Габаритный расчет оптической схемы прибора ночного. Построение идеальной оптики в Zemax

Если оптическая система имеет малое поле в пространстве предметов, то в такой системе качество изображения определяется в первую очередь состоянием коррекции сферической аберрации. К числу таких систем следует отнести объектив с небольшим угловым полем, конденсор осветительной системы и ряд других. При аберрационном расчете исходного варианта указанных систем, состоящих из положительных линз, в первоначальной стадии расчета делается допущение о том, что все линзы системы бесконечно тонкие. Как в объективе, так и в конденсоре возможны следующие варианты решений: система состоит из линз одинаковой оптической силы и каждая из них рассчитана на минимум сферической аберрации; в системе используются апланатические мениски и одна линза, рассчитанная на минимум сферической аберрации.

Рассмотрим аберрационный расчет каждого варианта объектива и конденсора, используя теорию аберраций III порядка.

Объектив из положительных линз одинаковой оптической силы. Принципиальная схема такого объектива показана на рис. 269. Пусть число линз в объективе Толщину всех линз и расстояния между ними принимаем равными нулю, т. е. Показатели преломления для всех линз будем считать одинаковыми, нечетные показатели преломления равны единице, т. е.

Расчет объектива будем проводить при единичном фокусном расстоянии, поэтому для бесконечно удаленного предмета будут справедливы условия нормировки (258):

Последнее равенство относится к бесконечно тонкой системе.

Если оптические силы отдельных линз одинаковые и их общее число 2, то для приведенной системы имеем:

где приведенная оптическая сила линзы с произвольным номером Для этой линзы принята следующая нумерация углов первого вспомогательного луча: для луча, входящего в линзу; - для луча внутри линзы; Для луча, вышедшего из линзы.

Из формулы углов (52) имеем с учетом (517) при получим

Рис. 269. Бесконечно тонкая система из положительных лииз

Так как при то из последней формулы следует:

Таким образом, формулы (518) определяют нечетные значения углов а бесконечно тонкого объектива, состоящего из линз одинаковой оптической силы.

Для определения четных значений углов а рассмотрим выражение первой суммы Зейделя для линзы с номером Для бесконечно тонкого объектива имеем:

Величина при принятой нумерации углов а согласно (251) будет равна:

Объектив из положительных линз будет иметь минимальную сферическую аберрацию, если каждая линза рассчитана на минимум сферической аберрации. Дифференцируя выражение (519) по и приравнивая производную нулю, с учетом (518) находим выражение для соответствующее минимальной сферической аберрации каждой линзы:

По формулам (518) и (520) определяют углы первого вспомогательного луча бесконечно тонкого объектива, рассчитанного на минимум сферической аберрации. После определения углов и установления толщин линз по формулам (249) находят радиусы кривизны объектива конечной толщины.

Кома объектива зависит от параметра Ниже приведены значения найденные для бесконечно тонкого объектива, рассчитанного на минимум сферической аберрации, при различном числе линз . Все линзы объектива выполнены из стекла с показателем преломления

Таким образом, при увеличении числа линз значение уменьшается и практически равно нулю при Величина практически постоянна и приблизительно равна 0,15.

Рис. 270. Бесконечно тонкая система с апланатнческими менисками

Рис. 271. Конденсор с апланатнческими менисками

Объектив с аплаиатическими менисками. Принципиальная схема бесконечно тонкого объектива с апланатнческими менисками приведена на рис. 270. Все линзы объектива, кроме первой, являются апланатнческими менисками. Эти линзы не вносят сферической аберрации, и в них выполняется условие синусов. Линейное увеличение мениска с текущим номером Если число менисков в объективе и все они изготовлены из стекла одной марки, то общее увеличение менисков Тогда при условии, что имеем:

Объектив будет иметь минимальную сферическую аберрацию, если его первая линза рассчитана на минимум сферической аберрации. Дифференцируя (519) по и приравнивая производную нулю, с учетом (521) и условия определяем значение соответствующее минимальной сферической аберрации всего объектива:

Остальные значения а вычисляют по линейному увеличению каждого мениска.

Ниже приведены значения бесконечно тонкого объектива с апланатнческими менисками при различном числе линз . Все линзы объектива выполнены из стекла с показателем преломления

Сравнивая значения с аналогичными данными для объектива из линз одинаковой оптической силы, можно заключить, что в объективе с аплаиатическими менисками несколько больше сферическая аберрация, но строже выполняется условие синусов

Конденсор из линз одинаковой оптической силы. Пусть линейное увеличение конденсора из бесконечно тонких линз (рис. 271)

будет тогда с учетом условий нормировки для первого вспомогательного луча имеем Если оптическая сила всего конденсора то согласно формуле углов (52)

Полагая конденсор бесконечно тонким и состоящим из линз одинаковой оптической силы, получаем.

