Как была создана всемирная сеть - интернет (9 фото). Как разматывают Интернет: прокладка подводных кабелей

Касательно прокладки компанией Google собственного оптоволоконного кабеля связи по дну Тихого океана, который свяжет дата-центры компании в штате Орегон, США, с Японией. Казалось бы, это огромный проект стоимостью $ 300 млн. и длинной в 10 000 км. Однако, если копнуть немного глубже станет ясно, что данный проект является выдающимся только потому, что это будет делать один медийный гигант для личного использования. Вся планета уже плотно опутана кабелями связи и под водой их намного больше, чем кажется на первый взгляд. Заинтересовавшись этой темой я подготовил общеобразовательный материал для любопытствующих.

Истоки межконтинентальной связи

Практика прокладывания кабеля через океан берет начало еще с XIX века. Как сообщает википедия , первые попытки соединить два континента проводной связью были предприняты еще в 1847 году. Успешно связать Великобританию и США трансатлантическим телеграфным кабелем удалось только к 5 августа 1858 года, однако уже в сентябре связь была утеряна. Предполагается, что причиной стали нарушение гидроизоляции кабеля и последующая его коррозия и обрыв. Стабильная связь между Старым и Новым светом была установлена только в 1866 году. В 1870 году был проложен кабель в Индию, что позволило связать напрямую Лондон и Бомбей. В эти проекты были вовлечены одни из лучших умов и промышленников того времени: Уильям Томсон (будущий великий лорд Кельвин), Чарльз Уитстон, братья Сименсы. Как видно, почти 150 лет назад люди активно занимались созданием по протяженности в тысячи километров линий связи. И на этом прогресс, понятное дело, не остановился. Однако, телефонная связь с Америкой была установлена только в 1956 году, а работы длились почти 10 лет. Подробно об укладке первого трансатлантического телеграфного и телефонного кабеля можно прочитать в книге Артура Кларка «Голос через океан» .

Устройство кабеля

Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:
  • Долговечность
  • Быть водонепроницаемым (внезапно!)
  • Выдерживать огромное давление водных масс над собой
  • Обладать достаточной прочностью для укладки и эксплуатации
  • Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики

Рабочая часть рассматриваемого нами кабеля, по большому случаю, ни чем особым от обычной оптики не отличается. Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации, что видно из схематического рисунка справа. Давайте по порядку разберем назначение всех элементов конструкции.

Полиэтилен - внешний традиционный изоляционный слой кабеля. Данный материал является отличным выбором для прямого контакта с водой, так как обладает следующими свойствами:
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой.

Мировой океан содержит в себе, фактически, все элементы таблицы Менделеева, а вода является универсальным растворителем. Использование такого распространенного в хим. промышленности материала как полиэтилен является логичным и оправданным, так как в первую очередь инженерам было необходимо исключить реакцию кабеля и воды, тем самым избежать его разрушения под воздействием окружающей среды. Полиэтилен использовался в качестве изолирующего материала в ходе прокладки первых межконтинентальных линий телефонной связи в середине XX века.
Однако, в силу своей пористой структуры полиэтилен не может обеспечить полной гидроизоляции кабеля, поэтому мы переходим к следующему слою.

Майларовая пленка - синтетический материал на основе полиэтилентерефталата . Имеет следующие свойства:
Не имеет запаха, вкуса. Прозрачный, химически неактивный, с высокими барьерными свойствами (в том числе и ко многим агрессивным средам), устойчивый к разрыву (в 10 раз прочнее полиэтилена), износу, удару. Майлар (или в СССР Лавсан) широко используется в промышленности, упаковке, текстиле, космической промышленности. Из него даже шьют палатки. Однако, использование данного материала ограничено многослойными пленками из-за усадки при термосваривании.

После слоя майларовой пленки можно встретить армирование кабеля различной мощности, в зависимости от заявленных характеристик изделия и его целевого назначения. В основном используется мощная стальная оплетка для придания кабелю достаточной жесткости и прочности, а так же для противодействия агрессивным механических воздействиям из вне. По некоторым данным, блуждающим в сети, ЭМИ исходящее от кабелей может приманивать акул, которые перегрызают кабели. Так же на больших глубинах кабель просто укладывается на дно, без копания траншеи и его могут зацепить рыболовецкие суда своими снастями. Для защиты от подобных воздействий кабель и армируется стальной оплеткой. Используемая в армировании стальная проволока предварительно оцинковывается. Усиление кабеля может происходить в несколько слоев. Основной задачей производителя в ходе этой операции является равномерность усилия в ходе намотки стальной проволоки. При двойном армировании намотка происходит в разных направлениях. При не соблюдении баланса в ходе данной операции кабель может самопроизвольно скручиваться в спираль, образуя петли.

В результате этих мероприятий масса погонного километра может достигать нескольких тонн. «Почему не легкий и прочный алюминий?» - спросят многие. Вся проблема в том, что на воздухе алюминий имеет стойкую пленку окисла, но при соприкосновении с морской водой данный металл может вступать в интенсивную химическую реакцию с вытеснением ионов водорода, которые оказывают губительное влияние на ту часть кабеля, ради которой все затевалось - оптоволокно. Поэтому используют сталь.

Алюминиевый водный барьер , или слой алюмополиэтилена используется как очередной слой гидроизоляции и экранирования кабеля. Алюмополиэтилен представляет собой комбинацию из фольги алюминиевой и полиэтиленовой пленки, соединенных между собой клеевым слоем. Проклейка может быть как односторонней, так и двухсторонней. В масштабах всей конструкции алюмополиэтилен выглядит почти незаметным. Толщина пленки может варьироваться от производителя к производителю, но, к примеру, у одного из производителей на территории РФ толщина конечного продукта составляет 0.15-0.2 мм при односторонней проклейке.

Слой поликарбоната вновь используется для усиления конструкции. Легкий, прочный и стойкий к давлению и ударам, материал широко используется в повседневных изделиях, например, в велосипедных и мотоциклетных шлемах, также применяется в качестве материала при изготовлении линз, компакт-дисков и светотехнических изделий, листовой вариант используется в строительстве как светопропускающий материал. Обладает высоким коэффициентом теплового расширения . Применение ему было найдено и в производстве кабелей.

