Лаваль изобретатель паровой турбины. История изобретения паровых турбин

— это тепловой двигатель, тепловая энергия пара в котором преобразуется в механическую работу. Вместе с гидротурбинами огромное значение для развития мировой энергетики имело изобретение и широкое применение паровых турбин, которые являются основным двигателем тепловых (ТЭС) и атомных электростанций (АЭС). Принцип действия паровых турбин схож с гидравлическими, разница лишь в том, что в первом случае турбину приводила в действие струя разогретого пара, во втором — струя воды. Паровая турбина оказалась проще, экономичнее и удобнее, чем паровая машина Уатта. Изобретатели давно пытались создать машину (паровую турбину), где струя пара напрямую бы вращала рабочее колесо. При этом, скорость вращения колеса должна быть очень высокой за счет большой скорости струи пара.

В 1883 году Лавалю удалось создать первую паровую машину, которая представляла легкое колесо с лопатками. Через поставленные под углом сопла на лопатки направляли пар, который давил на них и раскручивал колесо. В 1889 году Лаваль усовершенствовал конструкцию, применив сопло, которое расширялось на выходе. Благодаря этому увеличилась скорость пара и, соответственно, скорость вращения ротора. Полученная струя направлялась на один ряд лопаток, которые были насажены на диск. Давление пара и число сопел определяли мощность турбины, работающей по активному принципу. Если отработанный пар не попадал в воздух, а направлялся в конденсатор, где при пониженном давлении сжижался, то мощность турбины оказывалась наивысшей. Турбина Лаваля получила всеобщее признание, она давала большие выгоды при соединении с машинами, имеющими высокую скорость (сепараторы, пилы, центробежные насосы). Использовали ее и в качестве привода для электрогенератора, правда, только через редуктор (из-за ее высокой скорости).

В 1884 году английский изобретатель Парсонс запатентовал многоступенчатую реактивную турбину, специально созданную им для приведения в действие электрогенератора. При меньшей скорости вращения энергия пара здесь использовалась максимально благодаря тому, что пар, проходя через 15 ступеней, расширялся постепенно. Каждая ступень имела пару венцов лопаток. Неподвижным был один венец с направляющими лопатками, которые крепились на корпусе турбины. Второй — подвижный с рабочими лопатками на диске, который был насажен на вращающийся вал. Лопатки венцов (неподвижных и подвижных) сориентированы в противоположных направлениях. Это была первая паровая турбина, которая начала с успехом применяться в промышленности.

В 1889 году уже 300 турбин применяли для получения электроэнергии, в 1899 году появилась первая электростанция с турбинами Парсонса. В 1894 году был спущен на воду первый пароход «Turbinia» с приводом от паровой турбины. Вскоре паровые турбины начали устанавливать на быстроходных судах. Французский ученый Рато вывел комплексную теорию турбомашин на основе имевшегося опыта. Со временем турбина Парсонса уступила место компактным активно-реактивным турбинам. Хотя и сегодня паровые турбины в основном сохранили черты турбины Парсонса.

Турбина представляет собой двигатель, в котором энергия воды, пара и газа преобразовывается в механическую работу посредством вращающего движения ротора. В турбине струя воды или пара воздействует на специальные элементы — лопатки, и приводит их в движение. Лопатки располагаются по всей длине окружности ротора.

В зависимости от направления потока воды, пара или газа через турбину они подразделяются на осевые — когда поток движется параллельно оси турбины, и радиальные — поток движется перпендикулярно оси.

Турбина используется на наземном, воздушном и морском транспорте в качестве составной части двигателя, которая увеличивает его мощность. Также турбина может применяться и на электростанциях, где она служит в качестве привода электрического генератора.

С давних пор проводились неоднократные попытки создания различных вариантов турбин. До наших дней даже дошло описание паровой турбины, сконструированной Героном Александрийским в 1 веке нашей эры. Но только в конце 19 века, когда уровень термодинамики, металлургии и машиностроения достиг необходимых высот, Чарлз Парсонс и Густаф Лаваль независимо друг от друга изобрели первые паровые турбины, пригодные для производства.

Ниже в хронологическом порядке представлена краткая история создания различных типов турбин.