3. ГАБАРИТНЫЙ РАСЧЕТ ОПТИЧЕСКОЙ СИСТЕМЫ

Расчет оптической системы начинается с габаритного расчета. При габаритном расчете устанавливают число составляющих систему компонентов, решающих ту или иную задачу, их взаимное расположение, примерные размеры, фокусные расстояния отдельных компонентов.

Габаритный расчет ведется исходя из технических требований; определяются элементы, которые составляют систему, и их основные параметры.

Расчет осуществляется исходя из предположения, что оптическая система состоит из бесконечно тонких компонентов, для которых справедливы формулы идеальной оптической системы, и они же и применяются.

Габаритный расчет ведем по следующим исходным данным:

увеличение микроскопа Гм = -5 х

увеличение объектива Воб. = -1.25 х

расстояние от предмета до объектива S = -100 мм

    Определим увеличение окуляра:

    Найдем фокусное расстояние окуляра:

Гок = ; f`ок = = 62,5 (мм)

    По заданной числовой апертуре определим диаметр выходного зрачка микроскопа D`:

tg ` = == 0.16 ;` 10 0 , 2= 20 0

    Линейное поле микроскопа:

    Положение изображения, создаваемое объективом, определяется отрезком S`об

    Определим фокусное расстояние объектива

f`об = ==(мм)

    Положение входного зрачка:

    Положение выходного зрачка:

    Фокусное расстояние всего микроскопа:

    Положение выходного зрачка микроскопа:

Z`p` = (мм)

    Положение входного зрачка микроскопа:

    Световой диаметр окуляра:

В результате выполнения габаритного расчета выбираются основные оптические компоненты системы. Из каталога стандартных систем выбираем окуляр с близким значением фокусного расстояния элемента к расчетному.

Так как f́ ок = 62,5 мм,

максимально приближенное к нему значение из каталога

f́ кат = 60 мм r 1 = 36.31 мм d 1 = 4 мм n 1 = 1

r 2 = - 24.16 мм d 2 = 1.5 мм n 2 = 1.5183

r 3 = - 80.54 мм n 3 = 1.6522

Рассчитаем коэффициент подобия:

K = f́́ расч / f́ кат.

где К - коэффициент подобия, f́ расч - требуемое фокусное расстояние, f́ кат – фокусное расстояние из каталога.

К = 62,5 / 60 = 1,04

Получился уменьшающий коэффициент подобия.

Произведем расчет с учётом коэффициента подобия, для этого все радиусы и толщины линз окуляра, взятого из каталога, умножаем на К. Значение показателей преломления на коэффициент подобия не умножаем.

r 1 = r 1 кат · K = 36,31 · 1.04 = 37.7624 ͌ 37,76

r 2 = r 2кат · К = -24,16 · 1,04 = - 25,1264 ͌ - 25,13

r 3 = r 3кат · К = - 80,54 · 1,04 = - 83,7616 ͌ -83,76

r 3 = 83.75 n 3 = 1.6522

d 1 = d 1кат · К = 4 · 1,04 = 4,16

d 2 = d 2кат · К =1,5 · 1,04 = 1,56

Для построения схемы окуляра используем значения из ГОСТа 1807 – 75 «Радиусы сферических поверхностей оптических деталей. Ряды числовых значений» максимально приближенные к значениям, полученным расчетным путем:

r 1 = 37.76 d 1 = 4.16 n 1 = 1

r 2 = -25.12 d 2 = 1.56 n 2 = 1.5183

Построение идеальной оптики в Zemax

Введение
Всё больше современные системы автоматизации оснащаются оптическими устройствами для решения задач позиционирования, распознавания, наблюдения и др. Построение идеальных оптических систем при помощи программы расчета Zemax может оказаться полезным и непрофессионалам, например, для лучшего понимания теории, особенностей оптических устройств и выполнения прикидочных расчетов оптических систем. В этой работе рассмотрены приёмы построения идеальной оптики в среде Zemax, даны примеры расчета диапазона автофокусирования фотокамеры, построения эквивалентной схемы монокуляра МГТ 2.5x17.5, объектива фотокамеры SUNNY P13N05B смартфона Huawei P7 и замены идеальных оптических элементов реальными.


