически невозможной транспортировке по существующим нефтепроводам и нерентабельной, по классическим схемам, нефтепереработке.

Добыча тяжелых высоковязких нефтей при помощи технологий для обычных нефтей ведет к низкой нефтеотдаче и потере ценных попутных компонентов, что оборачивается недополученной прибылью и наносит вред экологии. Доведение исходного сырья до требуемого качества достигается разбавлением более легкой нефтью или переработкой до получения так называемой синтетической нефти. Иногда для транспортировки тяжелых высоковязких нефтей строятся специальные трубопроводы с подогревом, что также увеличивает издержки производства.

Большинство российских НПЗ не рассчитаны на переработку тяжелых высоковязких нефтей. Некоторые тяжёлые высоковязкие нефти могут быть переработаны на НПЗ в смеси с обычными нефтями по традиционным технологиям. Другие такие нефти могут перерабатываться только на специализированных предприятиях, выпускающих ограниченный ассортимент нефтепродуктов. Решение вопроса рациональной переработки тяжёлых высоковязких нефтей затруднено тем, что данные по их свойствам и составу весьма неполны, разноречивы и не носят системного характера. Отсутствие информации затрудняет привлечение новых инвесторов к решению вопроса переработки новых для них видов сырья.

Экономически целесообразной и возможной добыча тяжелых высоковязких нефтей и природных битумов представляется только благодаря развитию и применению эффективных технологий их переработки с получением товарных нефтепродуктов с высоким отличием рыночной цены от себестоимости. Что позволит окупить дорогостоящие технологии их добычи, многократно превышающие аналогичные затраты при добычи кондиционных нефтей.

Технологии добычи. На сегодняшний день известно достаточно много технологий извлечения тяжелых нефтей и природных битумов, которые на практике доказали свою эффективность: это циклическая закачка пара (Cyclic Steam Stimulation – CSS), парогравитационный метод дренирования (Steam–Assisted Gravity Drainage – SAGD), холодная добыча (Cold heavy–oil production with sand – CHOPS), извлечение растворителями в парообразном состоянии (Vapor Extraction – VAPEX), процесс с добавлением растворителя (Solvent Aided Process – SAP), комбинации внутрипластового горения и добычи нефти из горизонтальной скважины (Toe to Heel Air Injection – THAI), новая технология CAPRI (CAtalytic upgrading PRocess In–situ) на базе THAI, предполагающая использование катализаторов окисления.

Канадские природные битумы. В 2011 г. более 43% от мировой добычи нетрадиционной нефти составили канадские природные битумы, объем производства которых достиг 80 млн т. Основными районами добычи в Канаде являются месторождения Atabaska, Gold Lake, Peace River на территории провинции Альберта.

В настоящее время используются разнообразные методы разработки месторождений природных битумов, применимость которых обусловливается геологическим строением и условиями залегания пластов, физико–химическими свойствами пластового флюида, состоянием и запасами углеводородного сырья, климатогеографическими условиями, наличием инфраструктуры и другими факторами. Наиболее популярными являются добыча карьерным способом и тепловые методы добычи.

При карьерном методе разработки насыщенная битумом порода извлекается открытым способом, в связи с чем возможность применения этого метода ограничивается глубиной залегания пластов до 75 м. Карьерным способом могут быть добыты менее 40% запасов канадских природных битумов. После извлечения породы требуется проведение дополнительных работ по получению из нее синтетических углеводородов (на установках апгрейдерах).

Наиболее перспективным тепловым методом разработки месторождений канадских природных битумов считается технология SAGD, разработанная британской нефтегазовой компанией BP (Beyond petroleum, до мая 2001 г. компания носила название British Petroleum). Технология SAGD предусматривает бурение двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Пар, получаемый при помощи природного газа, нагнетается в одну из скважин, которая проходит примерно в 5 м выше добывающей скважины. Пар нагревает и снижает вязкость битума, который вместе с конденсированным паром стекает в добывающую скважину. Поскольку нефть всегда находится в контакте с высокотемпературной паровой камерой, потери тепла минимальны, что делает этот способ разработки экономически выгодным.

Согласно прогнозу МЭА, Канада в перспективе будет одним из драйверов роста добычи нетрадиционной нефти. В период 2011–2035 гг. добыча канадских битуминозных песков вырастет в 2,7 раза, что позволит компенсировать падающую добычу традиционной нефти в стране. При условии решения экологических проблем и обеспечения необходимой трубопроводной инфраструктурой предполагается, что канадская нефть будет экспортироваться на рынок США и азиатские рынки.

Сверхтяжелая нефть Венесуэлы. Проекты добычи венесуэльской сверхтяжелой нефти, реализуемые в районе Пояса Ориноко, обеспечивают в настоящее время порядка 30 млн тонн нефти, что составляет около 16 процентов мировой добычи нетрадиционной нефти. При добыче венесуэльской нефти используются вертикальные и многозабойные горизонтальные скважины, а также термические методы (например SAGD и CSS). Нефть с проектов поставляется трубопроводом на побережье Мексиканского залива, где на заводах–апргрейдерах она перерабатывается в синтетическую нефть, которая отгружается, в основном, на экспорт.

Приоритетом властей Венесуэлы и государственной нефтегазовой компании PDVSA является реализация ряда масштабных проектов по добыче сверхтяжелой нефти в районах Junin и Carabobo (Пояс Ориноко). Проведенная в 2010 г. переоценка ресурсной базы Пояса Ориноко, увеличила запасы Венесуэлы более чем на 40 процентов (по сравнению с 2009 г.). Из–за неразвитости транспортной, энергетической и телекоммуникационной инфраструктур, по–видимому, будет отложен запуск новых проектов.

С учетом изложенного, Венесуэлу по праву можно считать крупнейшим мировым драйвером роста добычи нетрадиционных углеводородов в долгосрочной перспективе. По оценкам МЭА, в период 2011–2035 гг. добыча сверхтяжелой нефти в Венесуэле увеличится в 3,5 раза.

Кроме Венесуэлы и Канады, сверхтяжелые нефти и природные битумы добываются или планируются к добыче в ближайшей перспективе в США, Китае, России, Казахстане, Индонезии, Бразилии, Конго, Мадагаскаре, Эквадоре и др. Однако кроме Канады и Венесуэлы заметный рост добычи в перспективе, по оценкам МЭА, могут показать только Китай и Россия. В России в добыче тяжелых высоковязких нефтей доминируют тепловые технологии, аналогичные SAGD (на Ярегском и Ашальчинском месторождениях в Республике Коми) и закачка теплоносителя (в т.ч. пара) в пласт. Следует подчеркнуть, что аналогичные технологии в России появились ранее западных, то есть указанные технологии являются аналогами российских технологий.

Трудноизвлекаемая нефть в России. По данным World Energy Council, геологические запасы сверхвязкой нефти и природных битумов в России составляют 55 млрд. тонн. Извлекаемые запасы высоковязкой нефти (более 30 мПас) на начало 2013 года в целом по Российской Федерации составляют по категории АВС1 –1980,291 млн.тонн или 10,99%, в том числе на месторождениях:

В Северо–Западном федеральном округе – 436,037 млн.тонн (2,42%);

В Южном– 7,708 млн.тонн (0,04%);

В Северо–Кавказском – 1,948 млн.тонн (0,01%);

В Приволжском – 844,297 млн.тонн (4,68%);

В Уральском – 651,590 млн.тонн (3,62%);

В Сибирском – 3,544 млн.тонн (0,02%);

В Дальневосточном – 7,487 млн.т (0,04%);

На шельфе Российской Федерации – 27,680 млн.тонн (0,15%).

Следует отметить, что в 2012 году разведанные извлекаемые запасы высоковязкой нефти в целом по Российской Федерации увеличились на 58,053 млн.тонн или 3,02 процента. К категории сверхвязких нефтей в России принято относить нефть вязкостью в пластовых условиях более 200 мПа*с. Для целей налогообложения нефть с вязкостью выше 200 мПас относится к категории сверхвязкой, которая представляет собой нечто среднее между тяжелыми высоковязкими нефтями и природными битумами.

Месторождение сверхвязкой нефти и природных битумов в России сосредоточены, главным образом, в Волго–Уральской (Татарстан, Удмуртия, Башкортостан, Самарская область и Пермский край), Восточно–Сибирской (Тунгусский бассейн) и Тимано–Печорской нефтегазоносных провинциях.

Природные битумы России. В настоящее время в России ряд нефтегазовых компаний реализуют пилотные проекты по добыче природных битумов. Наиболее активно осуществляется разработка месторождений сверхвязких нефтей и битумов в Республике Татарстан, для которой действует в соответствии пп.9 п.1.ст.342 Налогового кодекса Российской Федерации нулевая ставка НДПИ и льготная экспортная пошлина на сверхвязкую нефть. Всего c начала разработки на месторождениях ОАО «Татнефть» добыто более 300 тыс. тонн сверхвязкой нефти.

Испытания технологий по добыче сверхвязкой нефти были начаты Татнефтью на Мордово–Кармальском месторождении еще в 1978 г. методами внутрипластового горения, парогазового воздействия, высокочастотного прогрева с использованием вертикальных скважин. С 2006 г. начат пилотный проект на Ашальчинском месторождении по испытанию модифицированной технологии SAGD, причем в 2011 г. на месторождении было добыто 41,5 тыс. тонн нефти. Татнефть также будет строить завод по промысловой переработке сверхвязкой нефти мощностью 300 тыс. т/год.

С целью стимулирования разработки трудноизвлекаемых запасов нефти были установлены пониженные ставки НДПИ в зависимости от категории сложности и пониженные ставки экспортной пошлины для сверхвязкой нефти. Вступивший в силу Федеральный закон от 23.07.2013 №213-ФЗ «О внесении изменений в главы 25 и 26 части второй Налогового кодекса Российской Федерации и статью 31 закона Российской Федерации «О таможенном тарифе» законодательно закрепил стимулирование вовлечения в разработку новых запасов трудноизвлекаемой нефти.

