Струйные печатающие головки: основы технологий. Технологии компании Epson - качество, проверенное временем

Очень часто перед покупкой универсального принтера многие начинают путаться в большом ассортименте техники, точно не зная, какую модель и с какими возможностями им следует выбрать. Ничего удивительного: сегодняшний рынок печатных устройств предлагает огромное количество принтеров с разными функциями и технологиями печати. Изучая всевозможные модели, вы, скорее всего, зададитесь вопросом: какой принтер лучше, лазерный или струйный? Для начала рекомендуем разобраться в принципе действия данных устройств и выяснить все преимущества и недостатки обеих технологий.

Люди приобретают принтер или МФУ с разными целями. Профессиональные фотографы предпочитают модели, ориентированные на высокое качество фотопечати, то же касается фотолабораторий, фотостудий и дизайнерских агентств. Офисные принтеры закупаются руководителями исходя из своих критериев — возможности картриджей, наличие функции СНПЧ, скорость печати. Но большинство покупателей выбирают принтер для универсальных нужд . Им важно, чтобы устройство сочетало в себе основные функции: печать текстовых файлов, документов, фотографий различного формата и качества.

Если с принтером для узких задач все предельно ясно (ведь выбор делают, основываясь на конкретном критерии), то походящую по всем параметрам универсальную модель придется еще поискать. Можно, конечно, обратить внимание на готовые многофункциональные устройства , но они стоят недешево, да и ксерокс со сканером вам вполне может не пригодиться. Тем не менее, советуем определить, для чего именно вам будет необходим принтер:

  • для дома – печать документов, текстовых файлов, книг, журналов;
  • офисные нужды;
  • печать фотографий (любительские или профессиональные);
  • для учебы (распечатка дипломных и курсовых работ, рефератов, контрольных, конспектов и т.д.).

Цели покупки более-менее ясны? Тогда выбираем подходящую технологию печати, тщательно взвесив все «за» и «против».

Как работают струйные принтеры

Струйная печать считается наиболее распространенной в мире. В свое время струйные принтеры заметно потеснили матричные. Кроме того, именно со струйными принтерами в нашу повседневную жизнь прочно вошла цветная печать и печать фото «не выходя из дома». Это дешевле, практичнее и удобнее.

Как же они работают? Если в традиционных матричных устройствах изображение методично наносилось на красящую ленту с помощью тончайших иголочек, то здесь принцип действия немного иной. Для получения готового изображения в струйных принтерах имеются особые элементы под называнием дюзы (или сопла). Это маленькие отверстия, которые чрезвычайно сложно увидеть невооруженным глазом. Они располагаются непосредственно в печатающей головке принтера, где также находится емкость с чернилами. Именно через дюзы на бумагу передаются чернила. Каждая чернильная капелька краски имеет объем всего в несколько пиколитров. Диметр сопл и, соответственно, цветной капли, ничтожно мал, сравним с толщиной человеческого волоса! Попробуйте поместить под микроскоп картинку, распечатанную на струйном принтере, и вы заметите, что она сложена из огромного количества крошечных точек-капель.

Количество сопел бывает разное – от 12 до 256 штук, все зависит от назначения и класса модели принтера, а также производителя.

Под отверстиями (дюзами) имеются небольшие полости, куда и направляются капли краски из основного резервуара. Краска выдавливается с помощью двух методов.


Существует два варианта хранения чернил в струйном принтере.


Как работают лазерные принтеры

Лазерная печать вполне может быть как цветной, так и черно-белой. Красящее вещество – тонер – напоминает по своему составу не жидкие, а порошковые чернила. Ключевым элементом в конструкции лазерного принтера является светочувствительный фотобарабан . Он похож на металлический цилиндр с полупроводниковым покрытием. Полупроводник чувствителен к свету, и именно на этом свойстве основан весь принцип действия лазерного прибора.

Фотобарабан обладает либо положительным, либо отрицательным зарядом. Зарядность зависит от коронатора – вольфрамовой проволоки с золотым или платиновым напылением. Под влиянием тока возникает электрозаряд, образуя электромагнитное поле, которое отражается на фотобарабан. Вместо коронатора устройством, создающим электромагнитное поле, может служить заряжающий вал . Он похож на стержень из металла, покрытый отличными проводниками – например, резиной или поролоном.


Струйный против лазерного: плюсы и минусы

Так лазерный или струйный принтер? И тот, и другой обладают своими положительными и отрицательными сторонами. Сравним оба вида по нескольким основным критериям, чтобы понять отличие и выяснить, какой лучше.