Медная, или алюминиевая трубка входит в состав сердечника кабеля и служит для его экранирования. Непосредственно в эту конструкцию укладываются другие медные трубки с оптоволокном внутри. В зависимости от конструкции кабеля, трубок может быть несколько и они могут быть переплетены между собой различным образом. Ниже четыре примера организации сердечника кабеля:

Укладка оптоволокна в медные трубки которые заполнены гидрофобным тиксотропным гелем, а металлические элементы конструкции используются для организации дистанционного электропитания промежуточных регенераторов - устройств, осуществляющих восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения.

В разрезе получается что-то похожее на это:

Производство кабеля

Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.

Укладка кабеля

Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля - это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным, так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. В случае прокладки кабеля между разными странами, необходимо получить разрешение на использование прибрежных вод той или иной страны, необходимо получить все необходимые разрешения и лицензии на проведение кабелеукладочных работ. После проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.

Собственно, из гифки процесс укладки становится предельно ясным.

Прокладка оптоволоконного кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:

Если Вам кажется, что она маловата, то обратите внимание на это фото:

После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.

Выглядит со стороны это так:

При каких-либо проблемах, обрывах, или повреждениях на кабеле предусмотрены специальные якоря, которые позволяют поднять его к поверхности и отремонтировать проблемный участок линии.

И, в итоге, благодаря всему этому мы можем с комфортом и на высокой скорости смотреть в интернете фото и видео с котиками со всего мира.

В комментариях к статье о проекте Google пользователь

Наша компания занимается продажей различных марок подводных кабелей из наличия со складов, расположенных по всей России, или под заказ на производство. Специалисты «Кабель.РФ» знают все о данной продукции, поэтому грамотно проконсультируют вас в выборе подводных кабелей с учетом технических требований, помогут осуществить своевременную доставку и подобрать соответствующий тип транспорта.

Подводные кабели применяются, когда необходимо выполнить прокладку силовых и распределительных линий, предназначенных для передачи постоянного напряжения до 200 кВ и переменного напряжения величиной до 500 кВ частотой не более 50 Гц, по дну пресноводных и соленых водоемов. Кроме этого, подводные кабели используется для подключения к питающим сетям морских буровых платформ, присоединения прибрежных ветрогенерирующих электрических установок, для подключения различного водопогружного оборудования, стационарного монтажа цепей управления подводными механизмами, обеспечения питанием приборов при геофизическом исследовании скважин и управления ними, а также передачи аналоговых и цифровых сигналов. Подводные кабели допускается прокладывать на глубине не более 500 м и при температуре воды не более +70 оС.

Кабель для подводной прокладки выпускается с однопроволочными или многопроволочными токопроводящими жилами, имеющими круглую или секторную форму. Для их изготовления применяют алюминиевые, медные или луженые медные проволоки. По своим характеристикам, прописанным в ГОСТ 22483, жилы относятся к 1-5-му классу. Для защиты токопроводящих жил от воздействия влаги в них добавляют специальные водоблокирующие нити. Кабели, применяемые для подводной прокладки, производятся в одножильном и многожильном варианте. На токопроводящие жилы подводных кабелей накладывается изолирующий слой из силанольносшитого полиэтилена, этиленпропиленовой резины, поливинилхлоридного пластиката, а также кабельной бумаги, пропитанной специальными составами. Токопроводящие жилы подводных многожильных кабелей скручиваются в сердечник с заполнением свободного пространства бумажными или резиновыми жгутами, гидрофобным материалом. На сердечник кабеля может накладываться внутренняя оболочка из поливинилхлоридного пластиката, полиэтилена, резины или свинцовой трубки. От воздействия электромагнитного излучения кабель для подводного монтажа может быть огражден экраном, выполненным в виде оплетки медной проволокой. Для защиты от возможных повреждений в конструкцию кабелей, предназначенных для стационарной прокладки по дну водоемов, включена броня, которая выполняется из стальных оцинкованных проволок. Сверху экрана или брони накладываются защитные волокнистые покровы или наружная оболочка из полиэтилена, поливинилхлоридного пластиката или резины, в том числе этиленпропиленовой.

Высоковольтные подводные кабели должны иметь несколько защитных экранов, снижающих уровень возникающих электромагнитных помех. Экраны выполняются из полупроводящей бумаги, полимерной композиции или резины, а также медной ленты и оплетки из медной проволоки. Поверх экрана из медной проволоки или ленты накладывается водоблокирующий слой, на который накладывается наружная оболочка из полиэтилена.

Основные преимущества

Дают возможность обеспечить электроэнергией отдаленные острова, не имеющие своих электростанций;
. с помощью подводных кабелей к линии питания подключается электрооборудование на нефтегазодобывающих платформах.

У нас вы можете купить подводный кабель по выгодной цене, для этого необходимо оставить заявку на расчет стоимости менеджеру компании.

Подводные коаксиальные кабели предназначены для телеграфно-телефонной связи с. уплотнением в диапазоне частот до 150 кгц. Наиболее совершенной конструкцией подводных кабелей связи в больших длинах являются коаксиальные кабели с полиэтиленовой изоляцией, вытеснившей изоляцию из гуттаперчи, парагутты и др. Кабель- с полиэтиленовой изоляцией допускает высокочастотное уплотнение цепей при сравнительно больших расстояниях между усилительными пунктами, обеспечивая длительную и надежную эксплуатацию. Разработанные в 1950-1955 гг. встроенные в кабель подводные усилители открыли возможность осуществить многоканальную связь на требуемые расстояния. Электропитание усилителей осуществляют дистанционно по внутреннему проводнику кабеля.

Основным типом подводного коаксиального кабеля с полиэтиленовой изоляцией, выпускаемого отечественной промышленностью для прокладки на прибрежных участках, является кабель марки КПЭК-5/18 (рис. 20-6).