Однако ограничения по выработанности запасов (степень выработанности запасов залежи углеводородного сырья не превышала более 3%) в целях применения дифференцированной ставки НДПИ в отношении трудноизвлекаемой нефти исключили возможность применения льгот для проектов, уже находящихся в разработке.

Особенностью реализации инвестиционных проектов по разработке трудноизвлекаемых запасов нефти является требование непрерывного использования дорогостоящих технологий и современных методов увеличения нефтеотдачи пластов, которые оценивается в 3-4 раза дороже добычи нефти из традиционных залежей. Без постоянного увеличения количества и поиска новых методов разработка данных объектов практически невозможна. В итоге, при действующей системе налогообложения, экономические результаты деятельности от дальнейшей разработки настоящих трудноизвлекаемых залежей не достигают положительных значений.

В настоящее время в Государственную Думу поступил законопроект №414175-6 «О внесении изменений в статью 342-2 части второй Налогового кодекса Российской Федерации», согласно которому нулевая ставка НДПИ распространяется на месторождения трудноизвлекаемых запасов нефти со степенью выработанности до 10 процентов. Реализация данной налоговой льготы будет способствовать сохранению и увеличению объемов добычи нефти, извлекаемой из залежей трудноизвлекаемых запасов, за счет экономически оправданного использования инновационных технологий при реализации инвестиционных проектов по уже разрабатываемым сложнопостроенным запасам недр.

Ожидаемый бюджетный и мультипликативный эффект от принятия закона о дифференциации налога на добычу полезных ископаемых за весь период разработки трудноизвлекаемой нефти в перспективе до 2032 года составит порядка 2 трлн. руб. при дополнительной добыче порядка 326 млн. тонн нефти.

Высоковязкая нефть в России. Лукойл разрабатывает ресурсы высоковязкой нефти Ярегского и Усинского месторождений (Республика Коми) с использованием термических методов повышения нефтеотдачи (технологии SAGD, CSS). Суммарная добыча нефти на месторождениях составляет более 3 млн т/год. Компания ОАО «РИТЕК» проводит испытания технологии забойного парогазового воздействия, созданной для целей разработки запасов высоковязкой нефти, на своих месторождениях.

О попутных цветных металлах. В России тяжелые нефти относят к альтернативным источникам углеводородного сырья, поскольку они отличаются от обычных нефтей не только повышенной плотностью, но и компонентным составом. Кроме углеводородов тяжелые нефти содержат нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, а также редкие цветные металлы в кондиционных концентрациях. В настоящее время отсутствуют эффективные технологии извлечения титана и его соединений, которые содержатся, например, в ярегской нефти. Примечательно, что в России нет ни одного предприятия по выпуску диоксида титана, а значительные потребности в титановых концентратах и пигментах, вырабатываемых на их основе, при наличии отечественных запасов сырья покрываются за счет импорта.

Извлечением из тяжелых высоковязких нефтей попутных компонентов пренебрегают и в других регионах – в частности, в Волго–Уральской нефтегазовой провинции. Тяжелые нефти здешних месторождений наиболее богаты металлами и суммарно содержат более 100 тыс. тонн извлекаемых запасов окиси ванадия и 4,6 тыс. тонн никеля. Рекордные показатели пятиокиси ванадия содержатся в месторождениях Ульяновской области: Зимницком – 659–1954 г/т, Кондаковском – 1922 г/т, Филипповском и Северо–Филипповском – 1130–1219 г/т.

Ванадий и никель, извлекаемые из тяжелой высоковязкой нефти, качественно превосходят аналоги, получаемые из руды. Поэтому развитые страны предпочитают использовать именно «нефтяной» металл в инновационных технологиях, где требуется более высокая чистота, чем в литейном производстве. Например, Канада и Япония полностью получают ванадий из тяжелых высоковязких нефтей, в США более 80% ванадия извлекается из нефти. С 2003 года спрос на ванадий начал расти опережающими темпами, и эта тенденция, видимо, сохранится.

В тяжелых высоковязких нефтях содержатся и такие уникальные компоненты, как нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, которые можно извлечь при переработке по специальной схеме. Стоимость этих компонентов в объеме товарной продукции, получаемой в результате переработки, может превосходить стоимость нефтепродуктов. Таким образом, для повышения экономической эффективности освоения тяжелых высоковязких нефтей необходимы современные технологии, позволяющие расширить ассортимент товарной продукции, получаемой при добыче и переработке этого сырья.

Создание новых эффективных технологий подготовки и переработки тяжелого нетрадиционного углеводородного сырья является актуальной задачей, решение которой позволит значительно улучшить воспроизводство сырьевой базы России за счет экономически рентабельного вовлечения в разработку месторождений высоковязких нефтей и природных битумов.

О коэффициенте извлечения нефти. За последние 30 лет в России средний проектный коэффициент извлечения нефти (далее – КИН) снизился с 40–41 до 33–34%, что связано с ухудшением структуры запасов, т.е. увеличением числа месторождений с трудноизвлекаемыми запасами, включая объекты с аномальными нефтями. Для разработки большинства подобных месторождений в мировой практике широко применяются современные технологии, которые можно использовать в самых сложных геологических условиях. К ним относятся тепловые, газовые, химические, микробиологические методы, их различные модификации и комбинации.

В России практически все месторождения, независимо от особенностей их геологической характеристики, разрабатываются с применением традиционных технологий: с заводнением или на естественном режиме. В то же время очевидно, что применение заводнения неэффективно на целом ряде месторождений с карбонатными, трещиновато–пористыми коллекторами, аномальными нефтями. На многих из них КИН составляет менее 15–20%.

Характерен пример разработки двух соседних пермо–карбоновых залежей Возейского и Усинского месторождений, представленных трещиноватым карбонатным коллектором. Ожидаемый конечный КИН пермо–карбоновой залежи Возейского месторождения, содержащей легкую нефть и разрабатываемой с заводнением, не превысит 15%. В то же время КИН пермо–карбоновой залежи Усинского месторождения, имеющей более сложное и неоднородное строение коллектора и содержащей нефть вязкостью 700 мПа*с, при тепловом воздействии составит не менее 30%. Это объясняется тем, что при закачке в трещиноватый пласт холодной воды низкопроницаемые интервалы, включающие основные запасы нефти, оказываются блокированными водой, заполнившей высокопроницаемые каналы, и их практически невозможно вовлечь в разработку. Для таких объектов необходимы технологии, позволяющие эффективно воздействовать на низкопроницаемые коллекторы. К ним относятся тепловые методы. При закачке в пласт теплоносителя, который также прорывается по высокопроницаемым зонам, менее проницаемые участки коллектора прогреваются за счет теплопроводности и вовлекаются в разработку. В связи с этим в качестве перспективных объектов для применения тепловых методов могут рассматриваться также залежи легкой нефти, приуроченные к карбонатным и трещиновато–пористым коллекторам, особенно с гидрофобной характеристикой.

Показателен опыт других стран, например США, где средний проектный КИН при значительно худшей структуре запасов составляет 41 процент благодаря широкому применению новых технологий. Из 360 проектов по современным методам увеличения нефтеотдачи (МУН), реализуемых в мире в 2008 году, 166 проектов (46%) приходится на тепловые методы, в основном паротепловые, причем 70 проектов (42%) применяется в США. Результаты анализа показывают, что тепловые методы эффективно используются в широком диапазоне вязкостей нефти (20–50000 мПа*с) в крайне неоднородных трещиноватых коллекторах. В последнее время в разных странах мира за счет тепловых методов ежегодно добывается около 80 млн. т нефти, что составляет 65%всей мировой добычи с применением МУН.

Актуальность проблемы освоения высоковязких нефтей для Республики Коми обусловлена тем, что их запасы составляют около 50% всех разведанных запасов нефти. Только на Ярегском и Усинском месторождениях, находящихся в разработке, остаточные геологические запасы аномально вязкой нефти составляют около 1 млрд. тонн. В настоящее время Республика Коми – единственный район в стране, где в широком промышленном масштабе десятки лет добывается аномально вязкая нефть с применением современных тепловых методов. На 01.01.13 г. здесь добыто 88 млн. тонн нефти, в том числе около 34 млн. тонн за счет закачки в пласты пара. Из 2,5 млн. тонн ежегодной добычи высоковязкой нефти около 1 млн. т обеспечивают тепловые методы.

В процессе эксплуатации указанных месторождений накоплен большой промысловый опыт освоения новых технологий и технических средств для добычи высоковязких нефтей в различных геолого–промысловых условиях: разработан уникальный термошахтный метод, позволивший повысить КИН от 5 до 55–60%; впервые в стране освоены технология и технические средства для закачки пара с температурой более 300оС на глубину до 1400 м на Усинском месторождении. Однако, несмотря на эти достижения, приходится констатировать, что потенциал огромных ресурсов высоковязкой нефти используется недостаточно: объемы закачки пара и добычи нефти последние десять лет практически не увеличиваются, а темпы отбора нефти составляют всего 0,6% начальных извлекаемых запасов.

Причины снижения нефтеотдачи. Сложилась ситуация когда нефтяные компании (обеспеченные запасами) на практике не заинтересованы в применении современных методов увеличения нефтеотдачи (далее – МУН), а вместо этого используют методы выборочной интенсификации добычи нефти из активных запасов, в том числе и в том случае если они ведут к снижению проектной нефтеотдачи. Исследователи справедливо отмечают, что в период высоких цен на нефть большинство добывающих компаний в России, стремясь получить сверхприбыль, вели интенсивный отбор углеводородов из высокодебитного фонда скважин, что привело к переводу значительной части извлекаемых запасов в трудноизвлекаемые и, следовательно, к огромным потерям углеводородов. Дополнительная добыча за счет применения современных МУН в России стабильно снижается и её объем в общей добыче нефти практически не заметен.

Очевидно, что добыча на месторождениях с трудноизвлекаемыми запасами с применением современных МУН требует дополнительных затрат и наоборот, отказ от них и разработка доступных месторождений – снижает себестоимость сырья, что устраивает компании, акционеров и инвесторов, т.к. обеспечивает прибыль. При этом, образуются т.н. нерентабельные скважины, понятие широко используемое в литературе и деловом обороте, но отсутствующее в российском законодательстве.