Ценовые характеристики

Если сравнивать стоимость струйного и лазерного принтера, то ответ будет очевидный: даже «струйник» высокого класса с кучей возможностей будет стоить дешевле средненького лазерного принтера . Однако не все так радужно. Дело в том, что обслуживание струйного принтера обойдется в кругленькую сумму. Вам регулярно придется приобретать набор картриджей, а расходы на один стандартный комплект чернильных картриджей за полтора-два года превысят начальную стоимость самого принтера.

Стоимость одного отпечатка на лазерном принтере гораздо дешевле.

Еще один важный момент: модели со струйным типом печати очень требовательны к качеству загружаемой бумаги . Чтобы отпечаток (например, документ или фото) получился максимально четким и красочным, вам придется использовать бумагу наилучшего класса, что тоже приведет к очередным расходам. «Лазерники» же не столь чувствительны к качеству бумажных носителей и способны реализовать весь свой печатный потенциал на самой обычной бумаге в офисе.

Качество печати

Разница между качеством печати обоих типов принтеров не очень явна. Тем не менее, считается. что «струйник» одинаково хорошо печатает текст, фотографии, баннеры, этикетки, открытки и т.п в большом качестве и высоком разрешении. А вот фотопечать у лазерных принтеров реализована куда хуже: цветной тонер хуже наносится на поверхность, и в результате изображения получаются не такими насыщенными и сочными. В общем, цветопередача хромает . Зато несомненным достоинством лазерного устройства является превосходная устойчивость распечатанных изображений к свету и воде. Также лазер печатает текстовые документы в отличном качестве на высокой скорости.

Скорость печати

По данному критерию сравнение однозначно в пользу лазерных принтеров. Лазерник среднего класса печатает около 15 страниц за одну минуту. Скорость работы «струйника» зависит от ряда факторов: режим, объем печати, разрешение. Если необходимо напечатать текстовый документ в отличном качестве или фото в максимальном разрешении, скорость струйного принтера довольно низкая. К тому же, лазерное устройство рассчитано на больший объем печати и менее частую смену расходных материалов.

Расходные материалы и заправка картриджей

Основной расходный материал лазерных приборов – тонер. Порошковый тонер-картридж перезаряжается от силы три-четыре раза, после чего рекомендуется сменить весь барабан. Очевидный минус тонера – он токсичен, а при работе еще и выделяет в атмосферу озон. Тонер заправляют, как правило, специалисты, поэтому в случае исчерпания очередного тонера вам придется сходить в магазин или сервисный центр за новым или за перезаправкой.

Струйные принтеры в свою очередь работают с чернильными картриджами . Их несложно приобрести и заправить. Однако сам процесс заправки довольно муторный: шприцы, банки с чернилами, многочисленные пятна от краски. Учитывая не самый большой объем картриджа, повторять процедуру придется довольно часто. Оптимальный вариант – система непрерывной подачи чернил. Ее главное преимущество – низкая себестоимость отпечатков и огромный ресурс чернил без надобности покупки картриджей.

Компания Epson реализовала функцию СНПЧ в виде встроенных в конструкцию емкостей с чернилами. Чернильные резервуары гораздо дешевле, чем сменные картриджи, обладают большим ресурсом, их удобно применять и они не пачкают руки краской.

Струйный принтер EPSON L132 со съемными чернилами

Экологичность

Задаваясь вопросом, какой принтер купить, лазерный или струйный, подумайте и о таком важном аспекте, как экологичность. Дело в том, что нагревательные элементы в лазерном устройстве при подаче тока взаимодействуют с тонером. Тонер, как уже отмечалось выше, токсичен, и его микрочастицы нежелательно вдыхать. Также во время печати с «лазерника» выделяется озон в немалом количестве, что негативно влияет на окружающую среду.

Возможности

Если вам необходим принтер с универсальными функциями, вы хотите распечатывать документы для учебы или домашних нужд (распечатки сайтов, курсовые работы, рефераты, документы) и не готовы потратить большие деньги, то выбирайте струйный принтер. При небольшой нагрузке вы не потратите много денег, но устройство прослужит долгое время и будет радовать качеством и стабильностью работы. Кроме того, «струйник» хорошо проявляет себя в фотопечати. Качественный струйный принтер идеально печатает в большом разрешении цветные фотографии, максимально передавая детали и насыщенный цвет. Конечно, цветные картриджи придется весьма часто менять, но это с лихвой окупит прекрасное качество цветопередачи изображений. Лазерные модели, увы, не так хороши в этом деле. Кроме того, струйные устройства позволяют выполнять фотопечать на различных носителях, будь то рулоны, баннеры, конверты и этикетки. Чем не повод открыть домашнюю фотолабораторию?

Резюме: струйный принтер оптимален и дома, и в офисе. Профессиональный цветной «струйник» будет и вовсе незаменим в фотостудии.

