Чем обработать деталь после 3d печати. Особенности переработки стирольных пластиков

Ударопрочный полистирол

Ударопрочный полистирол представляет собой продукт сополимеризации стирола с каучуком. В зависимости от назначения ударопрочный полистирол, выпускаемый в соответствии с ГОСТом 28250-89 «Полистирол ударопрочный. Технические условия», имеет 4 группы марок, различающихся по величине ударной вязкости: полистирол сверхударопрочный, высокой, средней и низкой ударопрочности. Ударопрочный полистирол выпускается термо- или светостабилизированнымв виде однородных неокрашенных или окрашенных гранул размером 2-5 мм. Для производства экструзионных изделий технического назначения рекомендуется использовать высоковязкие марки: УПМ-0503, УПМ-0508, УПС-0803Э, УПМ-0703Э, УПС-0801. Новые марки УПС-800ФМ, УПС-825Д, УПС-825Е, УПС-825ТГ с повышенной стойкостью к образованию трещин, стойкостью к низким температурам, трудногорючие выпускаются по ТУ 2214-001-49510617-99, ТУ 2214-009-00203521-94.

Индексы М и С после букв УП, обозначающих ударопрочный полистирол, характеризуют метод его получения: М - полимеризация в массе; С – блочно-суспензионная полимеризация. Индексы Л и Э обозначают рекомендуемые способы переработки данного материала: литьем под давлением или экструзией соответственно.

Регламентируемые показатели ударопрочного полистирола по ГОСТ включают массовую долю остаточного мономера, допустимую влажность, механические показатели (прочность при растяжении, относительное удлинение при разрыве, ударную вязкость по Шарпи на образцах с надрезом), технологические характеристики (ПТР при Т=200 0 С, Р=5 кгс и разброс показателя в пределах партии). Общие справочные показатели материала приведены в таблице 1.

Из-за невысокой по сравнению с НПВХ и АБС-пластиками прочности на удар, низкой атмосферостойкости и повышенной горючести ударопрочный полистирол в настоящее время редко применяется для производства профильных изделий.

АБС-пластики

АБС-пластик является продуктом привитой сополимеризации акрилонитрила, бутадиена и стирола. Материал обладает высокой прочностью на удар и жесткостью, хорошей работоспособностью при низких и повышенных температурах, хорошим сопротивлением к истиранию, высокой химической стойкостью, хорошими диэлектрическими свойствами. Температура применения материала от -40 до +80 0 С, кратковременно - до 100 0 С.

Таблица 1. Справочные показатели ударопрочного полистирола

Показатели

Плотность, кг/м 3 *10 -3 (г/см 3)
Предел прочности при изгибе, МПа
Модуль упругости при изгибе, МПа
Твердость по Роквеллу (шкала R)
Твердость по Бринеллю, МПа
Температура тепловой деформации под нагрузкой 1,85 МПа, 0 С
Влагопоглощение за 24 ч при 20 0 С, %
Удельное электрическое сопротивление, Ом*м
Тангенс угла диэлектрических потерь при частоте 10 6 Гц

4*10 -4 -8*10 -4

3*10 -4 -7*10 -4

Диэлектрическая проницаемость при частоте 10 6 Гц
Литьевая усадка, %
Температура размягчения по Вика в жидкой среде, 0 С
Ударная вязкость на образцах без надреза, кДж/м 2
Ударная вязкость на образцах с надрезом, кДж/м 2 при -20 0 С

снижение 30-40 %

снижение 30-40%

Ударная вязкость на образцах с надрезом, кДж/м 2 при -40 0 С

снижение на 50%

снижение на 50%

АБС относится к непрозрачным пластмассам, хорошо окрашивается в различные цвета. Изделия из обычных марок АБС имеют высокий поверхностный глянец, выпускаются также специальные матовые сорта АБС. В России АБС-пластики производят Узловское ОАО «Пластик» (Тульская обл.) и ПО «Салаватнефтеоргсинтез» (Башкирия).

К экструзионным маркам относятся АБС 1106-30, АБС 2802-30, АБС 1010-30, АБС 1010-31. Неплохо перерабатываются экструзией и переходные марки АБС2020-30, 31, 32. Обозначение пластика АБС состоит из наименования марки, буквенных обозначений, номера рецептуры окраски, указания цвета материала, сорта и обозначения ТУ.

Буквенное обозначение, стоящее после числового, указывает на преимущественный метод переработки, основное назначение или наличие специальных добавок: Э - марка, предназначенная для переработки методом экструзии; К - марка, предназначенная для компаундирования с ПВХ; Т - марка с повышенной теплостойкостью; С - марка со светостабилизирующей добавкой.

Все марки пластиков АБС выпускают термостабилизированными. По требованию потребителя пластики АБС могут выпускаться и светостабилизированными. В таблице 2 приведены основные справочные характеристики АБС-пластиков. Зарубежные экструзионные марки АБС представляют фирмы Dow Chemical (США), BASF, Bayer (ФРГ), General Electric (Бельгия), EniChem (Италия), Kumho, Chi Ime, LG (Южная Корея) и др.

Таблица 2. Справочные характеристики АБС-пластиков

Характеристика

Величина

Плотность, г/см 3

Телостойкость по Вика, 0 С

Коэффициент теплового линейного расширения, 1*10 -5 0 С

Усадка при литье под давлением, %

Твердость по Роквеллу (шкала R)

Твердость по Бринеллю при 20 0 С, кгс/мм 2

Модуль упругости при статическом изгибе, кгс/см 2

15*10 3 -24*10 3

Ударная вязкость по Изоду, кДж/м 2

Водопоглощение за 24 ч при 20 0 С, %

Светостойкость окраски

Термостойкость окраски

Теплопроводность, Вт/(м* 0 С)

Удельная теплоемкость, кДж/(кг* 0 С)

Примечания
(1) Окрашенный материал не изменяет цвета при облучении лампой ПРК-2 в течение 100 ч при температуре 50 0 С на расстоянии 300 мм до источника спета.
(2) Материал не изменяет цвета при выдержке при T= 230 0 С в течение 20 мин.

АБС-пластики обладают повышенной стойкостью к ползучести. Так, при комнатной температуре модуль упругости при действии напряжения 7 МПа в течение 1000 ч изменяется не более чем в 2 раза. При более высоких температурах и уровнях напряжений, особенно выше 65 0 С и 14 МПа, снижение механических показателей может быть значительным и превышать 50%.

Влияние на свойства воздействия окружающей среды

В обычных условиях (при нормальной температуре и влажности) атмосферные факторы не оказывают заметного воздействия на свойства АБС-пластиков. Однако при повышенных температурах, влажности, резкой смене температур, при воздействии солнечного света детали из АБС требуют определенной защиты, так как при этих условиях изменяются механические показатели материала и портится внешний вид изделий: прежде всего снижается глянец деталей и происходит изменение цвета (белые сорта желтеют). В некоторых случаях возможно даже растрескивание детали или значительная потеря прочности. Для улучшения погодостойкости изделий из АБС-пластиков их дублируют поливинилхлоридной или окрашенной полиакрилатной пленкой. Однако дублирование снижает прочность на удар, особенно при низких температурах. Окрашенные марки АБС несколько лучше сопротивляются ствию окружающей среды, наиболее стойкими являются черные композиции.