Следует признать декларативность требований статьи 23 Федерального закона «О недрах» о наиболее полном извлечении запасов из недр, поскольку отсутствует проработанный правовой механизм их реализации. Поэтому отечественные недропользователи оставляют нерентабельные скважины без разработки (что позволяет действующее законодательство), что снижает нефтеотдачу, увеличивает долю трудноизвлекаемых запасов. Увеличение нефтеотдачи и на этой основе увеличение извлекаемых запасов – это задача государства. В условиях разногласия интересов государства и недропользователей по данной проблеме эффективность нефтедобычи определяется разработкой новых современных МУН, внедрение которых обеспечит воспроизводство сырьевой базы, стабильное развитие отрасли, а отсюда – валютную и энергетическую безопасность России.

Разработка и внедрение эффективных МУН является стратегической задачей для всех нефтедобывающих стран. Решается она двумя путями: финансированием государственных программ промысловых испытаний и освоения современных МУН (США, Канада, Норвегия, Индонезия, Китай (программа «Повторное освоение старых месторождений»); правовым регулированием, направленным на стимулирование недропользователей к участию в реализации государственных программ.

За рубежом предпринимаемые в этих направлениях усилия приносят результаты. Новейшие исследования показывают, что за последние 15 лет на основе промышленного освоения современных МУН, мировые доказанные извлекаемые запасы увеличились в 1,4 раза – на 65 млрд. тонн, а проектная нефтеотдача приблизилась к 50 процентов (в США), что в 1,6 раза больше чем в России. Эти показатели достигнуты на фоне заметного ухудшения структуры запасов и увеличения доли трудноизвлекаемых и нетрадиционных ресурсов нефти.

В российской практике оба пути пока не работают. Государство не имеет четкой, научно обоснованной и концептуально выверенной политики управления рациональным использованием недр, способной за счет применения МУН препятствовать ухудшению структуры запасов. Без государственного регулирования этот процесс не инициируется.

Основные причины медленного освоения тяжелых высоковязких нефтей в России:

● отсутствие государственной программы изучения и освоения ресурсной базы трудноизвлекаемых запасов;

● отсутствие единого подхода к классификации трудноизвлекаемых запасов (в том числе тяжелые высоковязкие нефти) и, как следствие, весьма расплывчатые представления о величине их запасов и прогнозных ресурсов;

● практически полное прекращение фундаментальных исследований, направленных на разработку научной основы создания эффективных технологий добычи, средств и систем измерения количества добытых трудноизвлекаемых ресурсов, транспортировки и переработки тяжелых высоковязких нефтей;

● нехватка эффективных промышленных технологий и технических средств разработки тяжелых высоковязких нефтей, недостаточный объем опытно–проектных работ по испытанию новых технологий добычи;

● несовершенство налоговой политики, высокие затраты на добычу льготируемой нефти.

Деятельность Правительства Российской Федерации по стимулированию нефтедобывающих предприятий. Правительством Российской Федерации предлагается разработать комплексный подход к применению налоговых и таможенных льгот.

В настоящий момент началась работа по применению методики определения обоснованности применения особых формул расчета вывозной таможенной пошлины на нефть. Одновременно ведется работа по переходу на налогообложение добычи природных ресурсов на основе результатов финансово–хозяйственной деятельности организации (налог на финансовый результат). Это форма изъятия ренты применяется в налоговых системах ряда развитых нефтедобывающих стран, в частности в Норвегии и Великобритании и является наиболее эффективной с экономической точки зрения.

Переход на налог на финансовый результат российского нефтяного сектора мог бы помочь вовлечь значительную часть неэффективных и проблемных запасов нефти в разработку, что позволило бы в перспективе увеличить объемы добычи в Российской Федерации и, как следствие, налогооблагаемую базу.

Предлагается пересмотреть систему добычи углеводородов России, которая раньше с успехом использовалась, но сегодня уже не отвечает насущным задачам отрасли. По мнению Министра Минприроды России С.Е. Донского, теория, методология и технологии добычи были рассчитаны на скорейшее и относительно низкозатратное освоение нефтегазового потенциала. Происходящее сейчас смещение приоритетов в сторону наращивания и освоения трудноизвлекаемых запасов потребует новых подходов к проведению геологоразведки, классификации и оценке ресурсов.

Первый «пилотный» полигон для отработки нормативно–правовых и организационных решений планируется создать в Томской области, где сосредоточены крупные месторождения трудноизвлекаемых углеводородов.

В тоже время специалистами ОАО «Росгеология» обобщены предложения недропользователей и научных институтов Роснедр о создании федеральных полигонов для отработки технологий по добыче нетрадиционных ресурсов. Росгеология предложила создать восемь полигонов, специализированных на разные типы нетрадиционных и трудноизвлекаемых ресурсов с различными видами пластов коллекторов в Томской и Тюменской областях (нефть Баженовской свиты), республиках Башкортостан и Татарстан (нефть доманиковых отложений), Калининградской области (газ силурийских сланцев), Иркутской области (нефть и газ венд–кембрийских низкопроницаемых карбонатных коллекторов), на сахалинском шельфе (газогидраты) и в Арктике (юрско–меловые терригенные отложения).

Программа создания федеральных полигонов для отработки технологий по добыче трудноизвлекаемых запасов должна включать в себя создание государственных эталонных полигонов и мобильных эталонных установок для исследования и испытаний средств и методов измерения количества добываемых трудноизвлекаемых запасов, использование которых позволит повысить достоверность формирования государственного баланса полезных ископаемых в соответствии с требованиями Федерального Закона Российской Федерации от 23 июля 2013 года №213-ФЗ «О внесении изменений в главы 25 и 26 части второй Налогового кодекса Российской Федерации и статью 3.1 Закона Российской Федерации «О таможенном тарифе».

Данные объекты предполагается объединить в единую систему федеральных полигонов, на которых будут отрабатываться задачи создания рентабельных технологий освоения таких ресурсов. Комплексный подход позволит разработать технологические решения для наиболее доступных видов нетрадиционных и трудно извлекаемых ресурсов. Должны быть приняты законодательные, нормативные, стимулирующие меры, которые позволили бы заинтересовать участников в решениях задачи рентабельного освоения таких ресурсов.

В рамках проекта предполагается сотрудничество с государственными органами, региональными властями, недропользователями, которые работающими в регионах размещения полигонов недропользователями компаний «Газпром нефть», «Татнефть», «Башнефть», «Сургутнефтегаз», «Иркутская нефтяная компания», «Томскнефть», «ГАЗПРОМ», «ЛУКОЙЛ». Такая кооперация, учитывая заинтересованность недропользователя в результате, позволит находить оптимальные технологические решения.

В целях ускорения освоения месторождений тяжелых высоковязких нефтей и природных битумов, прежде всего, в европейской части страны , Комитет поддерживает действия Правительства Российской Федерации, направленные на:

● интенсификацию разведочных работ;

● внедрение эффективных технологий добычи;

● создание новых мощностей по переработке тяжелых высоковязких нефтей, позволяющих получать высокотехнологичные товары;

● предотвращение потерь ценных попутных компонентов, содержащихся в тяжелых высоковязких нефтях;

● решение экологических проблем, связанных с добычей и переработкой тяжелых высоковязких нефтей;

● государственное стимулирование освоения месторождений с трудноизвлекаемыми запасами, в том числе внедрения новых технологий нефтеотдачи.

Правительству Российской Федерации:

●рассмотреть возможность введения в законодательство Российской Федерации дефиниции «экономически трудноизвлекаемые запасы», определив ее как запасы, разработка которых не может быть проведена с рентабельностью выше ставки рефинансирования ЦБ;

● законодательно закрепить определения вязкой, высоковязкой, сверхвязкой нефти на основании предложений Минприроды России, РГУ нефти и газа имени И.М. Губкина и Государственной Комиссии по запасам (далее -ГКЗ);

● рассмотреть целесообразность создания при правительственной комиссии по вопросам ТЭКа и воспроизводства минерально-сырьевой базы рабочую группу по вопросам модернизации российского нефтегазового сектора;

● рассмотреть возможность создания общероссийского нефтяного института, включив в его состав Центральную Комиссию по разработке месторождений (ЦКР), ГКЗ и отраслевые научные институты;

● разработать проект федерального закона о малом бизнесе в нефтегазовом секторе;

● разработать комплекс мер по стимулированию применения методов увеличения нефтеотдачи пластов, включая законодательное закрепление предоставления налоговых льгот для предприятий и недропользователей, осуществляющих разработку «экономически трудноизвлекаемых запасов»

с применением инновационных технологий;

● разработать комплекс мер по стимулированию с помощью системы налогообложения замены экспорта сырой нефти экспортом продукции нефтепереработки с высокой добавленной стоимостью;

● рассмотреть возможность установления пониженных ставок налога на добычу полезных ископаемых в отношении нефти, добываемой на участках недр, содержащих запасы тяжелых высоковязких нефтей, с дифференциацией льготирования ставок в линейной зависимости от значения вязкости нефти, при вязкости нефти, равной 200 мПас, на уровне 100 процентов и при вязкости нефти, равной 30 мПас на уровне 0 процентов от законодательно установленной ставки налога на добычу;

● создать механизм преференций на импортное оборудование, необходимое при освоении трудноизвлекаемых нефтей;

● при создании в Российской Федерации федеральных полигонов для отработки технологий по добыче нетрадиционных ресурсов предусмотреть образование, например, на базе ОАО «Татнефть» Государственного эталонного Полигона для испытаний систем и средств измерения расхода и количества высоковязких нефтей, природного битума и попутного нефтяного газа;

● с целью сокращения затрат на транспортировку производить переработку высоковязкой нефти на предприятиях максимально приближенных к регионам ее добычи;

● в целях развития инновационных подходов к освоению месторождений высоковязких и сверхвязких нефтей и природных битумов, а также обеспечения квалифицированными кадрами всех уровней создать «Научно-образовательный кластер в сфере повышения эффективности разведки и разработки месторождений высоковязких нефтей и природных битумов».