Трансокеанические подводные кабели связи

Внутренний проводник этого кабеля изготовляют из отожженной медной проволоки диаметром 3 мм и повива из 12 проволок диаметром 1,0 мм (наружный диаметр 5± ±0,3 мм). Изоляцию кабеля накладывают из смеси полиэтилена с полиизобутиленом толщиной 6,5 мм. Внешний проводник кабеля изготовляют из отожженных прямоугольных медных проволок шириной 5,3 и толщиной 0,6 мм, обматывают медной лентой толщиной 0,08 мм, двумя стальными лентами толщиной 0,10-0,15 мм и прорезиненной лентой и накладывают оболочку из полиэтилена или поливинилхлоридного пластиката толщиной 2 мм и подушку из кабельной пряжи, пропитанной противогнилостным составом. В кабелях марки КПЭК-5/18 на подушку накладывают двухслойную броню из круглых оцинкованных стальных проволок диаметром 4 и 6 мм, наружный покров из предварительно пропитанной противогнилостным составом кабельной пряжи толщиной не менее 1,6 мм и слой битума и мелового раствора.

Для подводной прокладки на глубину до 3 500 м предназначен кабель марки КПК-5/18 только с одним слоем круглой оцинкованной стальной проволоки диаметром 2,6-6 мм.

В кабелях КПЭБ-5/18 для прокладки в земле поверх подушки применяют две стальные ленты толщиной 0,5 мм и защитные покровы из кабельной пряжи, слоя битума и мелового раствора.

Сопротивление изоляции подводных кабелей не менее 50 000 Момoкм, емкость 100 нф/км; волновое сопротивление кабеля 51-54,5 ом, затухание 13,3 — 67мнеп/км и угол фазы 0,065-3,17 рад/км.

Трансантлантический кабель между Европой и США протяженностью свыше 5 000 км (проложен на глубине до 4,2 км) имеет внутренний проводник, состоящий из медной проволоки диаметром 3,34 мм и трех медных лент толщиной по 0,368 мм (диаметр 4,1 мм), и сплошную изоляцию из полиэтилена диаметром 15,75 мм. Внешний проводник кабеля состоит из 6 медных лент толщиной 0,4 мм и медной скрепляющей ленты толщиной 0,076 мм. Поверх внешнего проводника накладывают ленту из сплава телканекс, подушку из кабельной пряжи, броню из круглых оцинкованных.стальных проволок и наружный защитный покров из кабельной пряжи, слой битума и меловое покрытие. Кабель для глубоководных участков трассы изготовляют бронированным круглой стальной проволокой диаметром 2,2 мм высокой механической прочности. Кабель для прибрежного участка изготовляют с двойной броней из круглых стальных проволок диаметром 7,6 мм. Встроенные усилители размещены на расстоянии 68,5 км один от другого.

В 1956 г. была разработана новая конструкция подводного коаксиального кабеля для глубоководных участков, в котором на несущий трос диаметром 7,4 мм накладывают внутренний проводник из медной ленты толщиной 0,6 мм со сварным швом, калиброванным на диаметр 8,4 мм, полиэтиленовую изоляцию диаметром 26,5 мм, которую калибруют до диаметра 25,4 мм. Затем продольно накладывают внешний проводник из медной ленты толщиной 0,25 мм с перекрытием и оболочку из светостабилизированного полиэтилена толщиной 3,2 мм (рис. 20-7). Кабель предназначен для уплотнения системой связи на 128 каналов с дальнейшим расширением передаваемого спектра частот до 3 Мгц и увеличением числа каналов до 720. (В последующем спектр передаваемых частот достигнет 10 Мгц.

Симметричные подводные кабели связи марок СЭПК-4 изготовляют с токоподводящими жилами из семи медных проволок диаметром 0,52 или 0,73 мм с полиэтиленовой изоляцией толщиной 2 мм. На изолированные токопроводящие жилы, предназначенные для телеграфной связи, накладывают экран из медных лент. Четыре жилы скручивают вместе, обматывают прорезиненным миткалем и кабельной пряжей, поверх которой накладывают броню из оцинкованных стальных проволок. Кабель с жилами 7×0,73 мм в диапазоне частот 0,8-30 кгц имеет волновое сопротивление 349-160 ом, затухание 45-130 мнеп/км и угол фазы 0,06- 1,20 рад/км.

Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

При описании системы проводов, из которой состоит Интернет, Нил Стивенсон однажды сравнил нашу землю с материнской платой компьютера. От телефонных столбов, с которых свисают связки кабеля, до знаков, предупреждающих о погруженных в землю волоконно-оптических линий передачи, мы постоянно окружены доказательствами присутствия системы Интернет. Однако, мы видим лишь малую часть физического состава сети. Остальную часть можно найти только в самых холодных водах глубоководного океана. Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

1. УСТАНОВКА КАБЕЛЯ ЯВЛЯЕТСЯ МЕДЛЕННОЙ, УТОМИТЕЛЬНОЙ И ДОРОГОСТОЯЩЕЙ РАБОТОЙ.

99% международных данных передается по проводам, находящимся на дне океана. Они называются подводными коммуникационными кабелями. В общей сложности они протягиваются на сотни тысяч миль, а глубина их расположения может быть высотою с Эверест. Кабеля по океану прокладываются специальными судами - так называемыми кабелеукладчиками. Прокладка кабеля очень трудоемкая работа - поверхность океанского дна под прокладку кабеля должна быть обязательно ровной, также нужно предусмотреть, чтобы кабель не оказался на коралловых рифах, затонувших кораблях, местности богатой окаменелыми останками рыб или другой экологической среды обитания, и других препятствий.

Диаметр мелководного кабеля примерно равен диаметру жестяной банки содового напитка. Глубоководные кабеля намного тоньше - примерно равны диаметру маркера. Разница в размере связана с элементарной уязвимостью к повреждениям - на глубине более 2000 метров мало что происходит. Следовательно, и нет такой необходимости в оцинковании экранированного кабеля. Кабели, расположенные на небольших глубинах, закапывают под океаническое дно с помощью струй воды под высоким давлением.
Цена за укладку мили подводного коммуникационного кабеля зависит от общей длины и конечного пункта назначения. Однако, в общем укладка интернет-кабеля через океан неизменно стоит сотни миллионов долларов.

2. АКУЛЫ ПЫТАЮТСЯ СЪЕСТЬ ИНТЕРНЕТ.