Хорошие результаты по защите АБС от УФ-излучения и влияния атмосферных факторов дает покрытие поверхности изделия тонким слоем ПММА в процессе соэкструзии, хотя это удорожает выпуск продукции. Такой метод широко применяется при производстве листовых материалов. Нижний слой из АБС обеспечивает листам качественное термоформование, высокую ударопрочность и устойчивость к низким температурам. Слой акрила защищает АБС от УФ-лучей, обеспечивает великолепное качество поверхности с сильным блеском, повышенную химическую стойкость. Материал устойчив к воздействию любых факторов внешней среды: после длительной эксплуатации комбинированных изделий цвет материала практически не меняется. Акриловый слой защищает также поверхность листа от царапин.

Экструзия АБС-пластиков

Материал легко перерабатывается экструзией в широком диапазоне текучести расплава полимера. Поэтому экструзией можно удовлетворительно перерабатывать марки, которые относятся к литьевым. Например, переходная марка АБС 2020-30 (или 32) вполне пригодна для производства простых по форме трубообразных и сплошных профилей. Для изделий более сложной формы лучше использовать более вязкие и формоустойчивые марки.

Подсушка материала

Большое влияние на внешний вид экструдируемых профилей оказывает качество предварительной подготовки сырья. Хотя АБС-пластики не являются сильно гигроскопичными материалами, но при хранении на поверхности гранулированного материала конденсируется влага. Процесс особенно интенсифицируется, когда холодный гранулят со склада доставляется в производственное помещение с теплым влажным воздухом. Обычно гранулы АБС-пластика содержат 0,3-0,4% влаги. При экструзии влажность сырья является причиной образования в изделиях раковин, пустот, шероховатости поверхности и значительного снижения прочности. Для получения качественных профильных изделий влажность материала не должна превышать 0,05-0,09%. В целях устранения повышенной влажности гранулят перед переработкой необходимо подсушивать. Оптимальным считается режим сушки гранул при температуре 80 0 С в течение 3 ч. В бункерных сушилках с продувом горячего воздуха через толщу материала для сушки достаточно 2 ч. При температуре выше 80 0 С наблюдается слипание гранул, особенно вблизи металлических поверхностей, что недопустимо, так как комки гранул могут перекрыть питающее отверстие экструдера и вызвать нарушение технологического процесса.

При хранении подсушенного материала в закрытых полиэтиленовых мешках влага обычно не обнаруживается в течение 4-5 ч. Если после сушки остаточная влага достаточно велика, то на внутренней поверхности мешка обнаруживаются капельки влаги в виде тумана. Следует иметь в виду, что при длительной сушке изменяется текучесть расплава материала. Так, ПТР гранул АБС-пластика при сушке в течение 3 ч при 70 0 С снижается на 10%, в течение 5 ч - на 30%, таким образом, длительная сушка отрицательно влияет на технологические свойства материала.

Оборудование

АБС можно экструдировать на любых стандартных экструдерах для переработки пластмасс. Из-за высокой вязкости расплава для переработки различных марок АБС требуются машины с повышенной мощностью привода (на 25% выше, чем для переработки ударопрочного полистирола). Предпочтительны экструдеры с длиной шнека 20:1, 24:1 или 30:1, поскольку такие шнеки обеспечивают более равномерное распределение температур в расплаве и хорошее перемешивание материала. Экструдеры целесообразно оснащать бункерами с подогревом материала. При применении экструдеров с дегазацией обеспечивается более высокое качество продукта благодаря удалению летучих веществ при переработке и устраняется необходимость подсушки материала.

Шнек экструдера - однозаходный, с постоянным шагом и прогрессивно уменьшающейся глубиной нарезки. Степень сжатия 2:1-2,5:1. АБС-пластики - высоковязкий материал, поэтому шнеки для его переработки должны иметь более глубокие каналы, чем каналы шнеков для ударопрочного полистирола. Шнеки с мелкими каналами улучшают смешение материала, но сдвиговое воздействие значительно повышает температуру расплава, что может оказать неблагоприятное воздействие на качество изделия и стабильность технологического режима переработки. В таблице 3 приведены размеры шнеков длиной 20D.

Улучшение смесительного воздействия достигается в шнеках с зонами интенсив¬ного воздействия на материал. На рисунке 1 показаны возможные варианты смеситель¬ных секций шнека одношнекового экструдера.

Таблица 3. Размеры шнеков для экструзии АБС-пластиков

Технологическая оснастка

Для производства профильных изделий используются прямоточные головки. Для предотвращения разложения материала следует избегать застойных зон в головке. Разбухание АБС-пластиков невелико и составляет по площади поперечного сечения 1,2-1,4. Длина формующей части фильеры обычно принимается равной 20-30 зазорам; величину зазора ориентировочно принимают равной толщине стенки профиля. Детали головки, соприкасающиеся с расплавом, хромируют и полируют. Калибрование профилей, как правило, осуществляется с помощью длинномерных вакуумных устройств, либо коротких пластин или втулок, установленных в вакуумной ванне. Материал быстро приобретает жесткость при охлаждении, поэтому при «запуске» профиля достаточно охладить экструдат в короткой вакуумной охлаждаемой втулке, чтобы профиль приобрел товарный внешний вид, после чего постепенно устанавливают рабочую скорость экструзии, синхронизируя подачу материала шнеком и отвод изделия тянущим устройством.

Особенности переработки

Основными технологическими факторами, влияющими на качество погонажных профильных изделий и производительность агрегата, являются температурный режим по зонам цилиндра и головки экструдера, частота вращения шнека, давление в головке, скорость отвода профиля, степень вытяжки экструдата, режим калибрования и охлаждения изделия.

Температурный режим переработки определяется вязкостью материала. По сравнению с ударопрочным полистиролом вязкость АБС-пластиков выше, поэтому температуры по зонам цилиндра и головки также устанавливают несколько выше. Так, температура по зонам цилиндра в направлении от загрузочной воронки к головке обычно принимается в диапазоне 180-220 0 С, а температура головки - 200-210 0 С. При переработке АБС-пластиков не всегда удается полностью использовать максимальную производительность экструдера. Повышение частоты вращения шнека до верхнего предела может ограничивать недостаточная мощность приводного двигателя, перегрев расплава в результате механического разогрева, возникновение нестабильной работы экструдера (пульсация производительности). Хорошее качество экструдата на выходе из головки достигается при сравнительно высоком давлении в головке. Обычно давление в 10-20 МПа достаточно для экструзии большинства профильных изделий. Давление в головке при заданной геометрии фильеры регулируется с помощью изменения скорости вращения шнека, изменения температуры, подбором оптимальной геометрии шнека, установкой на входе в головку решетки с пакетом фильтрующих сит. Установка фильтрующих решеток и сит целесообразна при изготовлении толстостенных изделий на головках низкого сопротивления.

Рис. 1. Варианты смесительно-диспергирующих элементов шнеков для переработки АБС:
1 - стержневая смесительная секция;
2 - смесительная секция Dulmage;
3 - смесительная секция Saxton;
4 - СТМ-секция;
5 - смесительная секция в виде кольцевого выступа;
6 - секция смешения Union Carbide

Число сеток при переработке АБС принимают от 2 до 6 при количестве отверстий на 1 см равном 40-180. При недостаточно высоком давлении в головке уменьшается производительность экструдера, ухудшается гомогенизация расплава, может возникнуть неравномерность течения, особенно в местах фильеры, значительно удаленных от оси экструзии. При слишком высоком давлении может наблюдаться чрезмерное повышение температуры расплава и уменьшение формоустоичивости экструдата. Возрастает также нагрузка на двигатель привода.