Целесообразно развернуть данный кластер в регионе, где имеется промыслово-производственная и научно-образовательная база. Предлагается создание в Республике Татарстан пилотного варианта кластера в составе ОАО «ТАТНЕФТЬ», ТатНИПИнефть, Казанского Федерального Университета, Альметьевского государственного нефтяного института и Лениногорского нефтяного техникума. В перспективе к данному кластеру может быть подключена и область переработки тяжелого углеводородного сырья с привлечением ОАО «Нижнекамскнефтехим» и Казанского научно-исследовательского технологического университета КНИТУ (КХТИ);

● рассмотреть возможность разработки проекта федерального закона

«О высоковязкой нефти и природном битуме» с привлечением государственного финансирования за счет средств федерального бюджета для проведения научных исследований и организации начала производственных работ;

● рассмотреть возможность создания информационного банка данных о составе и свойствах тяжёлых высоковязких нефтей.

Правительству Российской Федерации, Государственной Думе Федерального Собрания Российской Федерации, руководителям и собственникам отраслевых компаний:

● принять меры по организации работ, направленных на приоритетное системное совершенствование механизмов и технологий управления в добывающих отраслях ТЭК;

● разработать меры, стимулирующие вовлечение в разработку запасов углеводородов, относимых к категории трудноизвлекаемых, в том числе разработать законодательные изменения, направленные на стимулирование недропользователей по расширенному применению методов увеличения нефтеотдачи пластов и повышению коэффициента нефтеизвлечения.

● привлечь внимание научной общественности к необходимости проведения фундаментальных исследований для решения проблем добычи высоковязких нефтей и природных битумов, их разработки и переработки;

● в целях защиты авторских прав россиян подготовить предложения по уточнению названий первоначально разработанных российскими учеными и исследователями технологий и методов в области разведки, добычи и освоении участков недр, содержащих запасы углеводородов, включая трудноизвлекаемых нефтей.

Государственной Думе Федерального Собрания Российской Федерации:

● ускорить рассмотрение проекта федерального закона №143912-6 «О государственном стратегическом планировании»;

● ускорить рассмотрение проекта федерального закона №414175-6 «О внесении изменений в статью 342-2 части второй Налогового кодекса Российской Федерации», разработанного с целью усиления мер налогового стимулирования реализации инвестиционных проектов по находящимся в разработке участкам недр, содержащих запасы трудноизвлекаемой нефти;

● считать проекты федеральных законов, направленные на законодательное принятие мер по стимулированию недропользователей к применению методов увеличения нефтеотдачи пластов и повышению коэффициента нефтеизвлечения при разработки запасов высоковязких нефтей и природных битумов, приоритетными и подлежащими первоочередному рассмотрению Государственной Думой.

Председатель
Комитета Государственной Думы по энергетике
И.Д. Грачёв

высоковязкий нефть разработка месторождение

Для исключения убыточности и нерентабельности разработки месторождений высоковязких нефтей и природных битумов в России и за рубежом ведутся работы, направленные на совершенствование и создание технологий повышения нефтеотдачи, позволяющих разрабатывать вышеуказанные месторождения с наибольшей экономической эффективностью.

В сфере разработки месторождений трудноизвлекаемого сырья, необходимо отметить деятельность таких компаний как «Удмуртнефть», «Татнефть», «РИТЭК».

После создания в 1973 г. в Удмуртии ПО «Удмуртнефть» первые попытки разработки основных месторождений с применением традиционных способов - редкими сетками скважин с заводнением - не дали положительных результатов. Скважины имели низкие дебиты, наблюдались быстрые прорывы закачиваемой воды по наиболее проницаемым пластам и пропласткам, не достигались проектные отборы и величины текущей нефтеотдачи, резко снижалась рентабельность освоения месторождений. Из-за применения в расчетах упрощенных гидродинамических моделей без учета осложняющих факторов оказались существенно завышенными проектные технико-экономические показатели разработки и особенно значения конечной нефтеотдачи, которые принимались проектами в пределах 34-45%.

Поэтому уже в 1975 г. были начаты масштабные комплексные научные исследования по созданию принципиально новых технологий повышения нефтеотдачи. Были организованы целенаправленные теоретические и экспериментальные исследования особенностей механизма нефтеотдачи в сложных трещинно-порово-кавернозных коллекторах с нефтями повышенной и высокой вязкости.

Накопленный мировой опыт разработки залежей с высоковязкими нефтями, содержащимися главным образом в терригенных коллекторах, доказывал эффективность использования тепловых методов (воздействие горячей водой - ВГВ и паротепловое воздействие - ПТВ). Однако для карбонатных коллекторов с тяжелыми вязкими нефтями подобных разработок не было. В Удмуртии разработка технологий освоения трудноизвлекаемых запасов в карбонатных коллекторах велась в двух направлениях: 1) поиск и создание технологий физико-химического воздействия на пласт, 2) тепловое воздействие на пласт.

Итогом целенаправленных научно-практических исследований стало создание принципиально новых технологий и способов рациональной разработки и повышения нефтеотдачи для решения проблемы эксплуатации сложнопостроенных месторождений с карбонатными коллекторами. Не имеющие аналогов в мировой практике термополимерные и термоциклические технологии воздействия на пласт научно обоснованы на уровне изобретений и патентов, испытаны и широко внедрены в производство. Если традиционно применяемые технологии заводнения в карбонатных коллекторах с нефтями повышенной и высокой вязкости могли обеспечить конечную нефтеотдачу не более 20-25%, то новые технологии позволяют довести нефтеотдачу до 40-45%.

Сущность нового подхода заключается в том, что при воздействии растворами полимера (полиакриламид концентрации 0,05-0,10%) удается существенно выравнивать профили приемистости в нагнетательных скважинах, а главное - значительно увеличивать коэффициент охвата неоднородного коллектора рабочим агентом. За счет выравнивания соотношения вязкостей вытесняемой и вытесняющей фаз происходит гашение вязкостной неустойчивости фронтов вытеснения - неконтролируемых прорывов воды к добывающим скважинам.

Исследования и последующий промышленный опыт показали, что технологии полимерного воздействия повышают в 1,5-1,7 раза конечную текущую нефтеотдачу по сравнению с таковой от воздействия необработанной водой, т.е. при заводнении существенно ниже динамика обводнения добывающих скважин и выше их рабочие дебиты. Разработанная новая технология термополимерного воздействия (ТПВ) предусматривает закачку в пласт нагретого до 80-90 °С полимерного раствора той же концентрации, что и холодный раствор.

Существенное улучшение механизма извлечения нефти из пластов при ТПВ заключается в том, что закачиваемый горячий полимерный раствор после прохождения по пласту снижает свою температуру до пластовой, тем самым увеличивая свою вязкость на фронте вытеснения, что приводит к его выравниванию и увеличению коэффициента охвата пласта. Причем этот процесс в пласте оказывается саморегулируемым, что особенно важно в трещиноватых коллекторах. На Мишкинском и Лиственском месторождении месторождениях дополнительная добыча нефти за счет технологии ТПВ превысила 560 тыс. т. Так, 1 т сухого полимера позволяет дополнительно добывать 263 т нефти.

В целях совершенствования технологии ТПВ была разработана новая технология термополимерного воздействия с добавлением полиэлектролита (ТПВПЭ), способствующего замедлению возможной деструкции полимера и более глубокому проникновению его в пласт. Кроме того, используя данную технологию, удалось существенно сократить расход дорогостоящего полимера (на 15-20%), снизив тем самым себестоимость добытой нефти. Дальнейшее совершенствование технологии ТПВ шло по пути значительного снижения энергоемкости и ресурсосбережения, что привело к разработке технологии циклического внутрипластового полимерно-термического воздействия (ЦВПТВ). Здесь закачка теплоносителя и раствора полимера осуществляется уже в несколько циклов, после чего предусматривается закачка обычной воды. Цикличность процесса ЦВПТВ приводит к увеличению охвата пласта рабочим агентом, интенсификации капиллярных и термоупругих эффектов и сокращению расхода химреагента. Реализация проекта началась на Ижевском месторождении, что позволило дополнительно добыть более 400 тыс. т нефти и достичь конечной нефтеотдачи 35,4 вместо 11,5% при существующем ныне режиме истощения. Применение технологии ЦВПТВ на Лиственском месторождении даст возможность получить дополнительно 2,3 млн. т нефти, увеличить извлечение нефти на 8% в сравнении с таковым при холодном полимерном воздействии (ХПВ). В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи в настоящее время используется перегретая горячая вода (t=260 °C).

Термические методы на месторождениях высоковязких нефтей обеспечивают кратное увеличение нефтеотдачи относительно таковой при естественных режимах разработки и методах заводнения. В механизме нефтеизвлечения выделяются три основных фактора:

Улучшение отношения подвижностей нефти и воды;

Тепловое расширение пластовой системы;

Улучшение проявления молекулярно-поверхностных сил в пласте.

Внедрение технологий термического воздействия было начато на Гремихинском месторождении. Основной объект разработки - залежь пласта А4 башкирского яруса среднего карбона, со сложными трещинно-порово-кавернозными крайне неоднородными коллекторами. Режим пласта упруговодонапорный. Было ясно, что эффективность разработки месторождения традиционными способами будет низкой. Нефтеотдача, на естественном режиме составляет не более 10-12%. Поэтому в 1983 г. были начаты экспериментальные работы по нагнетанию в пласт теплоносителя: горячей воды с температурой на устье скважин 260 °С.

Однако эта технология весьма энергоемка, требует крупных материальных затрат, поэтому специалистами ОАО «Удмуртнефть» совместно с учеными ряда институтов проводились работы по созданию принципиально новых ресурсо и энергосберегающих технологий, позволяющих вывести заведомо нерентабельные запасы высоковязких нефтей Гремихинского месторождения в разряд прибыльных.