I век нашей эры — самое раннее дошедшее до наших дней документальное свидетельство создания паровой турбины Героном Александрийским. К сожалению, данное изобретение долго рассматривалось в качестве игрушки и полный потенциал данной турбины так и не был изучен до конца.

1500 — Леонардо да Винчи рассматривал в своих чертежах так называемый «дымовой зонт», принцип работы которого заключался в следующем: огонь нагревал воздух, который затем поднимался через соединенные друг с другом лопасти. Эти лопасти вращали обычный вертел для жарки.

1551 — Таги-аль-Дин сконструировал паровую турбину, использовавшуюся в качестве источника питания самовращающегося вертела.

1629 — итальянский инженер Джованни Бранк создал мельницу, которая работала за счет того, что сильная струя пара вращала турбину и вращательное движение передавалось от турбины к шестеренке — ведомому механизму.

1678 — фламандский ученый Фердинанд Вербист разработал первое самоходное транспортное средство на основе паровой машины. Однако нет никаких доказательств, подтверждающих, что оно было построено на самом деле.

1791 — англичанин Джон Барбер разработал настоящую газовую турбину для приведения в движение безлошадной повозки и получил патент на свое изобретение.

1872 — венгерский изобретатель Франц Столц создал первый газотурбинный двигатель.

1890 — шведский инженер и изобретатель Густаф де Лаваль изобрёл сопло, которое предназначалось для подачи пара в турбину. Впоследствии оно получило его имя и используется по сей день в том же назначении.

1894 — англичанин Чарльз Парсонс получил патент на идею корабля — парохода, который приводится в движение паровой турбиной. Этот принцип тяги широко используется и в наши дни.

1895 — на электростанции в Кембридже были установлены три четырёхтонных генератора радиального потока Парсонса мощностью 100 кВт, которые использовались для электрического освещения городских улиц.

1903 — норвежец Эджидиус Эллинг построил первую газовую турбину, способную вырабатывать ещё больше энергии, чем было необходимо для её работы. В то время это рассматривалось как серьезное достижение, ведь о термодинамике тогда ещё не имели никакого представления. Такая газовая турбина вырабатывала 11 л.с. с использованием вращающихся компрессоров.

1913 — Никола Тесла получил патент на свою турбину Тесла, основанную на эффекте пограничного слоя.

1918 — компания General Electric, являющаяся в настоящее время одним из ведущих производителей турбин, запустила собственное производство для дальнейших продаж газовых турбин.

1920 — английский инженер Алан Арнольд Гриффит изменил теорию протекания газового потока в теорию течения газа по аэродинамической поверхности, которая была более формализована и применима к турбинам.

1930 — английский инженер-конструктор Фрэнк Уиттл получил патент на универсальную газовую турбину, предназначенную для реактивного движения. Двигатель с такой турбиной впервые был использован в апреле 1937 г.

1934 — аргентинский инженер Рауль Патерас Пескара запатентовал новое изобретение — поршневой двигатель, являющийся генератором для газовой турбины.

1936 — немецкие конструкторы Макс Хан и Ханс фон Охайн разработали и запатентовали в Германии собственный новый двигатель с реактивной турбиной. Они разрабатывали его в то же время, что и Фрэнк Уиттл в Великобритании.

XII столетие ознаменовалось появлением первой паровой машины. Это являлось тем событием, когда в промышленности и технике появились механизированные машины, постепенно вытеснившие человеческий труд. Развитие промышленности не стояло на месте. Вся история её развития характеризуется поиском решений изобретателями разных стран одной задачи - создания поровой турбины.

Можно утверждать, что история изобретения турбин берёт начало в XIX столетии, когда шведским ученым Карлом Патриком Лавалем был изобретён молочный сепаратор. В поисках решения вопроса об увеличении скорости в данном приборе, Карл изобрёл паровую турбину, которая была сконструирована в конце XIX века. Турбина имела вид колеса с лопастями, струя пара, выходящая из трубы, давила на эти лопасти и колесо раскручивалось. Трубки для подачи пара учённый подбирал различной величины и формы долгое время, и в результате длительных экспериментов сделал вывод, что трубка должна быть конусовидной формы. Это устройство используется по сегодняшний день, и имеет название «сопло Лаваля». Не смотря на то, что изобретение Лаваля было достаточно простым на первый взгляд устройством, оно стало чудом инженерии. А через некоторый период времени учёными - теоретиками было доказано, что изобретение паровых турбин с использованием сопла Ловаля даёт самый высокий результат.