Охлаждение изделий при экструзии

При экструзии профилей, особенно разнотолщинных, требуется обеспечить равномерное охлаждение изделия, иначе возникают термические напряжения, вызывающие коробление изделия, отклонение от прямолинейности, скручивание. Температура воды в охлаждающей ванне должна быть, по возможности, регулируема, чтобы температура поверхности изделия на выходе из ванны составляла 70-80 0 С. Температуру калибрующего устройства рекомендуется поддерживать на уровне 80-90 0 С. Минимальные остаточные напряжения при экструзии труб и трубообразных профилей достигаются при использовании двухсекционных ванн. В первой секции длиной 1-1,25 м поддерживают температуру воды 40-50 0 С. Для снижения остаточных напряжений и последующей усадки при прогреве трубы или профиля рекомендуется степень вытяжки принимать не более 1,10-1,15.

Термический отжиг

Неравномерное охлаждение при калибровании приводит к искривлению профиля. Часто затруднительно подобрать условия, при которых искривление по длине находится в допустимых пределах. В таких случаях «сабельность» приходится устранять термообработкой. В некоторых случаях дифференциальный нагрев-охлаждение участков профиля может устранить проблему еще в линии. При невозможности обеспечить приемлемую прямолинейность изделия используют термический отжиг готовых профилей, для чего прямолинейные отрезки профилей плотно упаковывают в шпули или другую тару с плохой теплопроводностью и погружают в горячую воду (65-75 0 С) на 30-60 мин, после чего медленно охлаждают. Возможен также отжиг в воздушной печи в течение 2-3 ч. При отжиге необходимо обеспечить относительно свободное перемещение профилей по длине и по возможности ограничить поперечное перемещение. Основная трудность в проведении термообработки - найти подходящую по длине ванну или печь.

Литература: «Экструзия профильных изделий из термопластов», издательство Профессия, 2005

Процесс 3D-печати отличается сложностью и дороговизной, к тому же готовые трехмерные объекты часто получаются не самой приятной наружности. Как правило, при печати по технологии FDM внешние поверхности готовых изделий оказываются ребристыми. Чтобы этого избежать, требуется качественная финишная обработка. Как она выполняется?

Проекты RepRap

Практически сразу с момента появления этого проекта стали придумываться способы обработки готовых изделий в 3D, чтобы сгладить их поверхности. Основной акцент делался на отличительных особенностях термопластиков: способности плавиться под высокими температурами и размягчаться при контакте с химикатами. Как правило, в ходе термообработки регулировать степень нагревания поверхности просто невозможно, поэтому пластика может вскипеть, просесть или просто выделять токсичные пары.

Более перспективной считается обработка химикатами, правда, и тут есть свои сложности, в первую очередь технологические. Кроме того, разные пластики по-разному вступали в реакции с реагентами, и результат трудно предугадать. Например, ацетон отлично растворяет пластик ABS, а в случае с PLA-пластиком он бессилен. Лимонен действует полностью наоборот. Именно поэтому химическое сглаживание применяется в основном по отношению к ABS-пластику, который более популярен и доступен с точки зрения цены.

Типичным растворителем для этого вида пластика является ацетон . Благодаря хорошей растворяющей способности его можно использовать и как клеевой состав, когда требуется создание моделей из ABS-пластика. Такой же клей целесообразно применять для ремонта расслоений детали или при появлении трещин на ней. Особенность процесс сглаживания в повышении не только эстетичности детали, но и ее прочности: благодаря монолитной внешней оболочке модель становится прочнее и герметичнее.

Обработка вручную

Ручная обработка деталей 3d возможна благодаря инструменту Makeraser . Изначально дизайнеры стремились обработать детали простой кисточкой, но этот процесс требовал определенных умений, поскольку размягченный пластик легко деформировался под воздействием щетинок. Соответственно, на детали могли остаться следы, которые не всегда выравнивались. С другой стороны, можно было нанести ацетон лишь выборочно, благодаря чему не подвергались сглаживанию острые углы. Из-за слишком больших трудностей и был создан инструмент Makeraser, являющийся по сути простым фломастером с резервуаром. Он наполняется посредством ацетона или ацетонового клея, после чего встроенным скребком снимает модели с рабочей поверхности. Это практичный и универсальный инструмент, правда, его рационально использовать, если нужно склеить части модели или нанести ABS-пластик или ацетоновый клей на поверхность рабочего стола.

Погружение в ацетон

Этот метод обработки поверхности деталей считается перспективным. ABS-пластик следует выдержать в этом растворе не больше 10 секунд – этого времени вполне достаточно, чтобы растворился внешний слой изделия. Однако конкретное время на выдержку детали варьируется в зависимости от того, какого качества модель и какова концентрация ацетона. После выдержки модель должна полежать на воздухе, чтобы ацетон испарился. Этот метод обработки поверхности 3D-деталей прост и удобен, но регулировать его нелегко. Если передержать модель, слои просто будут растворяться, а мелкие детали ее потеряются. Если ацетон загрязнится пластиком одного цвета, при обработке другой модели могут возникнуть разводы пятен. А потому более удобным и контролируемым процессом является обработка деталей посредством ацетоновых паров.

С помощью погружения в ацетон можно эффективно обработать детали из популярного ABS-пластика с глянцевой поверхностью. Суть метода в следующем: модель помещается в тару, в которой налито небольшое количество ацетона. Сам трехмерный объект не должен соприкасаться с растворителем, поэтому его нужно поставить на платформу или подвесить над тарой. При этом важную роль играет материал платформы. Например, дерево не подходит, поскольку оно будет склеиваться с нижней поверхностью модели, и потом ее нельзя будет отделить. Лучше всего взять подставку из металла.

После того, как модель размещена, емкость подогревается, повышая тем самым температуру ацетона. Он начнет медленно испаряться. Помните о том, что кипятить ацетон нельзя, поскольку на модели будет скапливаться конденсат, который затем выльется в разводы на поверхности. Идеальной температурой является максимум 56 градусов. Готовая модель должна проветриться, пока не затвердеет внешняя поверхность. При обработке парами нужно учесть толщину стенок трехмерной модели. Оболочка должна иметь оптимальную толщину, чтобы выдержать потерю внешнего слоя, поскольку тонкие черты могут просто раствориться в составе.

Соблюдаем технику безопасности

Ацетон – это не самое опасное вещество, однако надо быть осторожным при работе с ним. Дыхание паров может привести к тому, что в легких образуется отек, который запросто может перерасти в воспаление. Первый признак отравления – неприятные ощущения с головокружением, раздражение слизистых оболочек. В идеале работу с ацетоном нужно вести с перчатках и очках. Ацетон – воспламеняемое вещество, а если его концентрация будет выше 13% в воздушной смеси, может возникнуть и взрыв. Если работы ведутся с парами ацетона, помещение должно хорошо и вовремя проветриваться. Для нагревания химиката нельзя использовать открытый огонь, поскольку по мере вытеснения воздуха из сосуда ацетон будет охлаждаться и вступит в контакт с огнем.