Существует разногласие насчет того, почему акулам так нравится грызть подводные коммуникационные кабеля. Возможно, это как-то связано с электромагнитными полями. Возможно, это просто их любопытство. А возможно, они пытаются разрушить нашу инфраструктуру связи перед тем, как начать захват мира. В любом случае акулы продолжают грызть подводные кабеля, и это является самой распространенной причиной их повреждения. Компания Google решила проблему обернув свои подводные океанские кабеля в кевраловое покрытие.

3. ПОДВОДНЫЙ ИНТЕРНЕТ КАБЕЛЬ НАСТОЛЬКО ЖЕ УЯЗВИМ К ПОВРЕЖДЕНИЯМ, КАК И ПОДЗЕМНЫЙ КАБЕЛЬ.

Каждые несколько лет какой-нибудь благонамеренный строитель, маневрируя бульдозером, отключает интернет на весь регион. На океанском дне же хоть и нет всего этого строительного оборудования, которое могло бы вызвать разрушения, все же достаточно постоянных водных угроз для повреждения кабеля. Кроме акул, подводный коммуникационный кабель могут повредить якоря лодок, рыбацкие тралы и стихийные бедствия.

Одна компания из Торонто предложила проложить кабель через Арктику для соединения Токио и Лондона. Раньше такую затею считали невыполнимой, но с изменением климата и таянием ледников, эта идея стала реальной, хоть и очень дорогостоящей.

4. СОЕДИНЕНИЕ КОНТИНЕНТОВ ПОДВОДНЫМИ КАБЕЛЯМИ НЕ ЯВЛЯЕТСЯ НОВИНКОЙ.

Первый трансатлантический телеграфный кабель, который соединял Ньюфаундленд и Ирландию, начали прокладывать еще в 1854 году. Четыре года спустя было отправлено первое сообщение, в котором говорилось: «Господи, Уайтхаус получил пятиминутный сигнал. Сигнал от катушки слишком слабый, чтобы понять. Попробуйте медленнее и регулярнее. Я установил промежуточный шкив. Отвечайте с помощью катушки.» Конечно, не самое вдохновляющее начало. (Уилдман Уайтхаус был главным электриком Атлантической телеграфной компании)

5. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ИМЕЮТ ОСОБЫЙ ИНТЕРЕС У ШПИОНОВ.

В разгар холодной войны, СССР часто передавала слабо кодированные сообщения между двумя основными военно-морскими базами по кабелю проложенному между этими двумя базами через советские территориальные воды. Чрезмерным шифрованием советские офицеры не хотели заморачиваться. Они считали, что американцы не станут рисковать вызвать третью мировую войну, пытаясь получить доступ к данным этого кабеля. Они не рассчитали, что U.S.S. Halibut, специально оборудованная подводная лодка, может проникнуть через оборону советских войск.

Американская подводная лодка нашла кабель и установила на нем мощное подслушивающее устройство, затем каждый месяц возвращалась для сбора перехваченных сообщений. Эту операцию, которая называлась IVY BELLS, позже скомпроментировал бывший аналитик Агенства национальной безопасности Рональд Пелтон, который продал информацию о миссии советским властям. На сегодняшний день, перехват сообщений, передаваемых подводными коммуникационными кабелями является обычной процедурой спецслужб.

6. ПРАВИТЕЛЬСТВА МНОГИХ СТРАН ПЕРЕХОДЯТ НА ПОДВОДНЫЕ КАБЕЛЯ, ЧТОБЫ УБЕРЕЧЬ СЕБЯ ОТ ЭТИХ ЖЕ ШПИОНОВ.

Что касается электронного шпионажа, Соединенные Штаты имеют одно большое преимущество - их ученые, инженеры и корпорации сыграли важнейшую роль в изобретении и создании инфраструктуры глобальных коммуникаций. Самые крупные линии передачи, как правило, проходят через территорию и водные пространства США. В результате чего, они с легкостью могут перехватывать пересылаемые данные.

Когда бывший аналитик АНБ Эдвард Сноуден украл и обнародовал секретные документы, многие страны были возмущены тем, сколько их информации перехватывают американские разведывательные службы. В результате, некоторые страны пересматривают инфраструктуру Интернета. Бразилия, например, запустила проект по строительству подводного коммуникационного кабеля до Португалии, который не только полностью минует границы Соединенных Штатов, но в то же время исключает американские компании в участии данного проекта.

7. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ДЕШЕВЛЕ И БЫСТРЕЕ ПЕРЕДАЮТ ДАННЫЕ ПО СРАВНЕНИЮ СО СПУТНИКАМИ.

На орбите находится более тысячи спутников.

Мы также отправляем зонды на кометы и планируем миссии на Марс. Мы живем в будущем! Казалось бы космос должен быть лучшим методом для «виртуального проложения проводов» между странами, чем нынешний метод проложения несоразмерно-длинных проводов через океанское дно. Разве спутники не лучше технологий, используемых еще даже до изобретения телефона? Как оказывается - нет, не лучше (или пока что нет). Хотя волоконно-оптические кабели и спутники связи были разработаны в 1960-х годах, у спутников существует две проблемы: большие задержки и потери сигнала. Передача и прием сигналов из космоса занимает много времени. В то же время, исследователи разработали оптические волокна, которые могут передавать информацию со скоростью равной 99,7% скорости света.

Если хотите понять каким был бы интернет без подводных коммуникационных кабелей можете посетить Антарктику - единственный континент без физического подключения к сети. Связь с миром осуществляется исключительно при помощи спутников. Интересен тот факт, что антарктические исследовательские станции производят гораздо большее количество информации, чем они могут передавать через космическое пространство.

8. ЗАБУДЬТЕ О КИБЕРВОЙНАХ - ЧТОБЫ ПАРАЛИЗОВАТЬ ИНТЕРНЕТ, НУЖНО ВСЕГО ЛИШЬ АКВАЛАНГ И ПАРА КУСАЧЕК.

Хоть перерезать подводный коммуникационный кабель и довольно трудно (тысячи вольт протекающих по каждому из них, как одна причина), как показывает практика (Египет, 2013 год), возможно.