Далее история изобретения турбин продвигается к началу XX столетия, когда французский изобретатель Огюст Рато сконструировал многоступенчатую паровую турбину, в которой были рассчитаны оптимальные показатели падения давления для каждой из ступени турбины.

После всего, американским учёным Гленом Кертисом, была разработана турбина, использовавшая совершено новую систему, она имела маленькие размеры и надёжную конструкцию. Данные турбины использовались при конструкции двигательных систем кораблей, их устанавливали сначала на миноносцах, потом на военных кораблях и, наконец, на кораблях пассажирских.

Таким образом, история изобретения турбин раскрывает несколько путей поиска удобного и экономичного теплового двигателя учёными XIX столетия. Одними изобретателями разрабатывался в котором топливо бы сгорало в цилиндре, поэтому такой двигатель хорошо бы помещался в транспорте. Другими учёнными совершенствовался с целью повышения его мощности и экономичности.

На сегодняшний день история изобретения турбин начинается с таких великих имён, как Лаваль, Парсонс и Кертис. Все эти учённые и изобретатели сделали огромный вклад в развитие промышленности и транспортной связи во всём мире. Все их достижения имели большую важность для всего человечества. А самым главным стало распространение такого вида энергии, как электричество. В настоящее время изобретения данных учёных широко используются во всём мире при строительстве кораблей и электростанций.

Дата публикации 07.02.2013 02:04

Сейчас «сердцем», дающим жизнь большинству созданных человеком машин, является двигатель внутреннего сгорания (ДВС). Однако так было не всегда.

От прошлого к настоящему

До эры ДВС долгое время краеугольным камнем технического прогресса была паровая турбина. Это тот редкий случай, когда изобретения оказываются настолько удачными, что продолжают использоваться и в наше время, правда, с рядом усовершенствований. Отметим, что не следует путать паровые турбины и классические машины, работающие на пару (тот же паровоз). У них отличен принцип работы, а КПД несравнимо.

Паровая турбина. Изобретение

Считается, что впервые подобную турбину разработал и воплотил в металле швед П. Лаваль. В далеком 1889 году возникла необходимость в эффективном двигателе для молочного сепаратора, способном создавать вращение с частотой не менее 100 оборотов в секунду. Принцип работы турбины был довольно прост: на поверхности закрепленного на оси цилиндра размещались лопатки, в которые ударяла струя перегретого пара из находящегося рядом котла. Потенциальная энергия пара преобразовывалась в кинетическую, приводя цилиндр во вращение. Лаваль опытным путем определил, что наилучших результатов удается добиться, если поток пара будет вырываться через конусообразные насадки, а не прямые трубки.

Однако более известна паровая турбина англичанина Ч. А. Парсонса. Он разработал ее практически параллельно с Лавалем, но не только усовершенствовал, но и догадался соединить с электрическим генератором (прообраз современной системы Г-Д).

В 1894 году он создал корабль, приводимый в движение двигателем на основе паровой турбины (максимальная скорость около 60 км/ч). Идея оказалась настолько успешной, что после 1900 года большинство военных кораблей были оборудованы подобными моторами.

Наше время

Разумеется, с момента изобретения и первых моделей паровая турбина была модернизирована, а недостатки конструкции устранены. Классическая паротурбинная установка включает в себя две составные части: неподвижный статор с блоком сопел и вращающийся ротор (цилиндр) с размещенными на его корпусе лопатками. В зависимости от направления движения струи пара, различают две разновидности конструкции ротора – радиальные и аксиальные. Первые представляют собой отголоски первоначальных решений: в них вектор распространения пара перпендикулярен оси цилиндра, а лопатки параллельны ей. В аксиальных же направление движения пара совпадает с осью, а вращение создается благодаря особой ориентации лопаток.

Более эффективно использовать энергию пара возможно в паровых турбинах с несколькими цилиндрами (многокорпусные). Однако из-за громоздкости и усложнения конструкции подобные решения применяются там, где их использование экономически оправдано. Цилиндры корпусов могут размещаться как на общей оси, так и быть механически независимыми. Система уплотнений и диафрагм предотвращает ненормальную работу всей установки (забор внешнего воздуха, утечка пара, обход степеней и пр.).