В результате созданы, запатентованы и внедрены в производство принципиально новые высокоэффективные технологии теплового воздействия: импульсно-дозированное тепловое воздействие (ИДТВ), импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П), теплоциклическое воздействие на пласт (ТЦВП) и его модификации.

Сущность технологии ИДТВ заключается в многократном воздействии на матрицу попеременно и строго рассчитанными циклами «нагрев - охлаждение», что способствует более полному вытеснению нефти при поддержании в пласте так называемой «эффективной температуры». Это понятие положено в основу определения необходимых объемов теплоносителя и холодной воды для обеспечивания значительного сокращения энерго- и ресурсозатрат. Интенсификация добычи нефти в режиме ИДТВ определяется ускорением процесса охвата объекта разработки тепловым воздействием.

По сравнению с ПТВ и ВГВ циклический процесс позволяет использовать теплогенерирующие установки для большого числа нагнетательных скважин, так как в периоды нагнетания порции холодной воды теплоноситель нагнетается в другие скважины. При неоднократном повторе циклов смены температур, т.е. при термоциклическом воздействии на матрицу, величина нефтеотдачи достигает 37%, что на 9% выше, чем при заводнении.

В техническом исполнении ИДТВ особых дополнительных конструкций и установок не требует. Применяются стандартные паронагнетательные скважины, внутрискважинное устьевое и наземное оборудование.

В технологии ИДТВ(П) закачка вытесняющих агентов ведется не непрерывно, как в ИДТВ, а с кратковременными остановками (паузами) в периоды нагнетания порций холодной воды. Назначение пауз - периодическое создание в пласте перепадов давления с целью нарушения установившихся потоков флюидов и вовлечения в активную разработку низкопроницаемых зон. Продолжительность паузы принимается равной времени восстановления давления в пласте после остановки скважины. Технология ИДТВ(П), обладая всеми свойствами технологии ИДТВ, обеспечивает увеличение нефтеизвлечения до 40%.

Сущность технологии ТЦВП заключается в организации единого технологического процесса комплексного теплового воздействия на пласт через систему нагнетательных и добывающих скважин. Осуществление одного полного цикла ТЦВП включает: нагнетание теплоносителя в пласт одновременно через центральную нагнетательную и три добывающие скважины, расположенные через одну в 7-точечном элементе, при этом отбор жидкости ведут через оставшиеся три добывающие скважины. Затем происходит смена функции группы добывающих скважин - находящиеся под закачкой теплоносителя переводятся на режим отбора и наоборот; все добывающие скважины переводятся на режим отбора, закачку теплоносителя осуществляют через центральную нагнетательную скважину. Технология предусматривает осуществление трех-пяти таких циклов, что обеспечивает практически полный охват вытеснением всего площадного элемента. Циклический процесс приводит к периодической смене направлений фильтрационных потоков, что является сдерживающим фактором обводнения продукции добывающих скважин. Расчетная конечная нефтеотдача достигает 45%. Если рассматривать зону реагирования, то здесь доля нефти, добытой за счет термических методов, составляет 75%.

Экономическая эффективность от внедрения тепловых методов на Гремихинском месторождении составила около 525 млн р., в том числе по технологиям: ИДТВ - 211 млн р., ИДТВ(П) - 190 млн р., ТЦВП - 64 млн р.

Об эффективности технологий свидетельствует уровень текущей нефтеотдачи (42%) на опытных участках их применения, тогда как прогнозная конечная нефтеотдача при заводнении оценивается в пределах 20-25%.

Объемы дополнительно добытой нефти за счет новых технологий, достигнутые коэффициенты нефтеизвлечения в пределах опытных участков и на объектах в целом свидетельствуют о высокой эффективности внедряемых термических и термополимерных методов на месторождениях высоковязких нефтей Удмуртии. Расчеты себестоимости добычи нефти при внедрении новых технологий по сравнению с традиционными подходами убедительно доказывают их более высокую экономическую эффективность.

Практический опыт разработки Гремихинского, Мишкинского и Лиственского месторождений и расчеты себестоимости добычи нефти при достижении конечных значений нефтеизвлечения показали, что себестоимость добычи нефти при использовании созданных в ОАО «Удмуртнефть» физико-химических и термических методов повышения нефтеотдачи пластов ниже, чем при естественном режиме и заводнении. В результате стало возможным рентабельное применение новых технологий при существующих ценах на нефть.

Таким образом, новые технологии позволили устранить главное препятствие на пути применения тепловых методов при разработке месторождений вязких нефтей - большие затраты, поскольку традиционные тепловые методы по затратам примерно в 2 раза выше, чем при заводнении.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии паротеплового воздействия. Одним из таких методов может явиться парогравитационный дренаж (SAGD) (Рис. 9), который на сегодняшний день в мире зарекомендовал себя как очень эффективный способ добычи тяжелой нефти и природных битумов. В классическом описании эта технология требует бурения двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Верхняя горизонтальная скважина используется для нагнетания пара в пласт и создания высокотемпературной паровой камеры.

Процесс парогравитационного воздействия начинается со стадии предпрогрева, в течение которой (несколько месяцев) производится циркуляции пара в обеих скважинах. При этом за счет кондуктивного переноса тепла осуществляется разогрев зоны пласта между добывающей и нагнетательной скважинами, снижается вязкость нефти в этой зоне и, тем самым, обеспечивается гидродинамическая связь между скважинами. На основной стадии добычи производится уже нагнетание пара в нагнетательную скважину.

Рис. 9 Схема установки для добычи битума в режиме парогравитационного дренажа. Условные обозначения: 1 - лебедка; 2 - устьевое оборудование; 3,4 - эксплуатационные колонны соответственно добывающей и нагнетательной скважин; 5 - сваб; 6 - канат.

Закачиваемый пар, из-за разницы плотностей, пробивается к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого пар конденсируется в воду и вместе с разогретой нефтью стекают вниз к добывающей скважине под действием силы тяжести. Рост паровой камеры вверх продолжается до тех пор, пока она не достигнет кровли пласта, а затем она начинает расширяться в стороны. При этом нефть всегда находится в контакте с высокотемпературной паровой камерой. Таким образом, потери тепла минимальны, что делает этот способ разработки выгодным с экономической точки зрения.

Для повышения добычи и снижения энергозатрат некоторые компании начинают комбинировать методы VAPEX и SAGD. Одним из решений является технология SAP (Solvent Aided Process), в которой объединены преимущества указанных методов. В процессе SAP небольшое количество углеводородного растворителя вводится в качестве добавки в пар, закачиваемый при применении технологии SAGD. В то время как пар является основным теплоносителем и снижает вязкость нефти, добавка растворителя способствует ее разжижению в еще большей степени. Хотя улучшение экономических показателей зависит от конкретной ситуации, анализ полученных результатов показывает экономическую выгоду перехода с процесса SAGD на SAP.

В Канаде под закачкой растворителя подразумевается закачка углеводородных газов (парафиновых растворителей), таких как метан, пропан, бутан и их смеси. Этот метод требует наличия поблизости источника углеводородных газов и высокотехнологичного оборудования для их закачки. В то время как, месторождения сверхвязких нефтей Республики Татарстан характеризуются малой глубиной залегания продуктивного пласта (менее 100 м) и низкими пластовыми давлениями. В таких условиях применение данных растворителей нецелесообразно. Наиболее подходящими растворителями для вытеснения сверхвязких нефтей, содержащихся в слабоцементированных песчаниках уфимского яруса, являются углеводородные жидкости (нефтяные растворители), вязкость которых меньше вязкости нефти.

В мае 2006 г. специалистами ОАО «Татнефть» начат уникальный проект по добыче сверхвязких нефтей на Ашальчинском месторождении с использованием технологии парогравитационного воздействия. Для повышения ее эффективности была проведена экспериментальная оценка использования нефтяных растворителей совместно с закачкой пара. С целью выбора подходящего растворителя для вытеснения сверхвязких нефтей Ашальчинского и Мордово-Кармальского месторождений исследованы физико-химические свойства следующих растворителей: миа-прома, кичуйского нестабильного бензина, абсорбента Н, девонской нефти, нефраса 120/200, смесового растворителя «МС-50», нефраса 130/150, нефраса 150/200, нефраса 150/300, стерлитамакского абсорбента, дистиллята, дизельного топлива, абсорбента А-2, печного топлива.

Установлено, что самой низкой растворяющей способностью обладает дистиллят, производимый на базе Азнакаевской НГДУ «Азнакаевскнефть» (количество растворенной нефти составляет 4,67%), а самой высокой - нефрас 150/300 (15,1%).

Установлено, что все исследованные нефтяные растворители, кроме дистиллята, применимы в технологиях паротеплового воздействия, так как они не осаждают асфальтосмолистые вещества из сверхвязкой нефти. Анализ результатов исследований свидетельствует о том, что все изученные нефтяные растворители ускоряют разрушение водонефтяных эмульсий, приготовленных на основе сверхвязкой нефти Ашальчинского и Мордово-Кармальского месторождений при температуре 95 и 20 °С. Полученные результаты позволяют рекомендовать для при - менения в технологиях VAPEX и SAP в Татарстане нефтяные растворители, такие как абсорбент и нефрас, которые полностью соответствуют требованиям, предъявляемым к растворителям, используемым совместно с тепловыми методами.

Интересна технология инновационного технико-технологического комплекса парогазового воздействия разработанная в ОАО «РИТЭК». Суть ее состоит в том, что в парогазогенераторной установке теплоноситель образуется непосредственно в призабойной зоне пласта (рис. 10). При генерации теплоносителя в призабойной зоне тепловые потери при транспортировке пара практически отсутствуют. Экономичность таких устройств по эффективности сжигания топлива примерно на 30% выше, чем у наземных установок.

В парогазогенераторе для генерации парогазовой смеси используются только жидкие компоненты: вода и монотопливо (система, в которой все необходимые для реакции компоненты содержатся в одном жидкостном потоке). Кроме того, при работе парогазогенератора в нефтяной пласт нагнетается не чистый пар, а его смесь с продуктами сгорания, так называемая парогазовая смесь. Парогаз оказывает на пласт комбинированное воздействие: тепловое и физико-химическое, так как в его состав входят, помимо водяного пара, углекислый газ и азот. Таким образом, в парогазогенераторах обеспечивается практически полное использование химической энергии топлива, отсутствуют выбросы отработанных газов в атмосферу, а тепловое воздействие на пласт дополняется физико-химическим.