Лазерный монохромный принтер пригодится в офисе или дома. Тут все идеально для стандартных офисных нужд: высокая скорость печати для получения пухлой пачки бумаг с документами, договорами, приказами, книгами и научными работами. Возможность печатать большие объемы и стабильная работа устройства. Также выглядит привлекательно рекордно низкая себестоимость отпечатка. Заправив картридж единожды, вы сможете отпечатать большое количество листов в отличном качестве.

Резюме: эксплуатация черно-белого и цветного «лазерника» наиболее обоснована в офисном пространстве, нежели в домашних условиях. Фото он печатает весьма посредственно, а обслуживание и сама стоимость принтера довольно высокие.

Так лазерный или струйный принтер? Как вы видите, нет однозначного ответа на этот вопрос. Мы выяснили, чем отличаются данные технологии печати друг от друга и разобрались в некоторых нюансах. В обоих типах устройств есть свои плюсы и минусы. Вам останется лишь определиться, для каких целей будет использовать печатная техника и, проанализировав все плюсы и минусы, выбрать идеальный вариант.

ПЬЕЗОЭЛЕКТРИЧЕСКАЯ СТРУЙНАЯ ТЕХНОЛОГИЯ.

Самые распространенные сегодня плоттеры основаны на струйной технологии: измельченный краситель в виде капель распыляется на материал. Обычно, как и в матричных принтерах, печатающая головка движется поперек направления подачи носителя, формируя полосу изображения, а затем носитель сдвигается для печати следующей полосы. Однако вместо иголок в головке имеется множество сопел для выбрасывания краски.
В струйной технологии сложились две разновидности:
. термоструйная , в которой активизация краски и ее выброс происходят под действием нагрева;
. пьезоэлектрическая , в которой выброс краски происходит под давлением, создаваемым колебанием мембраны.

Пьезоэлектрическая струйная технология.

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson (дочерняя компания Seiko), впервые была использована в струйных принтерах Epson в 1993 г.

Система выброса капли.

В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных теперь кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного «чернильного насоса», в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры (firing chamber) и давлением, создаваемым в этой камере за счет деформации пьезокристалла.


Модуляция, т. е. изменение размера капли , осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в «спокойное» состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьеззотехнология отличается высокой надежностью , что очень важно, потому что печатающая головка, по чисто экономическим причинам, не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером.

Преимущества и недостатки.

Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие геометрические размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.
Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей (dye based inks): при использовании пигментных чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел.

Перспективы.

Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок как высокая надежность и возможность изменения размеров капли весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако поскольку цены на термические струйные принтеры непрерывно снижаются и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Преимущества и недостатки.

Термическая система

Пьезоэлектрическая система

Размеры эжекционного устройства

Очень малые

Средние

Стоимость изготовления

Невысокая

Высокая

Срок службы эжекционного устройства

Средний

Большой

Изменение размера капли

Сложно

Просто

Плотность чернил

Хорошая

Средняя

Сложность эжекционного устройства

Низкая

Высокая

Скорость печати

Высокая

Средняя

Качество печати фотографий

Хорошее

Хорошее

Качество черно-белого текста

Хорошее

Средняя

Энергия выброса капли

Высокая

Низкая

РАЗРЕШЕНИЕ - ЗНАК КАЧЕСТВА.

Вертикальное разрешение.

Число вертикальных позиций связано, прежде всего, с числом вертикально расположенных сопел на печатающей головке (линий на дюйм). Поскольку существуют трудности при создании печатной головки, включающей элементы, которые охватывают сразу две вертикальные линии, то два отдельных ряда сопел размещаются рядом друг с другом.
Для достижения приемлемой скорости печати во время каждого прохода печатающей головки должно быть напечатано максимальное число линий. В этой ситуации производитель должен сделать выбор между скоростью (более высокая печатная головка и максимальное число сопел) и производственными затратами (минимальное число сопел).
При четырехцветной печати (три цвета плюс черный) высота печатающего элемента для каждого цвета составляет около трети высоты печатающего элемента для черного цвета .

Горизонтальное разрешение.

Число горизонтальных позиций, так называемое число капель на дюйм (dpi), является функцией от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель.

ФИЗИОЛОГИЧЕСКИЕ ФАКТОРЫ.

Цветовое восприятие.

Ощущение качества цветного документа тесно связано с физиологией человеческого зрения. С учетом некоторых индивидуальных отклонений глаз человека способен различать только цвета, имеющие длину волн в диапазоне от 380 нм (фиолетовый) до 780 нм (красный). Внутри этого спектра мозг человека может различить около миллиона оттенков цветов (опять же с небольшими индивидуальными различиями).
Воспринимаемый цветовой спектр играет важную роль при зрительной оценке различий в качестве печати документов: принтеры, способные воспроизводить большее число оттенков цвета, будут создавать документы, которым человеческое зрение будет субъективно приписывать более высокое качество.