Развитие технологии паровых турбин

При малых уровнях давления пара и низких мощностях классические турбины недостаточно эффективны. Им на смену пришла паровая винтовая машина. Эта российская разработка представляет собой естественную эволюцию первоначальной модели. Внутри корпуса располагаются роторы с винтообразными лопастями. Поступающий пар заполняет пространство между зубьями ближайших винтов, происходит оборот и дальнейшая подача прекращается. Далее в полости для пара полученная порция расширяется и совершает работу по вращению винтового ротора. Такая конструкция позволяет более полно использовать накопленную паром энергию.

Турбина Лаваля

Впоследствии, вспоминая о клостерском периоде своей жизни и преследовавших его в это время идеях, Лаваль писал в одной из своих записных книжек:

«Я был всецело проникнут истиной: большие скорости - вот истинный дар богов! Я уже в 1876 году мечтал об успешном применении пара, направленного непосредственно на колесо для получения механической работы. Это было смелое предприятие. В те времена употреблялись лишь малые скорости. Скорости, позднее достигнутые в сепараторе, в то время казались невероятными, а в современных учебниках писалось о паре: жаль, что плотность пара так мала, что не допускает даже мысли о применении его на колесе для создания энергии… И все-таки мне удалось осуществить мои смелые мечты».

В этом признании, свидетельствующем, что Лаваль отдавал себе полный отчет в том, какое значение может иметь смутная идея, родившаяся в его сознании в Клостере во время неудачного опыта с пескоструйным аппаратом, нет ничего преувеличенного.

Следует напомнить, что в то время, когда идея паровой турбины впервые возникла у Лаваля, не было еще произведено достаточной подготовительной работы. Правда, паровая турбина, как мы уже видели, являлась древнейшим тепловым двигателем, существовавшим еще задолго до появления паровой машины, но, несмотря на массу проектов, возникавших в течение многих лет, никому еще не удавалось эту паровую турбину превратить в практически применяемый двигатель.

Только большая научная подготовка, настойчивость и неоспоримый изобретательский талант могли помочь Лавалю поставить на службу человечеству неслыханные дотоле большие скорости, даваемые паровой турбиной.

Первые работы Лаваля в области паровой турбины имели своей непосредственной целью создать простой и дешевый двигатель для сепаратора.

Для приведения во вращательное движение оси сепаратора с большим числом оборотов требовались специальные механизмы или же специальные двигатели. В ручном сепараторе Лаваля применялась зубчатая и червячная передача от рукоятки, делающей 40 оборотов в минуту, к шпинделю, делавшему 7 тысяч оборотов за то же время. В механических сепараторах, работавших от конного привода или от паровой машины, эта передача делалась ременной к промежуточному шкиву на горизонтальной оси, а от него уже шла канатная передача к шкиву на шпинделе.

Лаваль очень хорошо помнил, какую мускульную силу нужно было затрачивать ему и Зундбергу для приведения в действие сепаратора в те времена, когда на Регеринсгатане толпились любопытные, которым Лаваль должен был, обливаясь потом, демонстрировать свою машину.

Чтобы избавиться от сложной и неудобной передачи, требовавшей дополнительной механической энергии, Лаваль с самого начала пришел к мысли вращать шпиндель сепаратора с помощью реактивного турбинного колеса, являющегося не чем иным, как «эолипилом» Герона Александрийского.

Передачи Лаваля для увеличения числа оборотов сепаратора

В самом начале 1883 года Лаваль построил такой первый турбинный сепаратор. Английский патент, взятый им 2 апреля 1883 года, означенный № 1622, на турбину, «работающую паром или водой», и был первым патентом Лаваля в той области техники, которая принесла ему мировую известность.

Эта турбина представляла собой С-образное колесо, состоящее из двух изогнутых труб. Колесо было насажено непосредственно на оси сепаратора. Свежий пар, давлением не менее четырех атмосфер, выходил из этих изогнутых трубок и реактивным действием выходящей струи приводил в движение колесо.