Идеальная оптика
Изображение в идеальной оптике, в которой отсутствуют искажения, строится по законам параксиальной оптики. Термин параксиальный означает «вблизи оси». Параксиальная оптика хорошо описываются линейными выражениями, которые при малых углах заменяются линейными уравнениями. В параксиальной области любая реальная система ведет себя как идеальная.
Расчеты идеальных линз в среде Zemax выполняются с допущением, что линзы имеют параксиальные свойства не только вблизи оси, но и на всей рабочей поверхности, которая действует как идеальная тонкая линза c единичным показателем преломления воздуха.
Параксиальную оптику целесообразно использовать в качестве эталона, с которым сравниваются аберрации (искажения) реальной оптики.
Переносить результаты расчетов параксиальной оптики на реальные системы следует с осторожностью, особенно при построении систем у которых свойства вблизи оптической оси и на удалении значительно отличаются.
Разработан целый ряд приёмов уменьшения аберраций и габаритных размеров линз: применение несферических поверхностей, составных линз, неоднородных оптических материалов, и др. Но как не была бы устроена реальная линза (Петцваля, Гаусса, Барлоу, ...) ее характеристики могут только приближаться к характеристикам идеальной линзы.

Построение изображения собирающей линзой
Рассмотрим случай, когда от каждой точки плоскости предмета расходятся лучи во все стороны как от точечных источников. Из крайней точки объекта А, как показано на Рис. 1. в соответствующую точку В на плоскости изображения попадут только те лучи, которые сфокусированы линзой. Количество лучей предмета попадающих в плоскость изображения пропорционально диаметру линзы. Чем больше лучей от предмета попадает в плоскость изображения, тем выше яркость изображения.

Рис. 1. Сопряженные точки. Ход лучей от точки предмета к соответствующей точке
изображения на плоскости фотоприемника.

Для минимизации вычислений нахождения изображения рассматривают ход только нескольких лучей, например, как на Рис. 2: луч, идущий от объекта вдоль оптической оси; луч, проходящий через центр линзы и луч, параллельный оптической оси, преломляемый линзой и проходящий через главный фокус линзы (точка F на оптической оси).


Рис. 2. Минимальные построения для нахождения расстояния до плоскости изображения, величины изображения и увеличения линзы. Для параксиальной оптики продольное увеличение (связано с расстояниями) равно квадрату линейного увеличения (перпендикулярно оси), а угловое увеличение обратно пропорционально линейному.

Связь расстояний до предмета и изображения. Глубина резкости
Построение зависимости между зоной фокусировки объектива и глубиной резкости в пространстве предметов показано на Рис. 3. Когда расстояние до предмета равно бесконечности, плоскость сфокусированного изображения проходит через главный фокус (смещение плоскости изображения относительно фокуса равно нулю). Минимальная глубина резкости в пространстве предметов достигается при максимальном удалении плоскости изображения (в зоне фокусировки) относительно главного фокуса.

Рис. 3. Зависимость между зоной фокусировки объектива и глубиной резкости в пространстве предметов.

Функции среды проектирования Zemax
Функции среды Zemax, наиболее часто используемые при проектировании оптических систем, присвоены отдельным кнопкам основного меню. Назначение этих кнопок показано на Рис. 4.


Рис. 4. Интерфейс программы Zemax.

Типы поверхностей элементов оптических систем, радиусы поверхностей, расстояния между элементами и другие параметры заносятся в таблицу редактора, в которой каждая строка содержит параметры одного элемента. Связь параметров таблицы и элементов оптической схемы показана на примере Рис. 5.


Рис. 5. Связь оптической схемы с параметрами таблицы.

Идеальная линза в Zemax
Для моделирования линзы с параксиальной поверхностью в Zemax необходимо задать фокусное расстояние и, при необходимости, включить расчет разницы оптических траекторий проходящих через линзу (установить статус OPD режима в 1 в соответствующей строке таблицы редактора). По умолчанию, OPD расчет не выполняется (статус OPD равен нулю ).
Построим в Zemax идеальную линзу, например, с диаметром входного зрачка 10 мм и фокусным расстоянием 15 мм, собирающую параллельные лучи удаленного предмета в одной точке.
1. Откроем новую таблицу: меню > кнопка

Рис. 6. Начальное состояние таблицы оптической схемы редактора Zemax. В строках таблицы (NN 0; 1 и 2) содержатся параметры предмета OBJ, апертурной диафрагмы STO и изображения IMA.

2. Добавим поверхность между диафрагмой и изображением: выделим последнюю строку строку IMA > меню Lens Data Editor > Edit > Insert Surface

Рис. 7. Добавлена стандартная поверхность N2.

3. Выберем «Параксиальный» тип поверхности: строка N2 > колонка Surf:Type > окно свойства - Properties > Surface Type > Paraxial


Рис. 8. Поверхность N2 изменена на идеальную (Paraxial) линзу с фокусным расстоянием 100 мм. Расстояние между линзой и изображением равно нулю. Расстояние между линзой и диафрагмой STO также равно нулю.