В мае 2009 г. в скв. 249 Мельниковского месторождения в Республике Татарстан были начаты опытно-промысловые испытания парогазогенераторного комплекса на монотопливе, которые уже дали положительные результаты. Это завершающий этап разработки уникальной комплексной технологии, позволяющей осуществлять добычу высоковязкой нефти на больших глубинах. Данная технология и разработанный комплекс оборудования открывают большие возможности для добычи нетрадиционного сырья, в частности в Республике Татарстан, где сосредоточены значительные запасы высоковязкой нефти.

Рис. 10. Принципиальная схема установки парогазогенератора на монотопливе: 1 - станция управления; 2 - монотопливо; 3 - вода; 4 - плунжерный насос

Фарманзаде А.Р. 1 , Карпунин Н.А. 2 , Хромых Л.Н. 3 , Евсенкова А.О. 4 , Аль-Гоби Г. 5

1 Аспирант, 2 студент, 3 доцент, 4 студент, 5 студент. 1,2,4,5 Национальный минерально-сырьевой университет «Горный», 3 Самарский государственный технический университет

ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ ВЫСОКОВЯЗКОЙ НЕФТИ ПЕЧЕРСКОГО МЕСТОРОЖДЕНИЯ

Аннотация

В статье изучены реологические свойства тяжелой нефти Печерского месторождения в широком температурном диапазоне. Основное внимание уделено изучению вязкой и упругой компонентам вязкости в зависимости от температуры для обоснования оптимальных условий разработки данного нефтяного месторождения.

Ключевые слова: высоковязкая нефть, битум, упругая компонента вязкости, вязкая компонента вязкости, реологические свойства.

Farmanzade A . R . 1 , Karpunin N . A . 2 , Khromykh L.N. 3 , Evsenkova A . O . 4 , Al Gobi G . 5

1 Postgraduate student, 2 student, 3 associate professor, 4 student, 5 student. 1,2,4,5 National Mineral Recourses University (University of Mines), 3 Samara State Technical University

THE INVESTIGATION RHEOLOGICAL PROPERTIES OF HEAVY OIL FIELD PECHORA

Abstract

There is the investigation of the rheological properties of heavy oil field Pechora in a wide temperatures range in this paper. Main attention is given to the study of the loss and storage modulus of the viscosity as a function of temperature for the recommendation of optimal conditions for development of this oil field.

Keywords: heavy oil, bitumen, storage modulus, loss modulus, rheological properties.

На сегодняшний день, в связи с неуклонным истощением запасов легких, маловязких нефтей, все большее значение приобретает необходимость введения в разработку месторождений трудноизвлекаемых запасов, таких как высоковязкие нефти и природные битумы, большая часть которых находится в Канаде, Венесуэле и России. В Российской Федерации более 70% высоковязких нефтей приурочены к 5 регионам: в Пермской области (более 31 %), в Татарстане (12,8 %), в Самарской области (9,7 %), в Башкортостане (8,6 %) и Тюменской области (8,3 %) .

Месторождения нефтей такого типа, как правило, характеризуются небольшими глубинами залегания нефтеносных пластов и, зачастую, низкой пластовой температурой, в то время как залегающие в них нефти или битумы обладают неньютоновскими свойствами , обусловленными большим содержанием парафинов асфальтенов и смол . При высоком содержании тяжелых компонентов в составе нефтей проявляются вязкоупругие свойства, которые впервые были обнаружены еще в 1970-х гг. .

Высокие значения вязкости таких нефтей в пластовых условиях являются причиной низких дебитов добывающих скважин, а иногда, и полного их отсутствия при попытках разработки месторождения на естественном режиме . В настоящее время термические методы воздействия на продуктивный пласт получили наибольшее распространение при разработке залежей таких углеводородов . Среди этих технологий стоит отметить циклическую (cyclic steam injection) и площадную закачку пара, как наиболее распространенные методы добычи и интенсификации притока в России и парогравитационное дренирование (SAGD – steam assisted gravity drainage), широко применяемое за рубежом .

Для изучения свойств высоковязкой нефти, залегающей в сложнопостроенном карбонатном коллекторе, было выбрано Печерское месторождение, располагающееся на берегу реки Волга, у села Печерское. Ранее на данном месторождении добывалась горная порода (известняки и доломиты), насыщенная тяжелой нефтью, для последующего извлечения из нее сырья для производства битумной мастики. Авторами были организованы полевые выходы на данное месторождение для сбора информации о строении залежи и образцов для изучения реологических свойств нефти и пустотного пространства пласта-коллектора.

В данной работе была изучена реологических свойств нефти от температуры. При этом использовался современный высокоточный ротационный вискозиметр с воздушными подшипниками.

Эксперимент по изучению зависимости динамической вязкости от температуры проводился следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 110°С. На вискозиметре было задано значение угловой скорости 5 с -1 , после чего температура плавно опускалась до 50°С. Данная температура была предложена в качестве граничной для предотвращения излишней перегрузки двигателя вискозиметра.

Рис. 1 – Зависимость динамической вязкости высоковязкой нефти от температуры.

На представленном рисунке видно, что динамическая вязкость нефти может быть описана степенной функцией вида y=1177320551696170000x -7,24 с величиной достоверности аппроксимации R² = 0,99554. Нефть на всем интервале представленных температур является высоковязкой (вязкость при 110°С составляет 2003 мПа∙с, а при 50°С – 502343 мПа∙с). На данном этапе испытаний измерить вязкость нефти при пластовой температуре 20°С не было возможно из-за ограничения возможностей вискозиметра.

Для углубленного изучения реологических свойств данной нефти были проведены дополнительные специализированные динамические испытания по определению упругой и вязкой компонент вязкости. В ходе экспериментов было изучено влияние снижения температуры на упругую компоненту вязкости (динамический модуль сдвига, также называемый storage modulus) и вязкую компоненту вязкости (податливость или loss modulus) . Нефть Печерского месторождения, используемая для проведения исследований, в первом случае охлаждалась в выбранном интервале температур от 90ºС до 50ºС. Эксперимент проходил следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 90°С, после чего плавно снижалась до 50°С с записью данных. Динамическая нагрузка была представлена осцилляционным движением ротора с частотой 1 Гц и нагрузкой 100 Па. Результаты представлены на рисунке 2.

Рис. 2 – Зависимость упругой (storage modulus) и вязкой (loss modulus) компонент вязкости высоковязкой нефти Печерского месторождения от температуры.

Анализируя представленные зависимости, возможно сделать следующие выводы: во-первых, как вязкая, так и упругая компоненты вязкости нефти уменьшаются с увеличением температуры и достигают относительно небольших значений при 80°С, что доказывает необходимость использования тепловой энергии при разработке данного месторождения. Во-вторых, заметно, что на исследованном интервале температур нефть обладает упругими свойствами, которые хоть и уменьшаются при увеличении температуры, но достигают значительных величин: 23,54 Па.

Исходя из результатов проведенных исследований, возможно сделать следующие выводы:

  1. Высоковязкая нефть Печерского месторождения характеризуется аномально высокой вязкостью: измеренная динамическая вязкость при 50°С составляет 502343 мПа∙с.
  2. Исходя из того, что вязкость нефти при повышении температуры от 50 до 110°С снижается с 502343 мПа∙с до 2000 мПа∙с для извлечения нефти из породы данного месторождения необходимо применение термического воздействия.
  3. Изученная нефть обладает сложными реологическими свойствами, обусловленными, вероятно, высоким содержанием асфальтенов и смол, характерным для приповерхностных месторождений Самарской области. Высокие значения вязкой и упругой компонент вязкости наблюдаются на всем интервале температур, при которых проводились динамические испытания, что несомненно окажет негативное влияние на процесс извлечения нефти из пласта-коллектора.
  4. Авторами работы запланированы дальнейшие испытания, направленные на обоснование эффективных технологий извлечения таких аномальных нефтей из продуктивных пластов, например, технологии с применением комплексного воздействия тепловыми агентами и растворителями.

Литература

  1. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. -М.: Недра, 1975. -168 с.
  2. Зиновьев А.М., Ковалев А.А., Максимкина Н.М., Ольховская В.А., Рощин П.В., Мардашов Д.В. Обоснование режима разработки залежи аномально вязкой нефти на основе комплексирования исходной геолого-промысловой информации//Вестник ЦКР Роснедра. -2014. -№3. -С. 15-23.
  3. Зиновьев А.М., Ольховская В.А., Ковалев А.А. Обоснование аналитической модели псевдоустановившегося притока нелинейно вязкопластичной нефти к вертикальной скважине//Вестник ЦКР Роснедра. -2013. -№2. -С. 40-45.
  4. Зиновьев А.М., Ольховская В.А., Максимкина Н.М. Проектирование систем разработки месторождений высоковязкой нефти с использованием модели неньютоновского течения и результатов исследования скважин на приток//Нефтепромысловое дело. -2013. -№1. -С. 4-14.
  5. Литвин В.Т., Рощин П.В. Изучение влияния растворителя «Нефрас С2-80/120» на реологические свойства парафинистой высоковязкой нефти Петрухновского месторождения//Материалы научной сессии ученых Альметьевского государственного нефтяного института. -2013. -Т.1. -№ 1. -С. 127-130.
  6. Полищук Ю.М., Ященко И.Г. Высоковязкие нефти: анализ пространственных и временных изменений физико-химических свойств // Электронный научный журнал «Нефтегазовое дело». 2005 №1. [Электронный ресурс]: http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (дата обращения 15.11.2015).
  7. Ольховская В.А., Сопронюк Н.Б., Токарев М.Г. Эффективность ввода в эксплуатацию небольших залежей нефти с неньютоновскими свойствами//Разработка, эксплуатация и обустройство нефтяных месторождений/Самара: Сборник научных трудов ООО «СамараНИПИнефть». -2010. -Вып.1. -С. 48-55.
  8. Ольховская В.А. Подземная гидромеханика. Фильтрация неньютоновской нефти. -М.: ОАО «ВНИИОЭНГ», 2011. -224 с.
  9. Рогачев М.К., Колонских А.В. Исследование вязкоупругих и тиксотропных свойств нефти Усинского месторождения//Нефтегазовое дело. -2009. -Т.7. -№1. -С.37-42.
  10. Рощин П.В. Обоснование комплексной технологии обработки призабойной зоны пласта на залежах высоковязких нефтей с трещинно-поровыми коллекторами: дис. канд. техн. наук. -СПб., 2014. -112 с.
  11. Рощин П.В., Петухов А.В., Васкес Карденас Л.К., Назаров А.Д., Хромых Л.Н. Исследование реологических свойств высоковязких и высокопарафинистых нефтей месторождений Самарской области. Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 1. С. 12.
  12. Рощин П.В., Рогачев М.К., Васкес Карденас Л.К., Кузьмин М.И., Литвин В.Т., Зиновьев А.М. Исследование кернового материала Печерского месторождения природного битума с помощью рентгеновского компьютерного микротомографа SkyScan 1174V2. Международный научно-исследовательский журнал. 2013. № 8-2 (15). С. 45-48.
  13. Рузин Л.М. Технологические принципы разработки залежей аномально вязких нефтей и битумов / Л.М. Рузин, И.Ф. Чупров; Под ред. Н.Д. Цхадая. Ухта, 2007. 244 с.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. С. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – Т. 59. – №. – С. 489-501.
  16. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Международный научно-исследовательский журнал. -2015. -№ 6-1 (37). -С. 120-122.