Finishing Touch

Кроме бесплатных вариантов инструментов, на основе которых могут обрабатываться 3D-детали, существуют коммерческие проекты. Один из них создан компанией Stratasys и называется Finishing Touch . Ее отличительная особенность – в возможности обработки любых вариаций ABS-пластика высокого качества. Процесс обработки легкий и простой, поскольку имеется система рециркуляции, а это дает возможность сэкономить на растворителе и не загрязнять воздуха вредными парами. Разработчики устройства обещают, что оно будет совместимо с пластиком ABS и PLA. Но при этом обработка все-таки будет вестись с применением ацетона, несмотря на то, что полилактид (PLA), растворяется в нем плохо.

Механическая и химическая

Кроме химической обработки требуется и механическая обработка готовых трехмерных деталей. Чаще всего деталь подвергается шлифовке, пескоструйной обработке и обработке парами растворителя. Несмотря на то, что различные методы 3D-печати позволяют получать высокоточные модели, без их финишной обработки не обойтись. Связано это с тем, что в некоторых случаях появляются трещины на деталях или расслаиваются слои. Для придания детали эстетичного облика применяется метод ошкуривания, который позволяет убрать видимые дефекты с поверхности моделей.

Этот процесс играет важную роль, например, при создании ювелирных изделий или экспонатов на выставку.

Созданные на 3D-принтере модели могут обрабатываться и наждачной бумагой. Это делается для получения гладкой поверхности, чтобы не были заметны места стыковки слоев. Чтобы их убрать, потребуется незначительная доводка наждачной шкуркой. Пластиковые детали также могут быть обработаны на шлифовальном станке, правда, использование наждачной бумаги и ошкуривания более рационально и удобно, поскольку можно контролировать каждый сантиметр модели. Наждачная бумага идеально подходит для обработки мелких деталей, чтобы убрать с них незначительные дефекты. При применении этих методов следует учитывать, что слои материала при ошкуривании, например, будут уменьшаться. И очень важно сохранить первоначальную форму трехмерного объекта.

Пескоструйная обработка

Этот способ предполагает управление оператором соплом, через которое на деталь распыляется мелкодисперсный материал. Процесс пескоструйной обработки оперативный – всего 10 минут, при этом деталь становится эстетичнее и аккуратнее. Суть метода в том, чтобы поместить готовую деталь в камеру, куда будет направляться поток мелких частиц. Они по мере воздействия будут обеспечивать гладкость поверхности 3D-детали.

При пескоструйной обработке на деталь, помещенную в закрытую камеру, направляется поток мелких пластиковых частиц, в результате чего через 5-10 минут поверхность становится гладкой. Метод хорош тем, что на его основе можно работать с любым материалом, к тому же процесс обработки простой.



Можно выполнять с помощью различных средств: ацетона, метилэтикетона, дихлорэтана, тетрагидрофурана и дихлорметана. В целях безопасности предпочтительно применение в этих целях терагидрофурана и дихлорметана, поскольку метилэтилкетон или дихлорэтан обладают высокой токсичностью. Не очень хорош по схожим причинам и ацетон, хотя и является весьма доступным по цене растворителем. Для таких материалов, как ABS, PLA , HIPS, SBS и другие разновидности пластиков, растворитель применят достаточно часто. Однако специалисты рекомендуют в качестве более безопасной альтернативы средство D-Limonene. Помимо безопасности этот растворитель также имеет приятный цитрусовый аромат.

Безопасность — важное условие при выполнении постобработки, поэтому следует иметь в виду, что ряд веществ, таких, например, как дихлорэтан относятся к категории мощных ядов, поэтому пользоваться ими нельзя. Менее ядовитым считают дихлометан, однако и он несет риски для здоровья человека. Не очень токсичный терагидрофуран в свободной продаже почти не встречается.

Предупреждение:

Предлагаемые в статье методы производственного процесса требуют неукоснительного соблюдения мер безопасности. Поэтому перед выполнением работ следует внимательно ознакомиться с главой «Техника безопасности при работе с растворителями», паспорта безопасности химической продукции.

Постобработка пластика: суть и задачи процесса

В процессе 3D-печати методом FDM мы получаем объекты с явными следами наложения слоев (неровностями), а также различными артефактами производственного процесса (следы точек соприкосновения с креплениями и другие видимые дефекты поверхности). Постобработка служит для сглаживания неровной поверхности и удаления ненужных артефактов, после чего обработанный объект будет выглядетьт намного лучше.

Правила безопасности при работе с растворителями

Дихлорметан

Дихлорметан с XIX века относится к категории относительно неядовитых и очень эффективных средств для пластиков, что доказано многочисленными лабораторными исследованиями. Но есть у этого растворителя и недостатки. При соединении с щелочными металлами дихлорметана может произойти сильный взрыв. Легкая летучесть средства приводит к быстрому и сильному отравления организма и поражению целого ряда важных внутренних органов. Поэтому любые работы с дихлорметаном рекомендуется выполнять при наличии исправно работающей вытяжной вентиляции.

Следует не допускать попадания вещества на огонь или искры, иначе можно спровоцировать пожар. Нельзя выливать дихлометан в унитаз или раковину, поскольку вещество не смешивается с водой и может повредить арматуру из пластика. По своим свойствам дихлорметан сильно напоминает ацетон и и тетрагидрофуран. У него такая же высокая летучесть и IV класс опасности. Хотя запах у дихлорметана выражен слабее, чем у ацетона, не следует пренебрегать проветриванием помещения.
D-Limonene

Среди известных на сегодня растворителей, применяющихся для работы с пластиками, D-Limonene по праву считается менее вредным и сравнительно безопасным для человека при условии точного соблюдения всех мер предосторожности. Цитрусовый аромат делает работу с растворителем более приятной. Тем не менее, необходимо позаботиться о хорошей проветриваемости помещения, так как длительное воздействие вещества отрицательно сказывается на организме человека. Мыльная основа D-Limonene облегчает нейтрализацию реакции пластика с растворителем, так как при таком развитии событий достаточно использовать воду с мылом. Единственным существенным недостатком вещества является тот факт, что он взаимодействует только в HIPS- и SBS-пластики.

Обратите внимание на то, что каким бы сравнительно безопасным ни был растворитель, при работе с ним следует использовать перчатки и хорошо проветривать помещение. Перчатки помогут предотвратить повреждение кожи или ее обезвоживание.

Методы обработки

Метод обработки погружением

Обработка погружением — самый простой и быстрый метод, ведь один цикл продолжается максимум 3 минуты. В качестве примера можно привести погружение Йода в дихлорметан. Процесс погружения продлился несколько секунд, а через несколько минут растворитель полностью исчез с поверхности объекта. Если требуется получить глянцевую поверхность, то изделие можно погрузить в растворитель еще раз примерно на полсекунды. Этого будет достаточно, чтобы растворитель не впитался и быстро испарился, а после операции получилась глянцевая поверхность.

Продолжительность процесса очень небольшая еще и потому, что для таких целей не нужны баня и ацетон. Для ABS, PLA, HIPS и других редких расходных материалов вполне подойдет дихлометан. Одного литра средства хватит на долгое время, главное — сохранять герметичность емкости с раствором.

Метод нанесения кистью

Дихлорметан в таком случае нужно наносить чистой кисточкой с ворсом из натурального волоса. Вещество, кстати оченнь летучее, наносится до полного сглаживания поверхности в местах соприкосновения слоев. Дихлорметан отлично подходит в тех случаях, когда требуется выборочное нанесение растворителя, чтобы оставить нетронутыми углы и убрать явные дефекты. Практика свидетельствует, что такой способ позволяет добиваться наилучших результатов в процессе постобработки. И, конечно же, не стоит забывать о соблюдении техники безопасности.