4. Изменим фокусное расстояние со 100 (по умолчанию) на 15 мм в колонке таблицы Focal Length
5. Зададим расстояние 15 мм от линзы до изображения в колонке Thickness

Рис. 9. Фокусное расстояние линзы изменено на 15 мм. Расстояние между линзой и изображением увеличено до 15 мм.

6. Зададим диаметр входного зрачка 10 мм: Основное меню > кнопка > закладка Aperture > Aperture Value > 10


Рис. 10. Задан диаметр входной апертуры оптической схемы: 10 мм.

7. Построим оптическую схему: Основное меню > кнопка


Рис. 11. Оптическая схема в окне Layout. Координаты диафрагмы и линзы совпадают (расстояние между ними равно нулю) Координаты “мышки” на схеме (в масштабе оптической схемы) отображаются в заголовке рисунка.

8. На схеме Layout не показаны лучи слева от идеальной линзы (выделена красным), идущие от предмета расположенного на бесконечном расстоянии, которое обозначено как Infinity в колонке Thickness нулевой строки OBJ таблицы. Чтобы показать часть этих лучей на входе линзы введем поверхность на расстоянии, например, 7 мм перед апертурной диафрагмой STO.

Рис. 12. Добавлена поверхность перед апертурной диафрагмой STO.

9. Добавим поверхность 1 к отображаемой части оптической схемы и увеличим количество лучей до 7 для наглядности: меню рисунка Layout > Setting > First Surface = 1 > Number of Rays = 7.


Рис. 13. Показаны лучи на отрезке 7мм до диафрагмы. Увеличено количество лучей с 3-х до 7.

10. Сделаем невидимой первую поверхность: строка N1 таблицы > колонка Surf:Type > окно свойства - Properties > закладка Draw >
11. Обновим окно Layout оптической схемы через кнопку основного меню или дважды «кликнув» в зоне окна схемы.


Рис. 14. Первая поверхность оптической схемы сделана невидимой.

В окне Layout можно отслеживать изменения табличных параметров оптической системы и параметров основного меню, показанных на Рис. 4 и Рис. 5.

Модель составной линзы фотокамеры смартфона
Для построения идеальной модели возьмем составную линзу фотокамеры SUNNY P13N05B смартфона Huawei P7 (Рис. 15). Линза смартфона состоит из пяти пластиковых элементов. Пример составной линзы показан на Рис. 16.


Рис. 15. Размеры и фотографии фотокамеры SUNNY P13N05B с фотодиодной матрицей SONY IMX214 13 МП. 1. – модуль фотокамеры с фотодиодной матрицей; 2- линза камеры; 3 – катушка привода автофокусировки - перемещения объектива относительно матрицы датчика.

Камера P13N05B имеет следующие характеристики.
Размер линзы: 1/3”
Размер фотодиодной матрицы: 6,1 мм (H) × 4,5 мм (V)
Диагональ активной зоны матрицы: 5,9 мм
Состав линзы: 5 пластиковых элементов (см. Рис. 16)
Фокусное расстояние: 3,79 мм
Апертурное число (f/#): 2
Угол поля зрения: 75°±3°
Глубина резкости: от 7 см до ∞
Диапазон привода автофокусировки: ≥ 0,24mm

Рис. 16. Пример составной линзы. Линза смартфона iPhone 6.

Параметры оптической схемы идеального объектива фотокамеры (см. Рис. 17) заданы в таблице Lens Data Editor и в окнах клавиш основного меню Zemax:. Функция выбираемая из списка функций выделенной ячейки колонки Thickness таблицы автоматически устанавливает наилучшее расстояние между линзой и изображением. Для построения наилучшего изображения удаленного на бесконечное расстояние предмета плоскость фотоприёмника должна проходить через точку главного фокуса отстоящей от линзы на 3,79 мм.


Рис. 17. Оптическая схема параксиальной линзы фотообъектива. Предмет удален на бесконечное расстояние.

Приближение объекта к линзе на 10 мм с сохранением угла обзора 76о/2 в окне Field Data (Рис. 18) увеличило расстояние между линзой и изображением до 6,10 мм. Следовательно изменение автофокуса при приближении объекта с бесконечности до 10 мм равно 2,31 мм (как 6,10 мм – 3,79 мм).


Рис. 18. Построение лучей от объекта находящегося в 10 мм от параксиальной линзы фотокамеры и нахождение положения автофокуса.

В спецификации фотокамеры P13N05B указано, что глубина резкости в пространстве предметов лежит в пределах от 7 см до ∞ (бесконечности). Установим предмет на минимальной дистанции в 70 мм от апертурой линзы. Zemax устанавливает расстояние между линзой и плоскостью изображения 4 мм (см. выделенную ячейку таблицы на Рис. 19). Таким образом, для построения качественного изображения предмета находящегося в зоне от 7 см до ∞ требуется изменять расстояние между линзой и фотодатчиком от 4 до 3,79 мм. Требуемое изменение 0,21мм перекрывается диапазоном привода автофокусировки фотокамеры 0,24 мм.