Подводный кабель связи

К северу от Александрии было задержано несколько людей в гидрокостюмах, которые намеренно пытались прорезать кабель Юго-Восток-Азия-Ближний Восток-Запад-Европа 4, который протягивается на 12,500 мили и соединяет три континента. Эта попытка оставила 60% населения Египта без доступа к Интернету.

9. ПОДВОДНЫЕ КАБЕЛЯ ОЧЕНЬ ТРУДНО РЕМОНТИРОВАТЬ, НО 150 ЛЕТ ОПЫТА НАУЧИЛИ НАС НЕКОТОРЫМ УЛОВКАМ.

Если у вас вызывает затруднение замена одного Интернет-кабеля за вашим столом, представьте сколько труда уходит на замену твердого, сломанного кабеля на дне океана. При повреждении подводного коммуникационного кабеля на починку отправляют специальные ремонтные корабли. Если кабель находится на мелководье, активируют роботов, которые захватывают кабель и буксируют его к поверхности. Если же кабель находится на глубоководье, на глубине 2000 метров и ниже, то корабли опускают на дно специально разработанные крюки, которые также захватывают кабель и поднимают его на поверхность для починки. Чтобы упростить работу, эти крюки иногда разрезают кабель пополам. Затем ремонтный корабль по очереди поднимает на поверхность каждую часть для починки.

10. СРОК СЛУЖБЫ ПОДВОДНЫХ КОММУНИКАЦИОННЫХ КАБЕЛЕЙ СОСТАВЛЯЕТ 25 ЛЕТ.

По состоянию на 2014 года, на дне океана находится 285 подводных коммуникационных кабеля. 22 из них еще не используются. Их называют «темными кабелями» (когда их активируют, они будут считаться «включенными»). Подводные коммуникационные кабеля имеют срок службы равный 25 годам, в течение которых они считаются экономически целесообразными с точки зрения потенциала.
Однако, за последнее десятилетие, потребление Интернет-данных резко возросло. В 2013 году потребление интернет-трафика составило 5 гигабайт на душу населения; это число, как ожидается к 2018 год, достигнет 14 гигабайт на душу населения. Такое увеличение, очевидно, представит проблему нагрузки и вызовет необходимость более частого обновления кабелей.

Источник

Коммуникационная инфраструктура – это то, что помогает нам почти мгновенно узнавать новости с других стран и континентов, она тесно связано с технологиями управления и обработки данных, компьютерными и интернет технологиями.

Но задумывались ли вы о том, как к нам попадает вся эта информация. Города буквально закутаны сетью кабелей, проводов, умело спрятанных в стены зданий и под землю. Но не только города и страны, вся планета окутана своеобразной паутиной, поскольку миллионы подводных кабелей проложены по морскому дну.

Подводные оптические кабели связи

Подводная коммуникационная инфраструктура в мире существует давно и активно продолжает развиваться. На этой интерактивной карте показаны главные мировые кабели, которые позволяют интернет и другим данным попадать из одной стороны света в другую, через океаны, и, в конечном счете, в ваш дом.

Подводные коммуникации. Карта

Если навести мышку или кликнуть на любой из показанных кабелей (или выбрать его в меню сайта), то можно узнать более подробную информацию (название, длину, соединяемые страны и др.).
А для тех, кто любит позаботиться обо всем заранее, следует учесть что не за горами и год дракона 2012 который ассоциируется с водной стихией, но в тоже время относится к стихии огня, поэтому следует заранее продумать что подарить близким на этот праздник.

То, что вы видите выше, это подводный кабель связи.

Диаметром он 69 миллиметров, и именно он переносит 99% из всего международного трафика связи (т.е. интернет, телефония и прочие данные). Соединяет он все континенты нашей планеты, за исключением Антарктиды. Эти удивительные волоконно-оптические кабели пересекают все океаны, и длинной они сотни тысяч, да что говорить, миллионы километров.


Карта Мира подводной кабельной сети

Это «CS Cable Innovator», он специально разработан для прокладки волоконно-оптического кабеля и является крупнейшим в своем роде кораблем в мире. Построен он в 1995 году в Финляндии, он 145 метров в длину, а шириной он 24 метра. Он способен перевозить до 8500 тонн волоконно-оптического кабеля. Корабль имеет 80 кают, из которых 42 — каюты офицеров, 36 — каюты экипажа и две каюты класса люкс.
Без технического обслуживания и дозаправки он может трудиться 42 дня, а если его будет сопровождать корабль поддержки, то все 60.

Первоначально, подводные кабели были простыми соединения типа точка-точка. Сейчас же подводные кабели стали сложнее и они могут делиться и разветвляться прямо на дне океана.

С 2012 года провайдера был успешно продемонстрирован подводный канал передачи данных с пропускной способностью в 100 Гбит/с. Тянется он через весь Атлантический океан и длина его равна 6000 километрам. Представьте себе, что три года назад пропускная способность меатлантического канала связи была в 2,5 раза меньше и была равна 40 Гбит/с. Сейчас корабли подобные «CS Cable Innovator» постоянно трудятся дабы обеспечивать нас всё быстрым межконтинентальным интернетом.

Сечение подводного кабеля связи

1. Полиэтилен
2. Майларовое покрытие
3. Многожильные стальные провода
4. Алюминиевая защита от воды
5. Поликарбонат
6. Медная или алюминиевая трубка
7. Вазелин
8. Оптические волокна

По дну моря оптоволоконный кабель укладывается за один раз от одного берега до другого. В некоторых случаях для организации ВОЛС по дну моря/океана требуется несколько кораблей, так как необходимое количество кабеля на одно судно может не поместиться.

Подводные оптоволоконные линии связи делятся на репитерные (с использованием подводных оптических усилителей) и безрепитерные. Первые из них подразделяются на прибрежные линии связи и магистральные трансокеанские (межконтинентальные). Безрепитерные линии связи делятся на прибрежные линии связи и линии связи между отдельными пунктами (между материком и островами, материком и буровыми станциями, между островами). Существуют и линии связи с применением удаленной оптической накачки.

Кабели ВОЛС для прокладки по дну, как правило, состоят из оптического сердечника, токоведущей жилы и внешних защитных покровов. Кабели для безрепитерных оптоволоконных линий имеют такую же структуру, но у них токоведущая жила отсутствует.