Минимальный размер видимого элемента.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Однако у этого правила имеется ограничение, связанное с порогом восприятия человеческим глазом объекта, удаленного на комфортную для обзора дистанцию: есть большая вероятность, что чернильную каплю объемом менее 2-х пиколитров(10 в -12 степени) наблюдатель просто будет не способен увидеть.

Объективные факторы.

Не все на свете субъективно, поэтому число печатаемых элементов позволяет нам дать количественную оценку качества документа, начав с разрешения, которое определяется размером чернильной капли и общим числом капель, которые можно нанести на страницу.

Печатная матрица.

Каждый напечатанный на странице элемент называется элементарной точкой или в некоторых случаях пикселом. При двоичной растровой печати точка отождествляется с каплей чернил, т.е. чернильное пятно присутствует (что эквивалентно черной точке) или отсутствует (белая точка).

Полутоновая печать.

Полутоновая печать, также известная как шкала уровней серого цвета, дает возможность увеличить число оттенков серого цвета при монохромной печати, и таким образом передавать различные цвета с помощью оттенков серого (задаваемых процентным содержанием черного цвета). Элементарная точка в этом случае представляет композицию из нескольких капель. Комбинация нескольких элементарных точек разного типа дает возможность печатать разнообразные оттенки серого цвета.

Число возможных полутонов серого цвета равно числу капель, из которых можно образовать элементарную точку + 1 (отсутствие капли эквивалентно белому цвету). К примеру, четыре заполняемых чернилами позиции на одну элементарную точку задают 5 возможных оттенков (уровней) серого цвета. Объединение таких элементарных точек создает градуированное затенение (шкалу оттенков серого цвета).

Число цветов.

Общее число возможных цветов, в которые может быть окрашена элементарная точка, соответствует числу адресуемых элементарных цветов. При трех основных цветах можно получить восемь базовых цветов: голубой (Cyan), пурпурный (Magenta), желтый (Yellow), красный (Cyan + Yellow), зеленый (Yellow + Cyan), синий (Cyan + Magenta), белый и черный цвета. Эта система двоична, поскольку цветовые точки могут присутствовать или нет. Если мы применим принцип полутоновой серой шкалы к этим трем основным цветам, создавая таким образом цветовые оттенки, мы получим 256 оттенков для каждого из трех основных цветов и таким образом 256 в третьей степени возможных цветовых комбинации на один точечный элемент. Другими словами, это число больше, чем может различить глаз человека.

Размер капли.

Размер капли представляет сложную функцию от давления, с которым выбрасываются чернила, и диаметра сопла. Обычно размер капли сохраняется неизменным. В определенных случаях размер может изменяться, и эта технология известна как печать с изменяемым размером капли. Существует определенная связь между размером капли и размером точки, воспроизводимой на бумаге. Теоретически, капля размером 20 пиколитров соответствует точке размером 60 микрон (это приблизительно равно одной четырехсотой части дюйма), тогда как капля размером 2 пиколитра поставит точку 30 микрон, едва видимую человеческим глазом.

Матрица разрешения.

Разрешение - это параметр, наиболее просто поддающийся количественной оценке при определении качества печати документа. Разрешение оценивает точность, с которой точки располагаются на странице.


Матрица разрешения задает для любой заданной точки общее число возможных позиций. При технологии печати с двойной печатной головкой могут быть две различные матрицы: одна для цветной печати, а другая для черно-белой. Матрица позволяет создавать цветовые уровни для каждой элементарной точки. Поскольку разрешение является результатом совмещения двух различных технологических процессов, то горизонтальное и вертикальное разрешение могут отличаться.

Новейшим достижением в струйной печати является горизонтальное разрешение 2400 dpi, которое дает возможность разместить 2400 печатных матриц на дюйм печатной строки, что вдвое превосходит наиболее распространенный в настоящее время стандарт.

Благодаря точности печати и микроскопическому размеру капли 7 пиколитров достигаются столь высокие результаты, что растр изображения становится абсолютно неразличим для человеческого зрения. Разрешение 2400 dpi таким образом предназначается для печати документов, требующих максимально высокого разрешения и безупречного качества. Поскольку скорость печати в большой степени зависит от количества печатаемых точек, то при печати с разрешением 2400 x 1200 скорость будет несколько меньше, чем при печати с более низким разрешением.

Принцип работы пьезоэлектрических печатных головок.

В основе сопла лежит пьезоэлемент (как правило кристалл кварца). Как известно из школьного курса физики если кристалл кварца колебать с определенной частотой, то на гранях кристалла вырабатывается напряжение, также справедливо и обратное правило, если к граням кристалла приложить напряжение, то он начнет вибрировать с определенной частотой. Ниже приведенная схема наглядно иллюстрирует принцип работы одного из сопел печатной головки.