Рис. 19. Расстояние до изображения равно 4 мм при расстоянии до объекта 70 мм. Фокусное расстояние линзы равно 3,79 мм.

Зависимость диапазона фокусировки от фокусного расстояния объектива
Зона фокусировки зависит не только от дистанции до предмета, но и от главного фокуса линзы (объектива). На Рис. 20 показана геометрия нахождения зон фокусировки для линз с главным фокусом F1=7,5 мм и F2=19 мм и положений предмета в диапазоне AB = 35… 52 мм. Для настройки резкости с линзой F1 требуется изменять расстояние меду главным фокусом линзы и плоскостью изображения в диапазоне 0,8 мм, тогда как для линзы с F2 этот диапазон вырос до 12 мм.

Рис. 20. Пример построения зон фокусировки для линз с разными фокусными расстояниями F1 и F2.

Идеальные телескопы
Сравнительные размеры телескопов Кеплера и Галилея для одинакового увеличения F1/F2 показаны на Рис. 21. Телескоп Кеплера с собирающими линзами даёт перевернутое изображение. Более компактный телескоп Галилея включает рассеивающую линзу и даёт прямое изображение.

Рис. 21. Схема телескопов Кеплера (а) и Галилея (б) при одинаковом увеличении F2/F1.

Миниатюрный монокуляр МГТ 2,5x17,5 СССР, ЛЗОС (Лыткаринский завод оптического стекла) собран по схеме Галилея (Рис. 22). Он имеет следующие характеристики.
Увеличение: 2,5 крат(раз)
Диаметр объектива: 17,5 мм
Угол поля зрения: 13,5 град
Разрешающая способность: 15 угл. сек
Предел фокусировки окуляра: -5...+5 диоптр
Габаритные размеры: 22 x 38 мм


Рис. 22. Вид и примерные размеры миниатюрного монокуляра МГТ 2,5x17,5. Предмет находится справа.

Эквивалентная идеальная оптическая схема монокуляра МГТ 2,5x17,5 в ZEMAX показана на Рис. 23. Схема состоит из собирающей и рассеивающей линз с главными фокусами 37,5 мм и -15 мм соответственно, имеющими отношение 2,5 раз. Диаметр собирающей линзы 2х8,75 мм.


Рис. 23. Табличные данные и идеальная оптическая схема монокуляра МГТ 2,5x17,5. Параллельные лучи идут от предмета удаленного на бесконечное расстояние.

Вариант замены параксиальной линзы реальной
Заменим первую параксиальную линзу (диаметр: 17,5 мм; фокусное расстояние: 37,5 мм) монокуляра ахроматической линзой из каталога Edmund Optics . Чтобы минимизировать выборку линз установим следующие условия: категория - Achromatic Lenses; диаметр – 18 мм; эффективная фокальная длина EFL 30-39.99 мм; диапазон длин волн - 425 - 675 нм.
Ближайшая к требуемым параметрам линза: 18mm Dia. x 35mm FL, VIS 0° Coated, Achromatic Lens, Stock No. #47-706 (номер по каталогу).
Для построения ахроматической линзы в Zemax из ее спецификации возьмем параметры перечисленные в Таблица 1. Параметры можно найти и на чертеже линзы PDF drawing сайта Edmund Optics или на Рис. 24.
Таблица 1. Параметры составной ахроматической линзы Edmund #47-706



Рис. 24. Чертеж ахроматической линзы Edmund #47-706.

Замена параметров первой линзы идеального телескопа (строка N2 таблицы Рис. 23) линзой Edmund #47-706 даёт вариант, представленный на Рис. 25.


Рис. 25. Вариант оптики телескопа с реальной ахроматической линзой. Выделенное в таблице красным расстояние между линзами найдено ручным смещением движка Slider.

Расстояние между линзами (выделенное красным в таблице Рис. 25) изменялось ползунком Slider в ручную до момента когда лучи на выходе второй (идеальной линзы) установились параллельными главной оси (в этом положении фокусные расстояния линз телескопа находятся в одной точке). Действие ползунка в реальном времени отображается смещением элементов оптической схемы и изменением траекторий лучей на оптической диаграмме окна Layout. Ползунок можно открыть через основное меню Zemax > Tools > Miscellaneous > Slider.
Если на выходе телескопа поставить дополнительную параксиальную собирающую линзу (элемент N6 в таблице и красная плоскость на оптической схеме Рис. 26), то можно увидеть вносимые реальной линзой искажения (см. часть диаграмм Zemax на Рис. 26).


Рис. 26. Оптическая схема и диаграммы искажений, вносимые реальной линзой.