Лаваль не придавал слишком большого значения этой своей работе и, демонстрируя турбинный сепаратор друзьям, заметил:

Достоинство этой турбины - ее простота… Я думаю, что она поможет распространению наших машин, так как установка парового котла для нее легко может быть осуществлена даже в небольшом хозяйстве.

Вслед затем на рынок было выпущено несколько подобных турбинных сепараторов, однако они не получили распространения. Вопреки предположениям изобретателя, сепараторы эти оказались совсем неэкономичными: турбина расходовала слишком много пара. В то же время изготовление турбинных колес при тогдашнем состоянии машиностроительной техники обходилось очень дорого, и они были далеки от совершенства.

Турбинный сепаратор Лаваля и турбинное колесо

Впрочем, впоследствии подобные турбинные сепараторы в несколько усовершенствованном виде вновь начали строиться и получили распространение, так как удалось значительно понизить расход пара их турбинами.

Но кроме сепаратора, во всяком случае, эта первая турбина Лаваля нигде не применялась.

Раз занявшись турбиной, Лаваль все-таки хотел довести конструкцию турбинного сепаратора до совершенства, обеспечивающего таким сепараторам практическое применение. Неудача с первой турбиной к тому же затрагивала его самолюбие, и ему хотелось оправдать веру друзей в его конструкторский талант.

Продолжая разрабатывать конструкцию, он в 1886 году построил второй турбинный сепаратор с тем же реактивным колесом. Колесо состояло на этот раз из прямых каналов, снабженных конусообразными выходными насадками, с подводом пара через полую ось. Но и эта турбина, в принципе ничем не отличавшаяся от первой, также не помогла распространению турбинных сепараторов.

Однако в дальнейшем эти конические насадки сыграли решительную роль в истории создания турбины.

Дело в том, что эти насадки, как это заметил Лаваль при первых же опытах с ними, представляли собой замечательный аппарат для более совершенного использования кинетической энергии пара. Пар, под влиянием разности давлений в начале и конце этих насадок, проходя через них, получал ускорение вследствие перехода потенциальной энергии пара в его кинетическую энергию, живую «ветровую» силу.

Изобретательному уму Лаваля, сделав это наблюдение, легко было заключить, что если этот пар с полученной скоростью его истечения направить этим же самым аппаратом на лопатки рабочего колеса, то он произведет давление на лопатки, оказывающие ему сопротивление, и, отдавая им часть своей энергии, заставит колесо вращаться.

Таким образом, напав на мысль - это было в 1886 году, десять лет спустя после случая в Клостере - применить коническую насадку как аппарат для преобразования потенциальной энергии пара и поместить эту насадку как направляющий аппарат перед лопатками рабочего колеса, - Лаваль перешел от опытов с чисто реактивной турбиной к турбине чисто активной. Иными словами, мысль изобретателя от эолипила обратилась к другой готовой технической форме, к знаменитой машине Джиованни Бранка, той самой машине, о которой принято было думать, что струей пара никогда нельзя получить сколько-нибудь значительной силовой мощности.

Восставая против этого общепринятого мнения, Лаваль с гениальной простотой решил задачу, несмотря на чрезвычайные трудности, которые тотчас же встали перед ним, как только он взялся за осуществление идеи.

Теперь уже речь шла не о специальном двигателе для сепаратора, - Лаваль это отлично понимал. Перед ним стояла задача постройки того быстроходного двигателя, которого требовала современная промышленность.

Лаваль ни на минуту не сомневался в практическом успехе своего будущего создания. О закулисной борьбе против всякого нового двигателя, которую должен будет повести капитал, вложенный в паровые машины и в их производство, о сопротивлении предприятий, уже освоивших паровые машины и не расположенных тратить время и средства на освоение нового двигателя, он, конечно, не думал.

Все дело заключалось, как ему казалось, только в технических трудностях, а на преодоление их у него было достаточно теперь не только энергии, опыта, знаний, но и материальных средств в виде акций процветающего «Сепаратора», которым командовал изумительный Бернстрем.