Особые проблемы прокладки ВОЛС через водные препятствия (под)водой связаны с ремонтом морских линий связи. Ведь, лежа долгое время на морском дне, кабель становится практически невидимым. Кроме того, течения могут отнести оптоволоконный кабель от места его первоначальной прокладки (даже на многие километры), а рельеф дна сложен и разнообразен. Повреждения кабелю могут наноситься якорями кораблей и представителями морской фауны. Возможно также отрицательное воздействие на него при дноуглубительных работах, установке труб и бурении, а также при подводных землетрясениях и оползнях.

Вот так он выглядит на дне. Каковы экологические последствия прокладки телекоммуникационных кабелей на морском дне? Как это влияет на дно океана и животных, которые там живут? Хотя буквально миллионы километров кабелей связи были размещены на дне моря в течение последнего столетия, это никак не повлияло на жизнь подводных обитателей. Согласно недавнему исследованию, кабель оказывает лишь незначительные воздействия на животных, живущих и находится в пределах морского дна. На фотографии выше мы видим разнообразие морской жизни рядом с подводным кабелем, который пересекает континентальный шельф Half Moon Bay.
Тут кабель всего лишь 3,2 см. толщины.

Многие опасались, что кабельное телевидение загрузит каналы, но на самом деле оно увеличило нагрузку всего лишь на 1 процент. Причем кабельное телевидение, которое может идти по подводным волокнам уже сейчас имеет пропускную способность в 1 Терабит, в то время как спутники дают в 100 раз меньше. И если хотите купить себе такой межатлантический кабель, то он вам обойдется в 200-500 миллионов долларов.

А вот сейчас я вам расскажу про первый кабель через океан. Вот слушайте …

Вопрос о том, как наладить электрическую связь через огромные просторы Атлантического океана, разделяющего Европу и Америку, волновал умы ученых, техников и изобретателей уже с начала сороковых годов. Еще в те времена американский изобретатель пишущего телеграфа Самуэль Морзе высказал уверенность в том, что возможно проложить телеграфный «провод по дну Атлантического океана».

Первая мысль о подводном телеграфировании возникла у английского физика Уитстона, который в 1840 году предложил свой проект соединения Англии и Франции телеграфной связью. Его идея была, однако, отвергнута как неосуществимая. К тому же в то время не умели еще так надежно изолировать провода, чтобы они могли проводить электрический ток, находясь на дне морей и океанов.

Положение изменилось после того, как в Европу доставили вновь открытое в Индии вещество — гуттаперчу, и германский изобретатель Вернер Сименс предложил покрывать ею провода для изоляции. Гуттаперча как нельзя более подходит для изоляции именно подводных проводов, ибо, окисляясь и ссыхаясь в воздухе, она нисколько не изменяется в воде и может сохраняться там неопределенно долгое время. Так был решен важнейший вопрос об изоляции подводных проводов.

23 августа 1850 года в море вышло для прокладки кабеля специальное судно «Голиаф» с буксирным пароходом.

Путь их лежал от Дувра к берегам Франции. Впереди шло военное судно «Вигдеон», указывавшее «Голиафу» и буксиру заранее определенный путь, отмеченный буями с развевавшимися на них флагами.

Все шло хорошо. Установленный на борту парохода цилиндр, на который был намотан кабель, равномерно разматывался, и провод погружался в воду. Через каждые 15 минут к проводу подвешивали груз в 10 килограммов 4 свинца, чтобы он погружался на самое дно. На четвертые сутки «Голиаф> достиг французского берега, кабель был выведен на сушу я соединен с телеграфным аппаратом. В Дувр по подводному кабелю была послана приветственная телеграмма из 100 слов. Огромная толпа, собравшаяся в Дувре у конторы телеграфной компании и с нетерпением ожидавшая вестей из Франции, с большим воодушевлением приветствовала рождение подводной телеграфии.

Увы, эти восторги оказались преждевременными! Первая телеграмма, переданная по подводному кабелю с французского берега в Дувр, оказалась и последней. Кабель внезапно отказался работать. Только через некоторое время узнали причину столь внезапной порчи. Оказалось, что какой-то французский рыбак, закидывая невод, случайно зацепил кабель и вырвал из него кусок.

Но все же, несмотря на первую неудачу, даже самые ярые скептики поверили в подводную телеграфию. Джон Бретт организовал в 1851 году второе акционерное общество для продолжения дела. На этот раз был уже учтен опыт первой прокладки, и новый кабель был устроен по совершенно другому образцу. Этот кабель отличался от первого: он весил 166 тони, в то время как вес первого кабеля не превышал 14 тонн.

На этот раз предприятие увенчалось полным успехом. Специальное судно, укладывавшее кабель, прошло без особых затруднений путь из Дувра до Кале, где конец кабеля был соединен с телеграфным аппаратом, установленным в палатке прямо на прибрежном утесе.

Через год, 1 ноября 1852 года было установлено прямое телеграфное сообщение между Лондоном и Парижем. Вскоре Англия была соединена подводным кабелем с Ирландией, Германией, Голландией и Бельгией. Затем телеграф связал Швецию с Норвегией, Италию - с Сардинией и Корсикой. В 1854-1855 гг. был проложен подводный кабель через Средиземное и Черное моря. По этому кабелю командование союзных войск, осаждающих Севастополь, сносилось со своими правительствами.

После успеха этих первых подводных линий вопрос о прокладке кабеля через Атлантический океан для соединения Америки с Европой телеграфной связью был поставлен уже практически. За это грандиозное дело взялся энергичный американский предприниматель Сайрос Филд, образовавший в 1856 году «Трансатлантическую компанию».

Невыясненным был, в частности, вопрос о том, может ли электрический ток пробежать огромное расстояние в 4-5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самуэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. В ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. Ток легко прошел через громадную цепь, и с этой стороны больше сомнений не было.

Собрав все необходимые предварительные сведения, Филд приступил в феврале 1857 года к изготовлению кабеля. Кабель состоял из семипроволочного медного каната с гуттаперчевой оболочкой. Жилы его были обложены просмоленной пенькой, а снаружи кабель был еще обвит 18 шнурами из 7 железных проволок каждый. В таком виде кабель длиной в 4 тысячи километров весил три тысячи тонн. Это значит, что для его перевозки по железной дороге понадобился бы состав из 183 товарных вагонов.