Верхний рисунок показывает сопло в состоянии покоя. Синим цветом указан пьезоэлемент, малиновым - канал подачи краски, выходное отверстие сопла находится слева. Серым указано керамическое основание печатающий головки.


На среднем рисунке показано сопло с пьезоэлементом в состоянии возбуждения. Под воздействием напряжения кристалл изгибается, из-за чего увеличивается объем камеры подачи краски. Краска поступающая в печатную головку под небольшим давлением заполнят весь объем камеры сопла.


На нижнем рисунке показано сопло, после снятия напряжение с граней кристалла и возврата его в состояние покоя, в результате чего происходит выброс капли краски.
В процессе печати пьезокристалл колеблется с частой 4-9 кГц (на разных типах головок частота вибрации различна), чем выше частота вибрации, тем выше качество и/или быстрее линейная скорость печати.

Что такое "истинное разрешение".

Пьезоэлектрические струйные головки нового поколения, обеспечивающие истинное разрешение 720 x 720 dpi.


Полноцветные (CMYK) принтеры оснащены долгоживущими головками нового поколения, позволяющими печатать с истинным разрешением 720 x 720 dpi и достигать фотореалистической передачи изображений на высокой скорости.


На следующих иллюстрациях наглядно представлены преимущества струйной печати с истинным разрешением 720 dpi.


Преимущества при печати линий с истинным разрешением 720 dpi по сравнению с разрешением 600 dpi. (Слева 6 точек в разрешении 720 х 720 dpi. Справа 5 точек в разрешении 600 х 600 dpi.) Сравнивая печать линий с истинным разрешением 720 dpi с печатью с истинным разрешением 600 dpi мы видим, что на каждые 5 точек добавляется шестая, что увеличивает качество печати в 1,2 раза. Визуально это отражается в уменьшении ступенчатого эффекта при печати линий; тем самым скорость струйного плоттера комбинируется с качеством перьевого.


Преимущества цветной печати с разрешением в 720 x 720 dpi (справа) против цветной печати с разрешением в 300 x 300 dpi (слева).

Расположение точек при разрешении Расположение точек при разрешении
300 x 300 dpi - 25 точек
720 x 720 dpi - 144 точки

При разрешении в 720 x 720 dpi печатается в 5,76 больше точек, чем при разрешении в 300 x 300 dpi на единицу площади. В сочетании с интеллектуальной RIP-программой мы можем добиваться фотореалистического качества печати.


Преимущества при цветной печати с истинным разрешением 720 dpi по сравнению с "адресуемым" разрешением 600 dpi. (Слева - истинное разрешение 720 х 720 dpi; 6 точек. Справа - "адресуемое" разрешение 600 dpi; 4 точки). Некоторые производители добиваются эффекта разрешения в 600 dpi размещая точки, печатаемые при разрешения 300 dpi, настолько часто, что они перекрывют друг друга, тем самым достигая эффекта печати в 600 dpi. Эта техника называется "адресуемым разрешением в 600 dpi". Эта техника расширяет возможности печати с разрешением в 300 dpi, но все равно не сравнится с истинным разрешением в 720 dpi принтеров семейства Falcon. Каждые 4 точки, распечатываемые при разрешении 600 dpi, плоттеры RJ-800, RJ-4000/RJ-4000P заменяют 6 точками, повышая разрешение до 720 dpi. Размер этих точек меньше и размещены они более точно, что не только повышает в 1,5 раза плотность печати, но и делает распечатку более приятной на вид за счет улучшения качества линий.

Стремительно развиваясь, струйная печать осваивает новые сегменты и сферы применения. В борьбе за перспективы на рынке решающее значение приобретают исследования и разработки в сфере печатающих головок, чернил и специализированных составов. Большим плюсом при выборе струйного устройства печати станут базовые знания о производителях и технологиях печатающих головок.

Любая струйная головка работает по принципу контролируемого электроникой распыления капель жидкости на нужную поверхность. Два основных класса — головки с непрерывной подачей и пьезоэлектрической импульсной (капля по требованию, DOD), каждый делится на подклассы.

В непрерывной струйной печати капли распыляются без остановки, попадая либо на материал либо в ёмкость для рециркуляции и повторного использования. В оборудовании DOD выброс капель зависит от определённых условий, а формируются они при помощи импульса в камере подачи чернил. Разновидности струйных DOD-принтеров определяются особенностями генерации импульса. Три основных категории технологий, присутствующих на рынке: термальные, пьезо и с непрерывной подачей (электростатические).