Литература
1. Сайт Optics Realm. Видеоуроки по проектированию в среде Zemax и теории оптики.

Одной из простейших схем объектива-анастигмата является объектив триплет, состоящий из трех одиночных линз, расположенных на конечном расстоянии друг от друга. Этот объектив относится к группе универсальных объективов: его относительное отверстие не превышает а угловое поле не более

Наиболее рациональной схемой триплета является схема, в которой отрицательная линза расположена между двумя положительными (рис. 275, а). Другая возможная схема - положительная линза между двумя отрицательными - нерациональная, так как при положительном фокусном расстоянии всего объектива оптическая сила положительной линзы должна быть слишком большой. Остальные комбинации, отступающие от симметрии в

Рис. 275. Схема объектива триплет

отношении знаков оптических сил линз, приводят к значительным трудностям при исправлении дисторсии.

Объектив триплет был разработан английским оптиком Г. Тейлором в 1894 г. и до сих пор является предметом массового производства почти всех онтических фирм мира. Дальнейшим развитием схемы триплета является более совершенный объектив «Тессар» (1902 г.).

Сравнительная простота оптической схемы триплета позволяет выполнить исследование и расчет этого объектива на основе теории аберраций третьего порядка. Полагая линзы триплета бесконечно тонкими, можно подобрать такие параметры, через которые большинство аберраций объектива выражаются линейно. Известно несколько методик расчета триплета, предложенных Г. Слюсаревым , Д. Волосовым и др. Отметим, что во всех методиках расчета используется способ разделения параметров на внешние, не зависящие от формы линз, и внутренние, определяющие конструкцию линз объектива.

Задача по расчету триплета состоит в решении девяти уравнений, выражающих условия исправления пяти монохроматических аберраций третьего порядка, двух хроматических аберраций и двух габаритных условий. Для выполнения всех этих условий в триплете имеются пять внешних параметров (три оптические силы линз и два воздушных промежутка), три внутренних параметра (форма трех линз) и шесть оптических постоянных стекол (показатели преломления и коэффициенты дисперсии). Следует иметь в виду, что с математическойточки зрения постоянные оптических стекол не являются полноценными параметрами, так как они могут принимать только дискретные значения в ограниченных пределах. Принципиальная схема объектива триплет, состоящего из тонких линз, показана на рис. 275, б. Нумерация углов вспомогательных лучей выполнена относительно компонентов объектива. Фокусное расстояние объектива принимаем равным единице.

Условия нормировки первого вспомогательного луча: второго - Рассмотрим сначала аналитические зависимости, определяющие выполнение условий

масштаба и исправления аберраций, зависящих от внешних параметров. Выполнение условий, обеспечивающих исправление сферической аберрации, комы и астигматизма, рационально рассмотреть после определения внешних параметров, так как коррекция указанных аберраций достигается за счет внутренних параметров линз, т. е. путем нахождения радиусов кривизны преломляющих поверхностей.

Так как апертурная диафрагма обычно устанавливается внутри объектива, то для получения более простых зависимостей будем считать, что в исходном варианте объектива эта диафрагма совпадает со вторым компонентом, т. е.

Таким образом, внешние параметры триплета необходимо выбирать, исходя из выполнения следующих шести условий.

1. Условие заданного фокусного расстояния (условие масштаба)

где приведенные оптические силы линз триплета.

2. Условие заданного фокального отрезка:

Это условие не всегда является обязательным.

3. Условие исправления кривизны Пецваля:

4. Условие исправления хроматизма положения:

5. Условие исправления хроматизма увеличения:

6. Пятая сумма Зейделя, определяющая дисторсию объектива, выражается через параметры согласно (498). Но так как в большинстве конструкций триплета приведенные значения величин составляют то примерно такие же значения имеют высоты второго вспомогательного луча на первой и третьей линзах. Поэтому в формулах (498) можно опустить слагаемые, содержащие высоты в третьей и второй степени, и, полагая получить следующую приближенную формулу, определяющую условие исправления дисторсии:

Для упрощения зависимостей (552) и (553) в них необходимо исключить параметры второго вспомогательного луча При по формулам углов и высот находим

Следовательно, С учетом последней зависимости получим:

Величины связаны между собой по формулам высот и углов:

Решение этой системы довольно затруднительно, так как уравнения являются нелинейными относительно неизвестных. Кроме того, чисто математическое решение уравнений может привести к конструктивно неосуществимым решениям; недопустимы большие оптические силы линз, значительные воздушные промежутки и т. п. Поэтому при исследовании коррекционных возможностей триплета рационально придерживаться следующей последовательности.