References

  1. Devlikamov V.V., Habibullin Z.A., Kabirov M.M. Anomal’nye nefti. -M.: Nedra, 1975. -168 s.
  2. Zinov’ev A.M., Kovalev A.A., Maksimkina N.M., Ol’hovskaja V.A., Roshhin P.V., Mardashov D.V. Obosnovanie rezhima razrabotki zalezhi anomal’no vjazkoj nefti na osnove kompleksirovanija ishodnoj geologo-promyslovoj informacii//Vestnik CKR Rosnedra. -2014. -№3. -S. 15-23.
  3. Zinov’ev A.M., Ol’hovskaja V.A., Kovalev A.A. Obosnovanie analiticheskoj modeli psevdoustanovivshegosja pritoka nelinejno vjazkoplastichnoj nefti k vertikal’noj skvazhine//Vestnik CKR Rosnedra. -2013. -№2. -S. 40-45.
  4. Zinov’ev A.M., Ol’hovskaja V.A., Maksimkina N.M. Proektirovanie sistem razrabotki mestorozhdenij vysokovjazkoj nefti s ispol’zovaniem modeli nen’jutonovskogo techenija i rezul’tatov issledovanija skvazhin na pritok//Neftepromyslovoe delo. -2013. -№1. -S. 4-14.
  5. Litvin V.T., Roshhin P.V. Izuchenie vlijanija rastvoritelja «Nefras S2-80/120» na reologicheskie svojstva parafinistoj vysokovjazkoj nefti Petruhnovskogo mestorozhdenija//Materialy nauchnoj sessii uchenyh Al’met’evskogo gosudarstvennogo neftjanogo instituta. -2013. -T.1. -№ 1. -S. 127-130.
  6. Polishhuk Ju.M., Jashhenko I.G. Vysokovjazkie nefti: analiz prostranstvennyh i vremennyh izmenenij fiziko-himicheskih svojstv // Jelektronnyj nauchnyj zhurnal «Neftegazovoe delo». 2005 №1. : http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (data obrashhenija 15.11.2015).
  7. Ol’hovskaja V.A., Sopronjuk N.B., Tokarev M.G. Jeffektivnost’ vvoda v jekspluataciju nebol’shih zalezhej nefti s nen’jutonovskimi svojstvami//Razrabotka, jekspluatacija i obustrojstvo neftjanyh mestorozhdenij/Samara: Sbornik nauchnyh trudov OOO «SamaraNIPIneft’». -2010. -Vyp.1. -S. 48-55.
  8. Ol’hovskaja V.A. Podzemnaja gidromehanika. Fil’tracija nen’jutonovskoj nefti. -M.: OAO «VNIIOJeNG», 2011. -224 s.
  9. Rogachev M.K., Kolonskih A.V. Issledovanie vjazkouprugih i tiksotropnyh svojstv nefti Usinskogo mestorozhdenija//Neftegazovoe delo. -2009. -T.7. -№1. -S.37-42.
  10. Roshhin P.V. Obosnovanie kompleksnoj tehnologii obrabotki prizabojnoj zony plasta na zalezhah vysokovjazkih neftej s treshhinno-porovymi kollektorami: dis. kand. tehn. nauk. -SPb., 2014. -112 s.
  11. Roshhin P.V., Petuhov A.V., Vaskes Kardenas L.K., Nazarov A.D., Hromyh L.N. Issledovanie reologicheskih svojstv vysokovjazkih i vysokoparafinistyh neftej mestorozhdenij Samarskoj oblasti. Neftegazovaja geologija. Teorija i praktika. 2013. T. 8. № 1. S. 12.
  12. Roshhin P.V., Rogachev M.K., Vaskes Kardenas L.K., Kuz’min M.I., Litvin V.T., Zinov’ev A.M. Issledovanie kernovogo materiala Pecherskogo mestorozhdenija prirodnogo bituma s pomoshh’ju rentgenovskogo komp’juternogo mikrotomografa SkyScan 1174V2. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2013. № 8-2 (15). S. 45-48.
  13. Ruzin L.M. Tehnologicheskie principy razrabotki zalezhej anomal’no vjazkih neftej i bitumov / L.M. Ruzin, I.F. Chuprov; Pod red. N.D. Chadaja. Uhta, 2007. 244 s.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. S. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – T. 59. – №. 5. – S. 489-501.
  16. Roschin P. V. et al. Experimental investigation of heavy oil recovery from fractured-porous carbonate core samples by secondary surfactant-added injection//SPE Heavy Oil Conference-Canada. – Society of Petroleum Engineers, 2013.
  17. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. -2015. -№ 6-1 (37). -S. 120-122.

УДК 553.982:539.551

Характеристика высоковязких нефтей и условия залегания их скоплений

Э .М. ХАЛИМОВ, И.М. КЛИМУШИН, Л.И. ФЕРДМАН, Н.И. МЕССИНЕВА, Л.Н. НОВИКОВА (ВНИИ)

Снижение темпов прироста ресурсов нефти обусловливает повышенный интерес к высоковязким нефтям (ВВН), число месторождений которых во многих странах мира в последние годы значительно возросло. Так, в СССР количество месторождений таких нефтей, открытых за период 1961-1984 гг., увеличилось в несколько раз. В ряде капиталистических стран (США, Канада, Венесуэла) разработка месторождений ВВН играет заметную роль в стабилизации уровней добычи нефти .

Термин «высоковязкие нефти» не имеет строгого количественного определения. Это касается как нижней, так и верхней границ величин вязкости (), которые определяются главным образом с технологических позиций. По существующим у нас в стране представлениям к высоковязким относят нефти с >=0,03 Па*с в пластовых условиях, исходя из предположения, что применение обычного (чистого) заводнения эффективно при вытеснении нефтей с вязкостью меньше этого значения. В системе Миннефтепрома эта величина используется как при дифференцированном анализе структуры запасов нефти в стране, так и при оценке перспектив добычи ее за счет применения новых методов повышения нефтеотдачи. Имеются, однако, публикации , в которых в качестве нижней границы вязкости ВВН называются 0,01 и 0,04 Па*с.

В иностранной литературе, особенно американской, чаще употребляется термин «тяжелые нефти», который отождествляется с понятием «высоковязкие нефти». По разным источникам , к ним относят нефти плотностью () свыше 0,920-0,935 г/см 3 (10-20° АНИ). Вообще же можно высказать предположение, что использование плотности нефти в качестве классификационного критерия обусловлено большей простотой и оперативностью ее определения по сравнению с вязкостью.

При существовании общей зависимости между плотностью и вязкостью нефтей в Советском Союзе и за рубежом выявлено достаточно большое число залежей, содержащих тяжелые, но не высоковязкие нефти или высоковязкие, но не тяжелые нефти . В понятии «тяжелые высоковязкие нефти» смешаны две разные характеристики нефтей, используемые в промысловой практике для различных целей. Плотность нефтей представляет интерес для специалистов, занимающихся вопросами ее переработки, а вязкость привлекает внимание специалистов в области разработки нефтяных месторождений.

Кроме того, причины утяжеления и снижения подвижности нефтей едины и в то же время различны. В случаях их единой природы, например, процессов деасфальтизации или биодеградации, отмечается одновременное и чаще всего одномасштабное увеличение плотности и вязкости. Но тяжесть нефтей нередко определяется содержанием в них металлов, механических примесей, серы, однако это не обязательно должно увеличивать вязкость нефтей. В то же время, повышенное содержание нефти. Именно подобного рода особенности влекут нарушение зависимости между различными физико-химическими ха рактеристиками нефтей.

За верхнюю границу вязкости ВВН за рубежом чаще всего принимают величину 10 Па*с . Это обосновывается тем, что залежи нефти вязкостью менее указанной величины в отличие от битумных можно разрабатывать, хотя и неэффективно, на естественном режиме через скважины. В качестве верхней границы плотности ВВН рекомендовались значения от 0,965 до 1 г/см 3 .

У нас в стране определение этой границы осуществлялось либо на основе изучения группового состава нефтей , либо по величине их вязкостей, отмечаемой в большинстве залежей , либо статистическим методом . Именно этим можно объяснить значительные расхождения в величинах некоторых характеристик ВВН, рекомендуемых различными авторами. Причем нередко смешиваются термины «высоковязкие нефти» и «природные битумы» .