Термальная струйная печать

Первым технологию термальной струйной печати предложил в 1977 г. инженер-конструктор Canon Ичиро Эндо. С момента выпуска первых настольных принтеров этого типа термальные печатающие головки прошли долгий путь эволюции.

Независимо от конструкционных особенностей, термальные печатающие головки объединяет концепция: малый размер капли при высокой скорости и плотности сопел.

В компактной камере с чернилами капли формируются за счёт быстрого нагрева резистивного элемента. Стремительно нагреваясь до нескольких сотен градусов, он заставляет испаряться молекулы чернил. В кипящей жидкости формируется пузырь (импульс давления), который вытесняет из камеры чернила. В результате на другом конце сопла появляется капля. После выталкивания вакуум в камере заполняют свежие чернила из резервуара, и процесс повторяется.

Недостаток технологии — ограниченный диапазон совместимых жидкостей: чернила для термальных струйных принтеров необходимо разрабатывать с расчётом на испарение и стойкость к высоким локальным температурам. Кроме того, на термальные печатающие головки негативно влияет процесс так называемой кавитации: на поверхности нагревательного элемента постоянно формируются и лопаются пузыри, от чего она изнашивается. Впрочем, современные материалы обеспечивают термальным струйным головкам достаточно длительный срок службы.

Чтобы уменьшить размер капли и увеличить скорость печати, нужны высокоточные технологии, позволяющие увеличить количество сопел на ширину поверхности. Печатающие головки Canon FINE предлагают впечатляющий объём в 2560 сопел на цвет (15 360 сопел на печатающую головку). Сопла различаются по диаметру, поскольку термальная технология не в состоянии обеспечить формирование капель разного размера. В каждой головке особым образом скомбинированы сопла на 1, 2 и 5 пл.

Hewlett Packard добилась впечатляющей плотности сопел в печатающей головке Edgeline. Конструкция с шириной печати 10,8 см состоит из пяти кремниевых чипов, расположенных в шахматном порядке.

Физическое разрешение достигает 1200 dpi при рабочей частоте 48 кГц. Двойной ряд сопел (по 10 560 на матрицу) позволяет Edgeline наносить два цвета. При печати в один цвет второй ряд остаётся в качестве резервного. В каждой головке, рассчитанной на работу с водными либо латексными чернилами, 5 матриц — в общей сложности 52 800 сопел.

Edgeline устанавливают в латексные принтеры и рулонные ЦПМ от HP. В комплектацию T300 с шириной печати 77 см входят по 70 печатающих головок для каждой стороны запечатываемого полотна. Таким образом, в режиме двухсторонней печати функционирует 7 392 000 сопел, и машина с высокой точностью ежесекундно наносит на запечатываемый материал 148 млрд капель. Все термальные печатающие головки относятся к расходным материалам, срок службы зависит от объёма проходящих через них чернил.

Термальные печатающие головки для настольных струйных принтеров выпускают также Kodak и Lexmark. Часть укомплектованных ими моделей уже снята с производства.

На рынке широкоформатной печати в сегменте струйных принтеров с водными чернилами идёт битва между Canon и HP, единственным пока поставщиком латексных принтеров с термальными печатающими головками. И никто кроме HP пока не предложил термальной печатающей головки в однопроходной конфигурации.

Струйные термальные технологии весьма уверенно чувствуют себя в своей нише, но большая часть рулонных и планшетных принтеров большого и сверхбольшого форматов сейчас представлена моделями с пьезоструйными печатающими головками.

Пьезотехнологии: капля по требованию

Пьезоэлектрические печатающие головки объединяет принцип распыления капель. Благодаря широкому выбору модификаций для разных материалов и сфер применения, они пользуются большой популярностью у производителей струйных принтеров.

Принцип технологии «капля по требованию» основан на изменении формы определённых кристаллов при подаче напряжения. В результате камера деформируется, генерируя импульс. На рынке представлены пьезоэлектрические струйные головки больше чем от десятка производителей.

У струйных технологий масса вариантов применения, полиграфия — лишь один из них. Струйные печатающие головки используют для маркировки и кодирования, нанесения почтовых индексов и адресов, обработки документации, печати и маркировки текстиля, гравирования, фотогальваники, осаждения материалов и высокоточного диспергирования жидкостей.

Струйные печатающие головки можно классифицировать по:

  • совместимости с жидкостями (составы водные, масляные, сольвентные, УФ, кислотные);
  • рабочей температуре;
  • количеству сопел;
  • физическому разрешению;
  • ширине печати;
  • материалу конструкции;
  • фиксированной либо переменной капле;
  • наименьшему размеру капли;
  • экологичности.

Главное различие струйных печатающих головок — в фиксированном либо переменном размере капли. Принтеры с фиксированной каплей называют бинарными. Важно понимать отличия технологий и принципы их работы.