Материальные условия для развития деятельности Лаваля были в это время очень благоприятными. Человек скромных потребностей, интересовавшийся лишь тем, что имело непосредственное отношение к технике, он тратил все свои огромные средства только на оборудование своих мастерских и лабораторий и ничего - на себя. Он не курил, он с отвращением, уступая просьбам, пил вино в редких и очень торжественных случаях; единственным его пристрастием было крепкое кофе. Он был расчетлив в житейских делах, но на свои опыты, он никогда не жалел никаких денег. Для этой цели он постепенно продавал принадлежавшие ему акции «Сепаратора», с каждым днем все выше и выше оценивавшиеся на бирже, и укреплял материальную базу для своих изобретательских работ. Он понимал, что готовое изобретение может вернуть ему все затраченные средства, но что капиталистическое хозяйство не даст ему ни одного гроша для предварительных опытов и изысканий.

К моменту возникновения идеи турбины Лаваль, осуществив свои мечты, имел прекрасную лабораторию и строящиеся мастерские. У него работал штат техников и инженеров. Весь тогдашний квартал между Хантверкарегатаном и озером Мелар, влево от Пильгатана, принадлежал Лавалю. Здесь располагались его мастерские и лаборатория, где производились самые разнообразные опыты, начиная от ветряных двигателей и кончая ацетиленовыми лампами.

С величайшим энтузиазмом Лаваль взялся за осуществление паровой турбины, мысль о которой так долго вынашивалась им.

Теоретически вопрос для изобретателя был ясен.

Полная работа пара в проектируемой им турбине разделялась на два процесса: во-первых, преобразование потенциальной энергии пара в кинетическую, и во-вторых, передача кинетической энергии пара движущимся частям машины - лопаткам колеса.

Первая часть работы пара, а именно преобразование потенциальной энергии пара в кинетическую, должна была совершаться в особом аппарате, построенном на принципе конической насадки. В нем давление пара наиболее полно преобразовывалось в скорость истечения. Этот аппарат, получивший впоследствии известность как «сопло Лаваля», представляет собой коническую трубу с постепенным расширением к выходу. Расширяющееся сопло позволяет понизить давление пара, подводимого из котла, и повысить скорость его истечения до скорости, значительно превышающей скорость распространения звука.

Получив 29 апреля 1889 года патент на применение этого аппарата в турбине, Лаваль перешел к решению всей проблемы в целом.

Этому предшествовали опыты в мастерских. Задача, которую он в эти годы решал, заключалась в том, чтобы превратить полученную при расширении пара энергию в механическую работу турбинного колеса с одним рядом лопаток на нем.

Турбина Лаваля

Задача эта, легкая на первый взгляд, оказывалась в действительности чрезвычайно трудной. Возбужденный, небритый, питавшийся едва ли не одним крепким кофе, Лаваль то просиживал целые ночи за письменным столом, то безвыходно с медвежьим терпением трудился в мастерских, то бродил, как помешанный, с пустыми глазами, из комнаты в комнату, снова садился к столу и считал и чертил и вновь пересчитывал, и вновь перечерчивал. Иногда он раскрывал старые руководства и новые теоретические исследования и бросал их с досадой, натыкаясь повсюду на ошибки расчетов, опытов и заключений.

«Что нужно?» спрашивал он самого себя, как строгий учитель растерявшегося школьника, и вслух заставлял себя твердить, как заданный урок:

Прежде всего скорость турбинного колеса на окружности должна быть чрезвычайно значительной для того, чтобы результаты оказались экономически выгодными. Для достижения такой большой окружной скорости при колесе не слишком больших размеров нужно иметь неслыханное число оборотов колеса, порядка 20–30 тысяч оборотов в минуту…

О, эти скорости вполне соответствовали творческим стремлениям Лаваля! Но как сконструировать вал и подшипники, которые давали бы возможность без вибрации работать турбинному колесу с такой неслыханной скоростью? и как добиться прочности и уравновешенности турбинного диска?

В самом деле, если представить себе колесо, диаметром всего полметра, делающее 30 тысяч оборотов в минуту, т. е. имеющее окружную скорость в 340 метров в секунду, и допустить, что это колесо не сбалансировано на периферии хотя бы только на один грамм, то центробежная сила, которая при такой скорости возникнет, разнесет на куски все колесо!

Этот турбинный вал, это турбинное колесо теоретически готовой машины, но практически еще далекой от осуществления, преследовали Лакали даже во сне. Он видел, как диски разлетались на куски, разбивавшие стены противоположных домов, калечившие людей. Просыпаясь в ужасе, он опять садился за стол, пил кофе и думал. Не было сил, которые могли бы остановить творческое воображение этого упрямого человека, как ни велики были трудности, но ведь где-то в природе существовали же и законы их преодоления.