История прокладки кабеля изобылует массой непредвиденных обстоятельств. Он несколько раз обрывался, спаянные куски «не желали» доставлять енергию к месту назначения.

Неутомимый Сайрое Филд организовал компанию, чтобы еще раз попытаться проложить кабель через неподатливый океан. Изготовленный компанией новый кабель состоял из семипроволочного шнура, изолированного четырьмя слоями. Снаружи кабель был покрыт слоем «просмоленной пеньки и обмотан десятью стальными проволоками. Для прокладки кабеля было приспособлено специальное судно «Грейт Истерн» — в прошлом прекрасно оборудованный океанский пароход, не окупавший расходов по пассажирскому движению и снятый с рейсов.

Уже на другой день после отплытия с Грейт Истерн электротехники обнаружили, что по кабелю прекратилось прохождение тока. Пароход, проделав чрезвычайно сложный и опасный маневр, во время которого чуть было не произошел разрыв кабеля, сделал полный поворот и стал обратно наматывать уже спущенный на дно кабель. Вскоре, когда кабель стал подниматься из воды, все заметили причину порчи: через кабель был проткнут острый железный прут, задевший гуттаперчевую изоляцию. Кабель портился еще дважды. Когда стали поднимать обратно кабель с глубины 4 тысяч метров, он от сильного натяжения оборвался и утонул.

Компания изготовила новый кабель, значительно улучшенный по сравнению с прежним. «Грейт Истерн» был оборудован новыми машинами для укладки кабеля, а также специальными приспособлениями, предназначенными для подъема кабеля со дна. Новая экспедиция отправилась в путь 7 июля 1866 года. На этот раз полный успех увенчал отважное предприятие: «Прейт Истерн» достиг американского берега, проложив, наконец, телеграфный кабель через океан. Этот «кабель действовал почти без перерыва в течение семи лет.

Третий трансатлантический кабель был проложен англоамериканской телеграфной компанией в 1873 году. Он соединял Пти-Минон возле Бреста во Франции с Ньюфаундлендом. В течение последующих 11 лет та же компания проложила между Валенсией и Ньюфаундлендом еще четыре кабеля. В 1874 году была построена телеграфная линия, соединявшая Европу с Южной Америкой.

В 1809 году, то есть через три года после прокладки подводного кабеля через Атлантический океан, была завершена постройка еще одного грандиозного телеграфного предприятия — Индо-европейской линии. Эта линия соединила двойным проводом Калькутту с Лондоном. Длина ее — 10 тысяч километров.

Значительно позже, чем через Атлантику, был проложен телеграфный кабель через весь Великий океан. Так телеграфная сеть опутывала весь земной шар. Благодаря этим линиям практически мгновенно действует всемирная паутина – Интернет.

А я пока напомню вам и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Описывая систему кабелей, которые поддерживают работу Интернета, Нил Стивенсон (Neal Stephenson) как-то сравнил Землю с материнской платой компьютера.

Ежедневно вы видите на улицах телефонные столбы, соединяющие сотни километров проводов, и знаки, предупреждающие о зарытых оптоволоконных линиях, но ведь на самом деле, это лишь малая часть физического облика глобальной Сети. Основные коммуникации прокладываются в самых холодных глубинах океана, и в сегодняшней статье мы перечислим 10 любопытных фактов об этих подводных кабелях.

1. Монтаж кабеля — это медленный, утомительный и дорогостоящий процесс

99% международных данных передается по проводам, лежащим на дне океана, которые называются подводными коммуникационными кабелями. В общей сложности, их длина превышает сотни тысяч миль, а прокладывают такие провода даже на глубине 9 км.

Установка кабелей производится специальными кораблями-укладчиками. Им нужно не просто сбросить на дно провод с прикрепленным грузом, но и проследить за тем, чтобы он проходил только по плоской поверхности, минуя коралловые рифы, обломки затонувших кораблей и другие распространенные препятствия.

Диаметр мелководного кабеля составляет примерно 6 см, а вот глубоководные кабели намного тоньше — толщиной с маркер. Разница в параметрах обусловлена обыкновенном фактором уязвимости — на глубине свыше 2 км практически ничего не происходит, поэтому кабель не нужно покрывать оцинкованным защитным слоем. Провода, расположенные на небольших глубинах, закапывают на дне, используя направленные струи воды под высоким давлением. Хотя стоимость прокладки одной мили подводного кабеля варьируется в зависимости от его общей длины и назначения, этот процесс всегда обходится в сотни миллионов долларов.

2. Акулы пытаются съесть Интернет

Никто не знает, почему именно акулам так нравится грызть подводные кабели. Возможно, это как-то связано с электромагнитными полями. Или же они просто любопытны. А может быть, таким образом они пытаются уничтожить нашу коммуникационную инфраструктуру перед сухопутной атакой. По сути, акулы в буквальном смысле жуют наш Интернет и иногда повреждают изоляцию проводов. В ответ на это такие компании, как Google, покрывают свои коммуникации слоем защитного кевлара.

3. Под водой Интернет уязвим так же, как и под землей

Ежегодно бульдозеры разрушают подземные коммуникационные кабели, и хотя в океане нет подобной строительной техники, под водой проводам угрожают множество других опасностей. Помимо акул, интернет-кабели могут быть повреждены корабельными якорями, рыбацкими сетями и различными стихийными бедствиями.

Одна из компаний, базирующаяся в Торонто, предложила прокладывать такие провода через Арктику, которая соединяет Токио и Лондон. Ранее это считалось невозможным, но климат изменился, и благодаря тающему ледяному покрову данный проект стал вполне реализуемой, но все еще невероятно дорогой задачей.