Помимо дихлорметана для качественной обработки поверхности кистью очень пригодится такое вещество, как XTC-3D от компании Smooth-On. Этот материал представляет собой защитное покрытие из двух элеменов и служит для качественного выравнивания и финишной обработки 3D-объектов. В процессе обработки происходит смешивание двух разновидностей жидкости, а затем смесь с помощью кисти наносят на поверхность изделия. Процедуру нанесения нужно выполнить в пределах пяти минут. Отверждевание происходит в течение 4 часов, в зависимости от массы объекта и температуры. XTC-3D обладает рядом важных свойств: оно позволяет создавать твердое, ударопрочное покрытие, которое можно шлифовать, грунтовать или красить.

Производитель утверждает, что XTC-3D можно использовать применительно к изделиям, получаемых по технологии SLA и SLS. Вещество превосходно работает с PLA, ABS, Laywoo, пенополиуретаном, древесиной, гипсом, картоном и даже бумагой. Внешне, XTC-3D похож на обычный эпоксидный клей, при этом у вещества нет неприятного стойкого запаха.

Метод обработки парами

Обработка парами PLA похожа на процедуру обработки ABS ацетоном. В качестве обрабатывающего вещества используется тетрагидрофуран. Изделие из PLA-пластика, подвергающееся обработке, нужно разместить на нерастворимой подложке. Для этих целей можно использовать алюминиевую фольгу или проволочную сетку. После этого изделие помещается в герметичную емкость. Растворитель испаряется при нагревании и взаимодействии с поверхностью обрабатываемого объекта.

На фото выше акулий зуб изготовлен на Makerbot Replicator 2 коричневым PLA-пластиком, после чего был обработан тетрагидрофураном и высушен.

Если вы посмотрите сверху на неровную поверхность, то поймете, что при постобработке тут было место соприкосновения объекта с опорой. Это говорит о том, что перед работой нужно хорошо продумать, какой частью и куда прислонять изделие. Расчет времени равномерного распределения газа внутри камеры становится тем труднее, чем меньше объем рабочей камеры принтера. Неравномерность процесса выравнимания может объясняться именно этой причиной.

Метод ручной полировки

Процедура ручной полировки знакома многим, и если вы не хотите использовать метод обработки парами, то можно обратить внимание на этот достаточно простой и эффективный способ. Растворитель придется наносить на кусочек ткани и выполнять полировку вручную. Для этой процедуры воспользуйтесь белой или неокрашенной тканью без ворса. В ином случае PLA-частицы будут оставаться на ткани, и потом вы не сможете использовать ее снова.

Использование ткани не освобождает вас от соблюдения элементарных мер безопасности. Помещение должно быть хорошо проветриваемым, а на руки надеты перчатки из нитрила или неопрена. Ткань нужно намочить дихлорметаном и после этого можно приступать к полировке. Результат работы определяется разными факторами: как выполнялись движения, какие усилия прилагались и даже насколько жесткой была ткань. Полировку обычно выполняют круговыми движениями, если не оговорено иное.

После завершения процедуры полировки необходимо изделию дать время высохнуть. При этом вещество полностью испарится.

Фотография была сделана с макросъемкой, глубина резкость мала, но выделен основной фокус для того чтобы увидеть детали. Средняя часть зуба была подвергнута полировке. Результаты оказались очень хорошими. Для сравнения обратите внимание на левую сторону, где видно следы печати.

Следует помнить, что размеры объекта и параметры печати определяют количество усилий на полировку. Чем меньше изделие и выше качество печати, тем, соответственно, меньше усилий.

Другие методы постобработки

Существует множество других методов постобработки. Например, ABS-пластик можно неплохо обработать обычной наждачной бумагой. Вы сможете добиться гладкой поверхность с помощью нескольких видов наждачной бумаги и мелкой шлифовальной губки. При этом, не забудьте о толщине стенок, иначе протрете заметную дыру в изделии. Наждачная бумага или надфиль обычно хороши, если нужно убрать следы поддержек или заметные дефекты. Нужно соблюдать осторожность при обработке PLA-пластика. Но не следует производить шлифовку с помощью бормашины, шлифовального станка или просто долгой шлифовки. Трение приведет к повышению температуры обрабатываемого участка, пластик размягчится и станет скатываться. Качество поверхности только пострадает. Поэтому при обработке изделий из PLA-пластика можно применять специальные смолы для обработки поверхности (вроде XtC) или же воспользоваться растворителями. Приклеить же детали из PLA-пластика можно тоже при помощи дихлорметана.

Удачной работы!

Иногда для доводки (полировки, обработки парами и даже склейки) изделий из ABS применяется ацетон. С таким же успехом для этих целей некоторыми используется метилэтилкетон и дихлорэтан (оба высоко токсичны). Но лучше всего с такого рода задачами справляется тетрагидрофуран и дихлорметан , с одной лишь разницей — тетрагидрофуран является прекурсором и запрещен к свободной продаже. Растворитель универсален, и подходит для всех видов пластика: ABS, PLA, HIPS, SBS и некоторые другие. Для сглаживания и плавления HIPS и SBS используется самый безопасный из известных нам растворитель D-Limonene, мало того он безвреден, он еще пахнет вкусными апельсинами. Часто спользуется как ароматизатор.

Запомните: дихлорЭ тан — сильный яд. ДихлорМ етан — менее ядовитый. Тетрагидрофуран — относительно не токсичен, но свободно не продается.

При работе с этим веществом, да и любой химией нужно принимать серьезные меры безопасности. Этот способ один из нескольких возможных по обработке изделий.

|

ПРЕДУПРЕЖДЕНИЕ:

Мы описываем методы, которые МОЖНО использовать, но которые подразумевают соблюдение разумной предосторожности. Пожалуйста, ознакомьтесь с главой «Меры безопасности», прочитайте паспорт безопасности химической продукции, и будем считать, что мы вас предупредили.

Зачем нужна постобработка?

В результате доводки сглаживаются неровности в местах соединения слоев, возникающие в процессе 3D-печати (методом послойного наплавления нитей), разного рода артефакты процесса (вроде точек соприкосновения с креплениями) и прочие мелкие недоработки. Деталь в конце концов выглядит менее «слоистой» и более аккуратной. Посмотрите на размещенные ниже фотографии или погуглите .

Меры безопасности при работе с растворителями

Дихлорметан

Получить дополнительную информацию можно, например, в Википедии . Обратите внимание: Хотя он и является наименее ядовитым среди галогеналканов, но нужно быть осторожным при обращении, так как он очень летуч и может вызвать острое отравление. Работы следует проводить при работающей вытяжной вентиляции. Насколько нам известно, это наименее токсичный растворитель для PLA-пластика, однако при работе с ним следует проявлять повышенную осторожность, поскольку долговременный эффект его воздействия чрезвычайно опасен. Горюч, поэтому избегайте соприкосновения его паров с источниками открытого огня или искр. То же самое относится к ацетону, тетрагидрофурану и т.п.

Его важным свойством является высокая летучесть. Класс опасности IV, также как у ацетона. Пахнет значительно слабее ацетона. Все работы желательно проводить в хорошо проветриваемом помещении!