Параметру задаем ряд значений в интервале параметру от -3 до -4 и при выбранных марках оптического стекла по (550) находим Затем по условиям масштаба (548) и исправления хроматизма положения (551) определяем высоты и При этом желательно выполнение условия (549). Затем по формулам (555) вычисляем и а по (552) и (553) находим Указанные исследования выполняются для различных комб инаиий марок оптического стекла и на основании этого выбирается оптимальный вариант внешних параметров.

Коррекция остальных монохроматических аберраций достигается соответствующим выбором параметров первого вспомогательного луча внутри каждой линзы, т. е. за счет радиусов кривизны преломляющих поверхностей. На этой стадии расчета целесообразно перейти от бесконечно тонких компонентов к линзам конечной толщины. Имея по одному свободному параметру внутри каждой из трех линз, можно исправить три аберрации: сферическую, кому и астигматизм. Согласно формулам (498) получим следующие зависимости, определяющие первые три суммы Зейделя для триплета:

где внешние параметры определены на предыдущей стадии расчета, а параметры относятся к каждой линзе и зависят

от углов а внутри нее. Зависимости (556) как функции углов а довольно сложные, и для нахождения этих углов необходимо выполнить значительную исследовательскую работу.

Коррекционные возможности объектива триплет позволяют довести состояние коррекции остаточных аберраций до такого уровня, при котором разрешающая способность в центре поля составляет около по полю - На основе применения новых марок оптического стекла, в частности сверхтяжелых кронов продолжаются работы по совершенствованию оптической схемы триплета.

1. Фокусные расстояния объектива и окуляра.

= = = 19.6154

= L - = 255 – 19.6154 = 235.3846

2. Диаметр входного зрачка.

D = 2.5 · 12 = 30

Относительное отверстие определяется как:

3. Поле зрение окуляра.

а) Линейное поле зрения окуляра:

235.3846 · tg1.5 = 6.1671

б) Угловое поле зрение окуляра.

Arctg0.3144 = 17.4531

2 = 17.4531 · 2 = 34.9062

4. Цена одной диоптрии.
= 0.3843

V. Аберрационный расчет окуляра

Аберрационный расчет окуляра проводился для 3 длин волн: = 589 нм, = 656 нм, = 486 нм.

1. Поле зрение:

Г · 2 = 12 · 3 = 36 (симметричная)

2. Коэффициент пересчета:

Тогда с учетом данного коэффициента радиусы и толщины линз окуляра имеют соответствующие значения:

Расчет удаления выходного зрачка:

235.3846

1.6346

0.75 · = 14.7116

14.7116 + 1.6346 = 16.3462

d = = = 0.0034

VI. Расчет аберрационной призменной системы

Аберрации призменной системы вычисляют по формулам аберраций 3-го порядка эквивалентной плоскопараллельной пластины:

1) Продольная сферическая аберрация:

d = d si = 0.5 · 84 · · si 3.6448 = 42 · · 0.004 = 0.0636

d’ = arctg = arctg = 3.6448

2) Хроматизм положения:

( - = · = · = 0.3464

3) Меридианная кома:

d = d · si = 126 · · 0.004 · 0.0262 = - 0.00499

Tg1.5 = 0.0262

VII. Расчет объектива

Расчет аберраций объектива.

Для определения аберраций, которыми должен обладать объектив, используют формулы суммирования аберраций.

Продольная сферическая аберрация:

d = - (d + d ) = - (0.0636 – 0.0482) = -0.0154

Хроматизм положения:

d = -(-0.0984 + 0.3464) = -0.284

Меридиональная кома:

d = d - d = 0.0034 + 0.00499 = 0.00839

Определение конструктивных элементов объектива.



Аберрации тонкой оптической системы определяют тремя основными параметрами P,W,C .

Расчет выполняется в следующем порядке:

1. Аберрационные суммы:

7.5122

= - = - = 52.0385

2. Основные параметры системы:

C = = = - 0.0012

P = = = 0.0319

W = = = 0.22107

3. Параметры, также используемые при выборе объектива:

= P – 0.85(W - = 0.0319– 0.85(0.22107 – 0.1 = 0.0319 – 0.3758 =

Для вычисления значений C и по таблице-номограмме была найдена группа комбинаций стекол с наиболее близкими к расчетным показателями C и - №20.

C
-0.0050 0.92 -4.02 1.922
-0.0025 0.11 -4.70 2.140
-1.00 -5.38 2.357
0.0025 -2.44 -6.07 2.574

0.0025 – 1 X = 0.48

1.07 – 1 X = 0.5136

X – 0.48 = -0.3064

0.197 – 1 X = 0.09456

X – 0.48 = 2.0984

0.63 – 1 X = 0.3024

X – 0.48 = -4.6676

4. Дальнейший ход расчета:

Q = ± = - 4.6676 ± = - 4.6676 – 0.1478 = - 4.8154

Q = - = - 4.6676 – = - 4.7401

В дальнейших расчетах будем применять значение: Q = - 4.8154.