4. Использование подводных кабелей — это далеко не новая идея

Подводный телеграф между Америкой и Европой

В 1854 году начался монтаж первого трансатлантического телеграфного кабеля, который связывал Ньюфаундленд и Ирландию. Спустя 4 года, была отправлена первая передача с текстом: «Лоус, Уайтхаус получил пятиминутный сигнал. Сигналы катушки слишком слабы для передачи. Попробуйте отправлять медленно и размеренно. Я поставил промежуточный шкив. Ответьте катушками». Согласитесь, не очень вдохновляющая речь («Уайтхаусом» здесь называют Уилдмана Уайтхауса (Wildman Whitehouse), занимавшего на тот момент должность главного электрика Атлантической телеграфной компании).

Для исторической справки: в течение этих четырех лет конструирования кабеля Чарльз Диккенс (Charles Dickens) продолжал писать романы, Уолт Уитмен (Walt Whitman) опубликовал сборник «Листья травы» (Leaves of Grass), небольшое поселение под названием Даллас было официально присоединено к штату Техас, а Авраам Линкольн (Abraham Lincoln) — баллотирующийся в Сенат США — выступил со своей знаменитой речью о «Разделенном Доме».

5. Шпионы обожают подводные кабели

В разгар холодной войны СССР часто транслировала слабо закодированные сообщения между своими двумя основными военно-морскими базами. По мнению русских офицеров, в более мощном шифровании данных не было нужды, поскольку базы были напрямую соединены подводным коммуникационным кабелем, располагающимся в советских территориальных водах, которые кишели всевозможными датчиками. Они считали, что американцы никогда не рискнули бы начать Третью Мировую Войну, пытаясь получить доступ к этим проводам.

Советские военнослужащие не брали в расчет Halibut — специально оснащенную подводную лодку, способную проскользнуть мимо оборонных сенсоров. Эта американская лодка нашла подводный кабель и установила на него гигантское прослушивающее устройство, после чего ежемесячно возвращалась на место для сбора всех записанных сообщений. Позже эта операция под кодовым названием «Ivy bells» была скомпрометирована бывшим аналитиком АНБ, Рональдом Пелтоном (Ronald Pelton), который продал информацию о миссии «советам». В настоящее время прослушивание подводных интернет-кабелей является стандартной процедурой для большинства шпионских агентств.

6. Правительства используют подводные кабели, чтобы избежать шпионажа

В сфере электронного шпионажа Соединенные Штаты обладали одним весомым преимуществом перед другими государствами: их ученые, инженеры и корпорации принимали активное участие в построении глобальной телекоммуникационной инфраструктуры. Основные потоки данных пересекают американскую границу и территориальные воды, что позволяет перехватывать множество сообщений.

Когда документы, украденные бывшим аналитиком АНБ Едвардом Сноуденом (Edward Snowden), обнародовали, многие страны с возмущением восприняли действия американских шпионских ведомств, которые тщательно отслеживали передачу иностранных данных. В результате, некоторые государства пересмотрели саму инфраструктуру Интернета. Бразилия, к примеру, решила проложить подводный коммуникационный кабель аж до Португалии, полностью минуя территорию США. Более того, они не позволяют американским компаниям участвовать в разработке проекта.

7. Подводные интернет-кабели — быстрее и дешевле, чем спутники

Сейчас на нашей орбите находится около 1 000 спутников, мы отправляем зонды на кометы и даже планируем миссии с высадкой на Марс. Кажется, будто создавать виртуальную коммуникационную сеть нужно именно в космосе, хотя нынешний подход с использованием подводных кабелей ничем не хуже. Но разве спутники не превзошли эту устаревшую технологию? Как выясняется, нет.

Несмотря на то, что волокно-оптические кабели и спутники изобрели примерно в одно время, космические аппараты имеют два существенных недостатка: задержка и повреждение данных. Отправка сообщений в космос и обратно действительно занимает много времени.

Между тем, оптические волокна могут передавать информацию практически со скоростью света. Если вы хотите посмотреть, каким бы был Интернет без подводных кабелей, посетите Антарктиду — единственный континент, не имеющий физического подключения к Сети. Местные исследовательские станции полагаются на спутники с высокой пропускной способностью, но даже этой мощности не хватает, чтобы передать все данные.

8. Забудьте о кибервойнах — чтобы нанести Интернету реальный ущерб, вам понадобится акваланг и пара кусачек

Хорошая новость заключается в том, что перерезать подводный коммуникационный кабель довольно сложно, ведь в каждом таком проводнике напряжение может достигать нескольких тысяч вольт. Но как показал случай, произошедший в Египте в 2013 году, сделать это вполне возможно. Тогда к северу от Александрии были задержаны несколько человек в гидрокостюмах, которые намеренно перерезали подводный кабель длиной 12 500 миль, соединяющий три континента. Скорость интернет-соединения в Египте была снижена на 60% до тех пор, пока линию не восстановили.

9. Подводные кабели нелегко ремонтировать, но за 150 лет мы все-таки научились нескольким трюкам

Если вы считаете, что замена кабеля локальной сети, который находится за вашим столом — это сложный и мучительный процесс, попробуйте починить твердый садовый шланг на дне океана. Когда подводные коммуникации повреждаются, на место отправляются специальные ремонтные корабли. Если провод находится на мелководье, роботы фиксируют его и тащат на поверхность. Если же кабель расположен на большой глубине (от 1900 метров), инженеры опускают на дно специальный захват, подымают провод и ремонтируют его прямо над водой.

10. Срок службы подводных проводников Интернета — не более 25 лет

По состоянию на 2014 год, на дне океана было проложено 285 коммуникационных проводов, 22 из которых все еще не используются. Срок эксплуатации подводного кабеля не превышает 25 лет, ведь в дальнейшем он становятся экономически невыгодным с точки зрения мощности.

Тем не менее, за последние десять лет мировое потребление данных пережило настоящий «взрыв». В 2013 году на одного человека приходилось 5 гигабайт интернет-трафика, и по мнению экспертов, к 2018 году этот показатель увеличится до 14 Гб. Вполне возможно, что при таком стремительном росте мы столкнемся с проблемами мощности и будем вынуждены обновлять коммуникационные системы намного чаще. Однако в некоторых местах за счет новых методов фазовой модуляции и улучшенных автоматизированных подводных терминалов мощность удалось повысить на 8000%. Так что, судя по всему, к большим потокам трафика подводные провода более, чем готовы.