Большинство отечественных исследователей указывают величины предельной вязкости ВВН, не превышающие 1-2 Па*с. При этом необходимо отметить низкую степень изученности физико-химических свойств ВВН, особенно на месторождениях Средней Азии и Западной Сибири, по которым имеются лишь единичные их пробы.

Вместе с тем представляется целесообразным за предельную вязкость ВВН принять величину 10 Па*с, учитывая последние данные, нашедшие отражение в материалах XI Мирового нефтяного конгресса , и для приведения используемой в СССР классификации УВ в соответствие с международной.

Хотя вязкость УВ во многом определяет выбор методов и способов их извлечения, однако одного этого параметра недостаточно при отнесении их к тому или иному виду. При решении подобного вопроса необходим комплексный подход и прежде всего учет группового состава УВ. Дифференциация УВ по величине их плотности, как это практикуется за рубежом, на наш взгляд, мало обоснована.

Анализ материалов более чем по 500 залежам ВВН Советского Союза показал, что состав и свойства последних изменяются в широких пределах: вязкость до 15 Па*с, плотность от 0,838 до 0,998 г/ см 3 , содержание (%): смол достигает 72, асфальтенов 14,3 углерода 72,6-86,1, водорода 11,4, серы 5,2.

Изучение изменения группового состава ВВН позволило выделить три группы таких нефтей с учетом характера распределения их вязкости ().

Проведенный анализ выявил существенное различие состава ВВН выделенных групп. Примечателен тот факт, что высокие значения содержания масел (более 80 %) отмечаются по всему диапазону изменения вязкости; в содержании смол подобных перекрытий значительно меньше. В то же время выявляется большая изменчивость наличия смол и асфальтенов по сравнению с содержанием масел.

В условиях частого отсутствия данных о вязкости нефтей практический интерес представляет установление ее взаимосвязи с плотностью. Подобная зависимость для отечественных и зарубежных месторождений нефти и природных битумов приводится в работе , однако точность ее недостаточно высока (коэффициенты корреляции 0,37-0,52).

Основываясь на результатах проведенных нами исследований, была предпринята попытка учесть групповой состав нефтей при изучении зависимости между и . Установлено, что среди основных характеристик состава нефтей относительно устойчивая связь этих двух параметров (коэффициенты корреляции 0,67-0,75) проявляется при учете содержания в них смол ().

Основное применение получаемой зависимости - определение вязкости нефтей по известным двум другим параметрам. Анализ же ее свидетельствует о соответствии названных выше граничных значений некоторых параметров ВВН. Так, их вязкость при предельной плотности, принимаемой многими отечественными и зарубежными исследователями равной 0,965 г/ см 3 , и среднем содержании в них смол около 30 % составляет 2 Па*с, а при максимальном значении =0,998 г/см 3 - около 10 Па*с.

Месторождения ВВН выявлены практически во всех основных нефтедобывающих районах Советского Союза, расположенных в 12 нефтегазоносных бассейнах (НГБ) различных генетических типов.

Наиболее активно процессы образования ВВН происходили в бассейнах впадин и синеклиз древних и молодых платформ. В пределах платформенных НГБ установлено наибольшее число месторождений с исследуемыми нефтями (237), в которых содержится 93,3 % всего количества ВВН. Основная же часть последних приурочена к Волго-Уральскому (34,4 %), Западно-Сибирскому (24,9 %) и Тимано-Печорскому (23,6 %) бассейнам. Вместе с тем они различаются существенно условиями залегания и характеристикой масштабов скоплений ВВН. Так, для первого из них характерно присутствие большого числа мелких, в пределах двух других выявлено соответственно 6 и 13 более значительных по размерам месторождений ВВН.

В бассейнах предгорных прогибов альпийских орогенных поясов рассматриваемые месторождения немногочисленны (14). На их долю приходится всего 1,3 % всего количества ВВН, из которых более половины сосредоточено на месторождениях Азово-Кубанского НГБ.

Бассейны межгорных впадин и прогибов альпийских орогенов включают 39 месторождений ВВН, доля которых составляет 5,4 %.

Залежи ВВН в осадочном разрезе нефтегазоносных бассейнов выявлены в широком диапазоне глубин: от 50 (Доссорское, Танатарское в Казахстане) до 4800м (Сарыкамышское в Таджикистане). Однако наибольшее число залежей, в которых содержится более половины ресурсов ВВН (51,1 %), залегает на глубинах 800-1400 м (). Для них характерны пластовые температуры порядка 23-25 °С и давление 12-14 МПа . Интересно, что относительно крупные скопления ВВН локализуются в интервале глубин от 130 до 950 м.

Отмеченное распределение в целом отвечает тем теоретическим концепциям, в соответствии с которыми процессы превращения нефтей происходили непосредственно в пласте под влиянием тектонических, геохимических и гидродинамических факторов.

Основные ресурсы ВВН (58,2 %) связаны с палеозойскими отложениями (девон, карбон, пермь) нефтегазоносных бассейнов впадин и синеклиз древней Восточно-Европейской платформы. Мезозойские образования контролируют залежи ВВН в бассейнах молодых платформ (35,1 % ресурсов). В НГБ предгорных и межгорных прогибов и впадин скопления ВВН связаны с отложениями палеогена, неогена и частично антропогена.

Залежи ВВН приурочены к терригенным и карбонатным коллекторам, в которых сосредоточено соответственно 63,5 и 26,5 % ресурсов. В отдельных районах они связаны только с терригенными породами (Тюменская область, Азербайджан, о. Сахалин, Краснодарский край, Чечено-Ингушская АССР), в других - только с карбонатными (Оренбургская область, Таджикистан).

В большинстве случаев залежи ВВН находятся совместно с залежами обычных нефтей, обусловливая в определенной степени зональный характер строения нефтяных месторождений.

Подтверждение этого - закономерное уменьшение вязкости нефтей с глубиной (см. ).

Отмечается также и определенная пространственная зональность в размещении месторождений ВВН В пределах НГБ. В бассейнах впадин древних и молодых платформ ареалы распространения залежей ВВН достаточно четко контролируются границами положительных структурных элементов II и III порядков: сводов, валов, мегавалов, как правило, осложняющих центральные части бассейнов. В бассейнах предгорных и межгорных прогибов и впадин наиболее благоприятными структурными условиями для концентрации скоплений ВВН характеризуются прибортовые зоны развития систем антиклинальных складок. При этом масштабы образования скоплений ВВН находятся в прямой зависимости от величины воздымания крупных структурных элементов на завершающем кайнозойском этапе тектогенеза .

Выводы

1. Для решения практических задач целесообразно в качестве основного классификационного критерия нефтей использовать их вязкость в пластовых условиях и изучать ее зависимость от плотности и группового состава.

2. Для более обоснованного установления предельных значений параметров ВВН необходимо значительно увеличить количество проб и число их физико-химических анализов. Предлагаемое в работе предельное значение вязкости ВВН потребует существенного изменения отношения к освоению неглубокозалегающих скоплений УВ, относимых ранее к природным битумам.

3. Месторождения ВВН развиты практически во всех основных нефтедобывающих районах страны. По условиям залегания они аналогичны залежам обычных нефтей, отличаясь меньшими масштабами проявлений, глубиной залегания, пластовыми температурами и давлениями.

СПИСОК ЛИТЕРАТУРЫ

1. Веревкин K .И., Дияшев Р.Н. Классификация углеводородов при выборе методов их добычи.- Нефтяное хоз-во, 1982, № 3, с. 31-34.

2. Геологические факторы формирования скоплений природных бутумов / Э.М. Халимов, И.М. Климушин, Л.И. Фердман, И.С. Гольдберг - Геология нефти и газа, 1984, № 9 , с. 46-52.

3. Депюи Марк А. Разработка месторождений тяжелой нефти.- Нефть, газ и нефтехимия за рубежом, 1982, № 1, с. 34-37.

4. Мартос В.Н. Разработка залежей тяжелых и вязких нефтей. Обзор. Сер. Нефтепромысловое дело. М., ВНИИОЭНГ, 1982, с. 41-42.

5. О классификации и рациональном использовании высоковязкой нефти Татарии / С.X . Айгистова, Р.X . Муслимов, Р.С. Касимов, А.Н. Садыков.- РНТС ВНИИОЭНГ. Сер. Нефтепромысловое дело. М„ 1980, № 2, с. 13-15.

6. Перспективы ввода в разработку залежей тяжелых нефтей и природных битумов / И.М. Мякишев, Р.Н. Дияшев, З.А. Янгуразова, Р.X . Муслимов.- Нефтяное хоз-во, 1983, № 2, с. 32-36.

7. Скороваров Ю.Н., Требин Г.Ф., Капырин Ю.В. Условия залегания тяжелых высоковязких нефтей месторождений СССР.- Геология нефти и газа, 1984, № 7 , с. 11 -13.

8. Формирование и пространственное распределение вязких и твердых нафтидов в нефтегазоносных бассейнах / Н.Н. Лисовский, Э.М. Халимов, Л.И. Фердман, И.М. Климушин - Мат. XXVII Международного геол. конгресса. Секция С, 1-3, т. 13, М., 1984, с. 34-45.

9. Byramjee R.J. Heavy crudes and bitumes categorized to help assess resources, technigues,- Oil and Gas, 1983, vol. 81, No 27, p. 78-82.

10. Martinez A.R., Ion D.C., De Sorsy G.J. Classification and nomenclature systems for petroleum reserves.- Special report for the XI World Petroleum Congress. London , 1983.

Таблица Характеристики пластовых нефтей различной вязкости

Вязкость, Па*с

Плотность, г/см 3

Содержание, %

интервал изменения

среднее значение

коэффициент вариации, %

масел

смол

асфальтенов

интервал изменения

среднее значение

коэффициент вариации, %

интервал изменения

среднее значение

коэффициент вариации, %

интервал изменения

среднее значение

коэффициент вариации, %

0,03-0,1

0,838-0,929

0,886

1,8

66,2-99,0

82,6

9,4

0,2-26,0

14,7

39,8

0,1-8,7

2,7

85,2