5. Значение для первого нулевого луча:

= · Q + = · (-4.8154) + 2.0984 = 0.4924

= · Q + = · (-4.8154) + 2.0984 = 0.2478

6. Радиуса кривизны тонких линз:

235.3846 · = 159.4301

235.3846 · = - 86.6506

235.3846 · = -245.903

7. Конструктивные параметры линз конечной толщины:

б) ∆ = 0.05D = 0.05·30 = 1.5

в) Абсолютные величины стрелок:

г) Толщины:

= + + ∆ = 0.7056 + 1.2983 + 1.5 = 3.5039

д) Высоты:

235.3846 – 0.4124·3.5039 = 233.9396

233.9396 – 0.19901·1.5 = 233.6411

е) Радиусы кривизны:

86.6506 · = - 86.1185

245.904 · = -244.0809

VIII. Оформление результатов расчета окуляра

(аберрации приведены в обратном ходе)

h D
tg ·100 S’ ∆y’ η
1.2500 6.3991 14.7398 -0.0482 -0.0031 -0.0085 -0.0133 -0.1117 -0.0984
1.0825 5.5389 14.7519 -0.0361 -0.0020 -0.0064 -0.0012 -0.0997 -0.0985
0.8839 4.5200 14.7639 -0.0241 -0.0011 -0.0043 0.01092 -0.0877 -0.0768
0.6250 3.1944 14.6676 -0.0120 -0.0004 -0.0021 0.02300 -0.0758 -0.0528
0.0 0.0 14.7880 0.0 0.03510 -0.0639 -0.0288
tg ·100 - y’ ∆y’ -
-17.453 1.76 353.42 0.326 -0.375 -0.049 5.9654 -4.850 0.0116 -0.021 -0.009
-12.333 0.58 750.72 0.107 -0.198 -0.091 4.2524 -2.475 0.0090 -0.017 -0.008
= -17.4531 = -12.3326
m tg ·100 ∆y’ m tg ·100 ∆y’
1.2500 8.1365 0.02274 1.2500 6.9772 0.00450
0.8839 6.2742 0.01586 0.8839 5.1019 0.00402
1.7616 0.5778
-0.8839 -2.7800 -0.01259 -0.8839 -3.9580 -0.00385
-1.2500 -4.6727 -0.01598 -1.2500 -5.8457 -0.00409

IX. Оптический выпуск зрительной трубы

h h’ D
η
15.000 -2.075 106.7225 14.4410 -10.648 5.800 6.128 0.328
12.9904 -1.746 105.1244 12.4218 -8.0635 4.183 4.525 0.342
10.6066 -1.386 103.5971 10.1944 -5.4294 2.656 2.996 0.34
7.5000 -0.953 102.1350 7.1624 -2.7428 1.194 1.533 0.339
-0.209 0.133 0.342
tg ·100 - -
-1.3000 12.140 21.68 0.794 -145.2 -150.8 16.662 -5.6 -0.011 0.0153 0.0263
-1.0338 8.3701 15.15 0.404 -152.4 -157.5 16.961 -5.1 -0.052 0.0129 0.0649
= -1.3000 = -1.0338
m m’ m m’
15.000 -3.497 27.5740 15.4339 15.000 -2.859 23.565 15.195
10.6066 -2.213 23.0532 10.5131 10.6066 -1.824 19.1533 10.383
0.1293 12.1401 -0.045 8.3701
-10.607 1.3075 1.5512 -10.185 -10.607 1.3091 -1.1392 -10.16
-15.000 1.8488 -2.1954 -14.336 -15.000 1.8631 -5.554 -14.32

ЗАКЛЮЧЕНИЕ

Задание на курсовую работу выполнено. Произведен расчет оптической системы зрительной трубы Кеплера по всем указанным в задании пунктам. Результаты представлены в данном отчете.

Основными результатами работы являются параметры системы, полученные после её сквозного просчета. В результате выполнения курсового проекта получаешь практические навыки компоновки и габаритного расчета оптических систем, работы с каталогами, суммирования остаточных аберраций компонентов и аберрационного расчета оптической системы, используя стандартный пакет программ для ЭВМ.

Список использованной литературы

1. http://www.telescope.ru/ Сайт посвящен астрономам-любителям. На сайте рассказывается о любительских телескопах, советы по покупке телескопов, биноклей и подзорных труб, список литературы об астрономии и телескопах и интернет-магазин.

2. Бебчук Л.Г., Богачев Ю.В. и др. Прикладная оптика – М.: Машиностроение, 1988.

3. Павлычева Н.К. Прикладная оптика – Казань: Изд-во КГТУ, 2003.