Не следует выливать дихлорметан в униаз, раковину или другую сантехнику, он не смешивается с водой и пластиковые трубы вашей канализации могут оказаться в опасности.

D-Limonene

Менее вредный, можно сказать безопасный растворитель D-Limonene, сильно пахнет цитрусовыми. Но воздействует только на HIPS и SBS пластик. Рекомендуем работать с ним в хорошо проветриваемом помещении. D-Limonene имеет основу масла, поэтому чтобы нейтрализовать рекацию пластика и растворителя, их надо промыть с мылом.

При каких бы обстоятельствах вы ни работали с растворителями, делать это следует только в перчатках, потому что они могут быстро обезвоживать кожу, что потенциально опасно. При использовании сильных растворителей легко можно получить ожог кожи. Перчатки при этом должны быть не латексные (латекс он разъедает), а нитриловые или неопреновые.

Самый простой способ — обработка погружением

Очень простая и быстрая обработка, на одну распечатку уходит не более 3 минут. Мы погружали Йоду в дихлорметан на 1-5 секунд, а за последующие 1-2 минуты растворитель полностью испарялся с поверхности. Чтобы сделать глянцевую поверхность, последний раз окуните деталь в растворитель на 0.5 секунды, он не успеет впитаться и сразу испарится, конфетный глянец обеспечен.

Очень быстро, не нужна баня, не нужен ацетон. Дихлорметан универсален для PLA, ABS, HIPS, а также возможно и для многих других экзотических материалов. Литра хватает надолго. Очень важна герметичность емкости для хранения раствора.




Нанесение кистью

Любой чистой натуральной кисточкой наносите дихлорметан, пока слои не сгладятся. Этот растворить чрезвычайно летуч, так что долго ждать высыхания не придётся. Очевидное преимущество данного способа в том, что наносить растворитель можно выборочно, оставляя острые углы не тронутыми, а наиболее заметные дефекты печати обработать более тщательно. Наилучшие результаты обработки достигаются именно этим способом. Соблюдайте меры предосторожности, дышать химией не безопасно!

Обработка парами

Процедура обработки PLA парами в сущности такая же, как в случае ABS и ацетона. Здесь используется тетрагидрофуран. Объект из PLA, который будет обрабатываться, располагается на нерастворимой подложке (алюминиевой фольге, проволочной сетке, деревянной подставке и др.) и помещается в герметичную емкость. При нагревании растворитель начнет испаряться и взаимодействовать с поверхностью объекта.

Для примера этот акулий зуб был распечатан на Makerbot Replicator 2 коричневым PLA, был обработан парами тетрагидрофурана и высушен.

Обратите внимание на неровность наверху. Здесь объект касался опоры во время доводки. Поэтому всегда важно обдумывать, что к чему какой частью прислонять. Также имейте в виду, что чем меньше объем вашей камеры, тем сложнее правильно подобрать время, чтобы газ внутри распределился равномерно. Из-за этой проблемы и само выравнивание может оказаться неравномерным.

Теперь, пару слов о дополнительных мерах безопасности, о которых мы обещали упомянуть. Все процедуры следует на улице, и плотно закрывать колбу, банку, бутылку или иную емкость. Мыть изнутри шкаф-камеру до и после использования. Короче говоря, нужно работать осторожно и с умом, чтобы случайно что-нибудь не сжечь и не взорвать.

Ручная полировка

Вам не нравится обработка парами? Можно полировать вручную, нанеся растворитель на кусок ткани.

Тряпочка должна быть белой (не окрашенной), без ворса и использоваться только для этой цели, потому что на ней будет скапливаться PLA и для чего-то другого она уже не годится.

Когда вы нашли подходящую тряпочку, наденьте нитриловые или неопреновые перчатки, выйдите в хорошо проветриваемое помещение или на улицу и смочите ткань дихлорметаном. И теперь этой мокрой тряпочкой просто полируйте деталь. Конечный результат будет зависеть от направления ваших движений, прилагаемой силы и текстуры тряпочки, т.е. насколько она жесткая. Если нет каких-нибудь особых оговорок, лучше всего полировать круговыми движениями.

Затем объект должен высохнуть (чтобы излишки дихлорметана испарились с поверхности) — и все готово.


Вот образец отполированного акульего зуба, который был распечатан на Makerbot Replicator 2 с использованием PLA белого цвета.

Эти фотографии в фокусе. Они были сделаны макросъемкой, глубина резкости относительно мала, так что выделяется только основной фокус, и можно разглядеть подробности, хотя по краям изображение и смазано.

Полировалась только середина зуба, то, что выделяется. По фото не совсем хорошо понятно, но это очень гладко отполированная поверхность. Сравните ее с левым краем, который не полировался, где видно даже слои распечатки.

Очевидно, что чем меньше ваш объект, чем выше разрешение печати (если все правильно откалибровано), тем меньше времени придется потратить на доводку, чтобы получить хорошо отполированную, гладкую поверхность.

На фото можно также заметить, что обработанная поверхность немного обесцветилась. Но тут дело в умелых ручках. Тряпочка была не совсем белой, на ней был какой-то цветной узор, и краска вступила в реакцию с растворителем и заодно и с пластиком.

Дополнение: Другие методы постобработки

Следует также отметить, что PLA легко доводится обычной наждачкой. В некоторых случаях ее вполне достаточно, чтобы поверхность получилась такой, как надо, особенно если требуется только удалить следы от опоры или аналогичные дефекты. Зачистка очень полезна также перед химической обработкой. Просто пройдитесь наждачкой по проблемным местам и особенно крупным артефактам, а дальше действуйте, как описано выше. Это позволит сэкономить и время, и реактив, и доводка получится точнее, без значительных геометрических искажений.

Чем склеить детали из PLA?

Детали из PLA можно также склеивать различными клеями, у нас хорошо получалось эпоксидкой и с помощью Super Glue (суперклей секундный), который на самом деле всего лишь этилцианоакрилат.

Удачи! Безопасной работы! Гладкой печати!

5. Постобработка

Многие механические детали требуют лишь очевидной очистки от облоя брима и рафта, после чего их можно применять по назначению. Но когда речь идет об объектах дизайнерского направления, где требуется эстетичный внешний вид, мы уже вынуждены взять в руки необходимый инструмент, высунуть кончик языка и приняться за обработку. Скажу также, что иногда данная обработка желательна и «механическим» деталям – обработка крупных зубьев шестерней для уменьшения их дальнейшего износа, шлифовка плотно прилегающих к существующим металлическим и прочим частям различных отпечатанных пластиковых патрубков и прокладок, но здесь я больше говорю именно об обработке в ключе эстетического вида результата.

5.1. Механическая обработка

Такой очевидный процесс, что хочется привести фотографию надфиля и на этом закончить)) Ведь действительно, даже если нет ничего, то уж надфиль найдется практически у всех. Но где лучше использовать именно его и какие еще существуют варианты, об этом можно написать.

Наиболее страдающие при печати участки, это низ модели и места прилегания рафта или суппортов. На этом месте, сонно читая, можно не обратить внимания на расположенные в одном предложении и логически разделенные «низ модели» и «места прилегания рафта», ведь вроде бы это синонимы, а потому не должны противопоставляться. Поясню.