Бинарные печатающие головки выдают капли стандартного объёма. Вариантов море — от 1 пл до 200 пл и более (пиколитр — одна триллионная часть литра). Основное преимущество технологии в том, что большие капли быстрее покрывают запечатываемый материал. Ещё одна особенность печатающих головок с фиксированным размером капли — пониженное разрешение. Поэтому они лучше подходят для крупноформатной печатной продукции, печати по текстилю и других сегментов, где разрешение не имеет первоочередного значения.

Самую маленькую каплю обеспечивают широкоформатные принтеры серии Durst Rho P10: печатающие головки Quadro Array с размером 10 пл предлагают разрешение до 1000 dpi. Струйные головки с размером капли 1 пл рассчитаны не на графику, а на осаждение жидкостей и печатную электронику.

Печатающие головки с фиксированной каплей выгодно отличаются частотой распыления, измеряемой в килогерцах (1000 циклов в секунду). Базирующиеся на этой технологии струйные принтеры бывают 4- и 6-красочной конфигураций. При работе с большими объёмами не стоит забывать, что скорость печати в 4 цвета выше, чем в 6 цветов, а если за один цвет отвечает несколько печатающих головок, принтер вообще будет «летать».

Сейчас идут активные дебаты на тему того, какая из технологий лучше и почему — с фиксированным или с переменным размером капли. Но учитывать в первую очередь нужно практические аспекты: выпускаемая продукция, стоимость принтера, экономически оправданная скорость.

Печатающие головки с переменным размером капли способны на ходу регулировать разрешение печати. Для увеличения капли система объединяет несколько капель базового размера.

Возьмём для примера принтер с базовой каплей в 6 пл. Чтобы получить каплю 12 пл, в камеру с чернилами система отсылает сразу два пульса: капли встречаются в воздухе и сливаются в одну. Доступные для конкретной печатающей головки размеры капли называют «уровнями».

8-уровневая головка формирует капли семи размеров. Пьезоэлектрическая головка с поддержкой 16?ти уровней даст 15 размеров капель. При базовом размере капли в 6 пл доступные варианты получаются простым умножением базовой капли: 6, 12, 18, 24, 30, 36, 42 пл.

Если проанализировать частоту распыления, окажется, что формирование переменных капель занимает больше времени, что вполне логично. Для 16-уровневой пьезоструйной головки скорость распыления базовой капли составит около 28 кГц. Если для неё же активировать 8 вариантов капель, скорость распыления упадёт до 6,2 кГц. Если задействованы все 16 вариантов, скорость составляет всего 2,8 кГц. Как видим, при переходе от базового уровня к максимально возможным 16-ти уровням количество формируемых капель меньше на порядок. Печатающие головки с переменным размером капли неизменно печатают медленее, чем аналогичные с фиксированной каплей. Зато повышают разрешение мелкого текста и качество печати в целом.

Чтобы увеличить производительность струйных головок с переменной каплей, создатели принтеров увеличивают количество каналов на цвет. Чернильный канал представляет собой ряд сопел, отведённых под конкретный цвет чернил, — типовой вариант для сканирующих и печатающих в один прогон систем.

Под сканирующей печатью здесь подразумевается метод струйной печати, при котором каретка с печатающей головкой перемещается взад и вперёд по поверхности запечатываемого материала, а он подаётся в старт-стопном режиме. В некоторых планшетных принтерах изображение формируется иначе: материал совершает возвратно-поступательные движения под группой печатающих головок, перекрывающих всю ширину печати.

Непрерывная струйная печать — высокие скорости

Непрерывная струйная технология представляет собой бесконтактный вариант высокоскоростной печати, который используется для нанесения переменной информации на движущийся материал. Изначально рассчитанные на добавление дат, текстов и штриховых кодов модули теперь предлагают многокрасочную печать на рулонных материалах. Сложно поверить, но первым эту идею запатентовал в 1867 г. лорд Кельвин.

Принцип технологии следующий: насос подаёт жидкие чернила из резервуара на множество мельчайших сопел, формируя непрерывной поток капель на очень высокой скорости. Скорость формирования и распыления капель контролирует вибрирующий пьезоэлектрический кристалл. Скорость его вибрации называют частотой, которая в данном случае варьируется от 50 до 175 кГц. Каждое сопло выдаёт от 50 000 до 175 000 капель в секунду. Они пролетают через электростатическое поле и уже заряженными попадают в отклоняющее поле, которое направляет их на материал либо в сборочный резервуар для повторного использования. Основной объём капель идёт на переработку, и лишь небольшая часть формирует изображение на отпечатке. Одно из главных преимуществ струйных печатающих головок данного типа — высокая скорость работы.