И Лаваль продолжал искать.

В мастерских опыты не прекращались. Применять для турбинного колеса обыкновенный жесткий, мощный вал оказывалось совершенно невозможно: во время опытов с такими валами в турбине при скорости 30–40 тысяч оборотов, машина легко приходила в дрожание, вал изгибался, и немыслимо было добиться хотя какой-нибудь надежности в эксплуатации. Опыты повторялись при самых разнообразных условиях, но вибрации машины устранить не удавалось. Надо было что-то принципиально изменить, и, бросая все, Лаваль снова и снова начинал искать выхода из положения.

Поиски были безуспешны до самого конца 1888 года. И как это часто бывает в трудных положениях, выход был найден, но совсем не там, где искал его Лаваль. Задача решалась не жесткостью, мощностью и прочностью системы, к чему стремился Лаваль сначала, а, наоборот, ее чрезвычайной гибкостью и податливостью.

Решению задачи предшествовало знакомство Лаваля с изобретателем этой системы, бароном Бетгольсгеймом, который в это время явился в Стокгольм по приглашению Бернстрема для переговоров о покупке его знаменитого патента «Альфа» акционерным обществом «Сепаратор».

Это был очень серьезный шаг нового директора общества. Хотя Лаваль, занятый в своих мастерских, давно уже отвлекся от непосредственного участия в делах «Сепаратора», но на этот раз, по настоянию друзей, он должен был принять живое участие в обсуждении стратегических планов Бернстрема, вступившего в решительную схватку со всеми конкурентами общества на мировом рынке.

Лаваль был нужен правлению и в качестве технического советника, так как в данном случае речь шла не только о чисто коммерческом предприятии, но и об изменении конструкции сепараторов, до сего времени выпускавшихся в продажу.

Планы Бернстрема сводились к тому, чтобы с патентом Бетгольсгейма выпустить на рынок машину, с которой вообще немыслимо было бы конкурировать.

Из книги Как уходили кумиры. Последние дни и часы народных любимцев автора Раззаков Федор

ТУРБИНА НИКА ТУРБИНА НИКА (поэт; покончила с собой (выбросилась из окна) 11 мая 2002 года на 28-м году жизни; похоронена на Ваганьковском кладбище в Москве).Турбина стала знаменита в середине 80-х, когда ее стихи стали публиковаться во всех советских СМИ. В 12 лет Ника получила в

Из книги Густав Лаваль автора Гумилевский Лев Иванович

Развитие турбины Лаваля и ее значение Как только в мастерских Лаваля были изготовлены первые турбины и произведено их испытание, доказавшее не только возможность, но и выгодность их практического применения, изобретатель, нисколько не сомневаясь в том, что вслед за тем

Из книги Память, согревающая сердца автора Раззаков Федор

Личные и общественные идеалы Лаваля Успехи Парсонса в области паротурбостроения, оценивавшиеся мировой технической печатью очень высоко, мало волновали Лаваля: предоставив другим работать в этой области, он сам обратился к новым проблемам, стоявшим, по его глубокому

Из книги В круге последнем автора Решетовская Наталья Алексеевна

Реверсивная турбина Лаваля Развитию своему в качестве судовых двигателей паровые турбины были всецело обязаны настойчивой, упорной и долголетней деятельности Парсонса. Уже в 1894 году Парсонсу, после долгих и осторожных экспериментов удалось сконструировать турбины,

Из книги автора

ТУРБИНА Ника ТУРБИНА Ника (поэтесса; покончила с собой (выбросилась из окна) 11 мая 2002 года на 28-м году жизни; похоронена на Ваганьковском кладбище в Москве). Турбина стала знаменита в середине 80-х, когда ее стихи стали публиковаться во всех советских СМИ. В 12 лет Ника

Из книги автора

У Пьера Лаваля Поведение и политические концепции Солженицына удивительно схожи с поведением и взглядами предателя французского народа Пьера Лаваля. Оба во имя «избавления» от существующего в государстве «зла» ратовали за поражение нации. И тот и другой - апологеты