Нижнее основание, лежащее на рафте, гарантированно будет иметь форму «тысячи видов микроколбасок», что требует обработки. Если же мы не используем рафт, то основание будет очень ровным, исключая дефекты наклейки каптона или его вздутия из-за снятия какой-то большой плоской внизу детали. Да, иногда приходится снимать деталь мало того что с помощью ножа, но и без такой-то матери не обходится)) Это одна из причин, по которой лучше использовать каптон на всю ширину стола, а не поклеенный из нескольких частей. Но причем тут тогда обработка низа модели?

Из-за неточной калибровки стола, его выгнутости, в результате чего калибровку приходится делать так, что при печати на некоторых участках экструдер упирается в платформу, и избытой подачи пластика на первом слое, несколько первых слоев могут скататься в откровенный блин с выступающей по бокам поверхностью внизу. Ничего удивительного, ведь у меня разница в высоте середины стола и участков ближе к краям составляет более полумиллиметра.

При этом по периметру модели и есть смысл пройтись тем же надфилем. Нет, вы не выведите им границы до ровных, это сложно сделать даже для вертикальных стенок, но приведете состояние форменного безобразия к безобразию приемлемому.

При обработке таких границ предпочтителен больше надфиль, нежели шкурка (кроме случая шкурки с бруском), т.к. надфиль жесткий, а в случае со шкуркой нельзя распределить усилие рукой.

Шкуркой же есть смысл обрабатывать достаточно гладкие поверхности, вдоль которых можно пройтись рукой с этой шкуркой, будь то плоская стенка или поверхность какого-нибудь большого кольца. Однажды мне требовалось обработать 40 см клееную деталюху, некий зуб экскаватора, состоящую из четырех частей, как раз там хорошо подошла обработка шкуркой.

Также, очень рекомендую обзавестись цанговым ножом. Он также может называться модельный нож и канцелярский скальпель. Под последним названием мне в свое время его и порекомендовали. Представьте, каким я себя чувствовал дураком, когда спрашивал в канцелярских магазинах его именно под таким названием. Думаю, услышанные мною ответы легко представимы: от «Мы такого не завозим» до банального «Чего?»)) Дошло до смешного: когда на сайте поставщика офисных принадлежностей, обозначенный именно как «канцелярский скальпель», он есть в наличии по 180 рублей, а в самом магазине вообще никто про него ничего не слышал… Я это к чему: если соберетесь купить, ищите его именно как цанговый или модельный нож))

Им очень хорошо срезать излишки брима и… он идеально подходит для того, чтобы им резать пальцы, с чем он прекрасно справляется, т.к. деталь при срезе излишков вы будете держать как раз так, что порезаться будет запросто. Потому, как бы банально это не звучало: осторожно, кофе горя… нож острый)) Особенно будьте аккуратны, когда срезаете толстый облой, который требует для этого большого усилия.

В ключе механической постобработки нельзя не упомянуть такое полезное устройство как гравировальная машинка, которые часто, по аналогии с ксероксом, нарицательно называют дремелем. Название это пошло, собственно, от изначального производителя таких устройств для условно домашнего пользования – фирмы Dremel.

Это довольно-таки универсальное устройство, им можно резать, сверлить, гравировать, полировать и много чего еще. В частности, им же можно удалять излишки пластика или шлифовать клееные стыки. Работа при этом производится посредством гибкого вала (вы его можете увидеть на приведенном выше изображении), вам не потребуется держать в руках весь гравер. Как часто бывает, у официального дремеля есть и множество китайских и не очень клонов. При этом, цена отличается в разы, качество же зависит от каждой конкретной модели и нередко от каждого конкретного экземпляра. Из качественных аналогов, вряд ли хуже оригинала, вспоминается только Proxxon, но цены на него уже сравнимы с оригиналом. Дешевые клоны начинаются от 900 рублей до 2500 в среднем на момент написания статьи, «оригинал» идет в районе 6000, в зависимости от модели.
Касаемо граверов скажу еще одну вещь: если соберетесь брать, вам понадобится модель с регулировкой оборотов и, желательно, мощностью в районе 170 ватт, т.к. пластик рекомендуется обрабатывать на пониженных оборотах, иначе есть риск, что вы просто начнете его плавить.

5.2. Шпаклевка

Один из способов выровнять поверхность, это использовать на больших сравнительно ровных частях обычную шпатлевку для пластика. Существует множество одно- и двухкомпонентных шпатлевок для работы с пластиковыми моделями. Их можно достать в магазинах, торгующих этими моделями и расходными материалами к ним, коих существует великое множество. Жидкие шпатлевки обычно используются для заделки клеевых швов, пастообразные же пригодятся в качестве шпатлевок «общего назначения».

Что вам желательно знать еще о шпатлевках? Что однокомпонентные шпатлевки имеют заметную усадку при высыхании, потому те же швы может потребоваться обрабатывать ими несколько раз, прежде чем вы получите отсутствие впадины на этом месте, двухкомпонентные же обычно заметной усадки не имеют и обычно же более просты в хранении. При этом двухкомпонентные могут сильно отличаться по времени застывания.

Т.к. мне лично пришлось иметь дело с достаточно крупной деталью, я пошел другим путем и купил двухкомпонентную шпатлевку фирмы Novol в магазине автоэмалей. Да, там можно купить дешевле, но шпатлевка для бампера может быть недостаточно качественной, чтобы работать с ней с мелкими деталями. Мне не было смысла сильно заморачиваться, т.к. деталь (приведенный выше и ниже на фото некий зуб экскаватора) была большая и достаточно ровная.

Выше я упомянул время застывания. Когда я первый раз замешивал новоловскую шпатлевку, забыл одеть резиновую перчатку – я хотел размазать ее по поверхности прямо пальцем в перчатке… За те три минуты, пока я под аккомпанемент тихих матов под нос натягивал эту перчатку, шпатлевка… ну вы поняли. Пришлось замешивать снова. Скажу, что с такой шпатлевкой работать не очень удобно: 3-5 минут – это слишком короткое время застывания для удобной с ней работы.

Сам процесс шпаклевания достаточно простой. Для этого можно взять небольшой резиновый шпатель из ближайшего магазина с разной бытовой химией, клеями и красками. Он вполне может найтись в том же магазине автоэмалей.

Купленная мною шпатлевка была явно мягче пластика после печати, она значительно легче зачищается шкуркой и надфилем. Поверхность можно сделать очень гладкой, если применять последовательно несколько более мелких шкурок. Для базовой зачистки я использовал шкурку с шероховатостью 320. Обращаю внимание, что шкурку или, соответственно, поверхность, лучше намочить.

Для шлифовки этой детали я использовал две шкурки, если не ошибаюсь, более мелкая была 800, для данной поверхности это было достаточно. Начальную же обработку проводил вообще надфилем.

5.3. Химическая обработка

Химическую обработку после печати производят для сглаживания печатных слоев и придания глянца поверхности модели. Кроме внешнего вида, это улучшает адгезию слоев за счет сплавливания, но может съесть мелкие детали. При обработке химией важно выдержать баланс между выравниванием поверхности и избыточным «расплавлением» модели.

Самый известный метод для обработки ABS пластика – так называемая ацетоновая баня. Она неприменима для обработки PLA, т.к. PLA практически инертен к ацетону.

Здесь я снова позволю себе утянуть с интернета довольно известную фотографию модели совы до и после обработки.

Суть данного метода: модель ставится на изолирующую подложку, можно взять обычный полиэтилен, фольгу или стекло, помещается под колпак из инертного к ацетону материала (опять же, обычное маленькое полиэтиленовое ведерко для продуктов) и все это ставится на нагретую до 40-50 градусов нагреваемую кровать принтера, куда также помещается небольшая емкость с ацетоном или смоченная в нем тряпочка.

Ацетон имеет температуру кипения 56 градусов. При приближении к данной температуре он, будучи и так легко испаряющимся, испаряется еще интенсивнее. Под крышкой из пластикового ведерка вы получаете высокую концентрацию паров, которые начинают плавить наружные слои пластика модели. После достижения нужного результата вы убираете модель из-под колпака и даете полностью застыть. Если ацетон попал внутрь модели, для полного застывания может потребоваться сравнительно продолжительное время.

Плюс этого метода: бесконтактная обработка, которая не оставит следов кисти и не требует лезть кистью или тряпочкой во все труднодоступные участки модели. Минус: не самый приятный запах ацетона, возможность недодержать или передержать модель и вероятность того, что модель может повести при неоднородном распределении паров.

Плюс самого ацетона в том, что он легко доступен к покупке в магазинах, торгующих теми же красками, имеет разумно невысокую цену и, несмотря на вонючесть, испаряется полностью, не оставляя следов. Т.е. невозможно «пропахнуть ацетоном», что в ключе «околодомашней обработки» не может не радовать.

Ацетоном также можно обрабатывать с помощью натирания поверхности смоченной в нем тряпочкой, но т.к. это все-таки статья немного субъективная, то и скажу, что лично мне это кажется сомнительным по причине высокой трудоемкости с получением спорного результата – обработать так ту же сову у вас вряд ли получится.

Также, возможна холодная обработка. В этом случае необходимые к обработке распечатки ставятся в герметично закрытую емкость – можно то же пластиковое ведерко с крышкой и туда же ставится небольшая емкость с ацетоном или даже смоченная в нем тряпка. Такая обработка гораздо более медленная, чем горячая, а также для неплоских деталей (а таких большинство) очень рекомендую наличие какого-то источника для циркуляции паров ацетона в этой «банке», иначе вы получите оплавленный низ детали и не обработанный верх, т.к. холодные пары ацетона будут стремиться осаживаться на дне. Корпус и крыльчатка вентилятора или другого «источника» циркуляции, естественно, должны быть сделаны не из ABS, иначе после часа-другого обработки, вы посмотрите в банку, после чего озабоченно почешете затылок)) Именно необходимость городить огород с циркуляцией или выдумывать иной способ, чтобы однородно обрабатывалась вся модель, отбили у меня весь интерес к такому методу обработки. Потому оставляю ее для вашего изучения.

Еще один метод обработки, подходящий для обработки – обработка дихлорэтаном или дихлорметаном. Как и метиловый и этиловый (да, тот самый це-два-аш-пять-о-аш))) спирты, они сходны по некоторым свойствам, но как метиловый спирт является ядом, так и дихлорэтан ядовит. Обращаю внимание: дихлорэтан, а не дихлорметан. У них наоборот. Дихлорэтан является ядовитым, дихлорметан же имеет «относительно малую токсичность» по версии Википедии. Дихлорэтан продается в уже упомянутых выше универсальных хозяйственных магазинах с различными лаками для полов, инструментом и прочим «у нас все есть». Он проходит в разделе клей для пластика, т.к. он просто напросто растворяет пластики, позволяя спаять их. Продается в небольших флаконах, потому «возьмем большую тряпку и пройдемся по всем поверхностям» с ним не пройдет. К тому же, вряд ли это принесет пользу вашему здоровью. Техника работы с ним локальная: ваткой или ватной палочкой обрабатывается поверхность. Скажу, что именно дихлорэтаном я обработку не производил.

Дихлорметан (он же хлористый метилен, он же метиленхлорид) найти сложнее. Он есть у поставщиков промышленной и технической химии, у которых на складах стоят 200-литровые бочки с кучей разных реактивов. Они обычно торгуют оптом и/или с юрлицами, потому купить его получится по принципу «как договоритесь». Мне повезло найти у нас в Челябинске поставщика, который согласился мне продать бутыль данной жижи, потому появилась возможность проверить такой метод обработки лично. На фото дихлорметан в удобной емкости из-под стеклоомывайки:

Скажу, что этот метод подходит как для обработки ABS, так и PLA пластика, т.к. дихлорметан растворяет их оба. Но я работал с ABS, потому тонкости работы им с PLA оставлю для вашего изучения. Рекомендацию, не буду врать, встретил в интернете в одном из обзоров, по-сути я здесь лишь проверю эту рекомендацию лично и опишу результаты.

Суть простая: окунаете вашу модель в дихлорметан на 3-5 секунд, после чего вытаскиваете и оставляете сушиться. После сушки окунаете еще раз на долю секунды для смачивания поверхности и оставляете сушиться еще раз. Естественно, это требует наличие необходимого количества дихлорметана.

Некоторые рекомендации по работе. Дихлорметан имеет плотность 1330 кг/м3, т.е. на треть тяжелее воды, при этом он в ней не растворяется. Это значит, что не следует сливать отработку в канализацию, снабженную U-образными гидрозатворами (ими снабжены все домашние канализационные сливы), т.к. он просто осядет на дно U-образной трубки и вымывать его оттуда будет затруднительно. Более того, если так случайно окажется, что эта трубка сделана из пластика, растворимого дихлорметаном, последствия вы понимаете. Далее, он очень летуч, субъективно, почти как ацетон. Это значит, он быстро испаряется. Иными словами, воняет. Он не является высокотоксичным веществом, но, субъективно, эта дрянь во всех смыслах неприятнее ацетона, потому рекомендую иметь возможность проветрить помещение, и работайте с ним в резиновых перчатках. Еще одно: не советую наливать его в емкость для хранения доверху, особенно в немного растягивающуюся пластиковую тару, иначе, когда будете его открывать, вспомните, что такое бутылка шампанского, только в роли последнего выступит эта самая химия, а перчатки вы в этот момент надеть, естественно, забудете)) Понятно, что это произошло со мной, потому я вас от этого и предупреждаю. Хранить рекомендую так же, как и ацетон: кроме плотно закрытой крышки рекомендую также закрывать полиэтиленовым пакетом с резинкой для денег.

Суть непосредственной работы проста: делая все в резиновых перчатках, наливаете дихлорметан в емкость, опускаете в него модель, как я уже выше писал, держа ее за наименее ответственные участки, вынимаете. Дихлорметан после этого лучше сразу же слить в емкость для хранения, если нет возможности вашу емкость для обработки условно герметично закрыть. Скажу, что не удивлюсь, если окажется, что вместо дихлорметана можно точно так же использовать ацетон, но не проверял.

Ниже пример обработки выложенной на Thingiverse вертолетной рукоятки. Разница в цвете – это лишь разница в освещении во время съемки. Обработанная рукоять уже высушена, блеск от вспышки именно из-за приобретения глянца поверхностью.

Обращаю внимание, что верхние и нижние (переходные, а не основание) слои имеют в большинстве случаев гораздо меньшую толщину, нежели боковые стенки, потому можно увидеть на этой фотографии, что верхняя скругленная часть местами немного провалилась. Учитывайте это, увеличивая степень заполнения или количество верхних слоев, если планируете подобную обработку.

Следующая и последняя часть статьи будет посвящена процессу склейки и покраски.