Kodak Stream — пример технологии непрерывной струйной гибридной печати. Периодические импульсы в нагревательных модулях возле каждого сопла печатающей головки формируют мельчайшие чернильные капли. Регулируя размер и форму импульса, система меняет размер точки и скорость распыления капель. Технология Stream генерирует капли на частоте 400 кГц, не уступая по скорости традиционным рулонным офсетным машинам. Более того, в Kodak уверены, что частоту импульсов реально повысить.

Ближайший конкурент ЦПМ Prosper — струйная рулонная ЦПМ от HP. Теоретическая максимальная частота для неё заявлена на уровне 100 кГц. А для пьезоэлектрических струйных принтеров стандартная частота составляет 25-40 кГц.

В основу технологии Stream легли микроэлектромеханические системы MEMS (они же использовались в печатающих головках HP Edgeline). Современная производственная технология MEMS по принципам напоминает методики изготовления интегральных микросхем, которые задействуют для создания сверхминиатюрных струйных структур на кремнии. Пластина с соплами представляет собой механические элементы, скомбинированные с электроникой на общей кремниевой основе.

Выбирай любую

Печатающие головки — лишь один из компонентов сложных печатных систем. Чтобы выбрать технологии, оптимальные для конкретной компании, обязательно принимайте во внимание технологические отличия. Учитывая широчайший выбор предложений на современном рынке, важно вооружиться как можно большим объёмом информации.


Об авторе: Джефф Бёртон ([email protected]), аналитик SGIA по цифровой печати и консультант по вопросам цифрового печатного производства, управления цветом и ассортимента продукции, цифровому оборудованию и производителям. За более чем 20 лет в отрасли работал менеджером по производству, консультантом ассоциации, тренером. Автор множества технических статей и докладчик на отраслевых мероприятиях.

* Журнал SGIA Journal. Март-апрель 2013. Публикуется с разрешения ассоциации SGIA. (с) 2013.

На ту же тему:


Струйные принтеры сегодня одни из наиболее популярных среди потребителей. Причем в большинстве случаев такой принтер покупается в качестве периферии к домашнему компьютеру. На то есть свои резоны, и в первую очередь низкая цена и возможность печати цветных документов. Между тем, как утверждают продавцы ряда салонов компьютерной техники, большинство пользователей имеет более чем смутное представление о принципах струйной печати. Если с работой матричных или лазерных принтеров их владельцам все более-менее ясно, то про струйные принтеры они, как правило, только и могут сказать, что картинка там формируется путем разбрызгивания по бумаге мелких капель чернил.

Для начала, наверное, стоит объяснить, что представляет собой такой показатель, как dpi, который, оказывается, более важен, чем, к примеру, скорость печати. DPI (dot per inch, то есть точек дюйм) - это так называемое число капель на дюйм, функция от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка принтера перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя принтеров состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель, а значит, и качества печати.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Понятно, что в таком случае более высокое качество потребует меньшей скорости печати, и наоборот.

Струйные принтеры различаются по способу печати.

Достаточно широко распространены три основных способа печати.

Термоструйная печать

Разработка термической технологии струйной печати началась еще в 1984 году. Первопроходцами тогда стали компании HP и Canon. Но дело шло медленно, и придти к необходимым результатам долгое время не удавалось. Только в 90-х годах удалось наконец добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, что и привело к созданию сегодняшних принтеров с высоким разрешением.

Как видно из названия, в основе термического (правильнее сказать, электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, который находится в эжекционной камере. При нагревании некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через прецизионное сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Самое главное для успеха данной технологии. это максимально точно подобрать конфигурацию эжекционной камеры, а также диаметр и точность сопла. На поведение чернил при нагревании и выбросе их из сопла наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.) оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска в сопле после эжекции и повторное заполнение эжекционной камеры. Рассмотрим поподробнее этапы формирования и выброса капли. Формирование термической чернильной струи начинается в печатающей головке картриджа. Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца. Однако, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то, хотя температура в это время увеличивается со скоростью 300 млн градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь примерно до 600°C. Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла. Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем составляет порядка 125 атмосфер, т.е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания. Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 500 дюймов в секунду. Образующаяся при этом капля весит всего 18 миллиардных долей грамма. По командам, поступающим от драйвера принтера, несколько сотен сопел могут активизироваться одновременно в любых сочетаниях. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка. ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара. Изготовление печатающей головки. это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в данной сфере решаются действовать очень немногие компании. Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии примерно 1,27 см может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн точек. Качество печати определяется многими факторами, но главные из них. это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения.

Пьезоэлектрическая технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson, впервые была использована в струйных принтерах Epson не так давно. в 1993 году. В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры и давлением, создаваемым в этой камере за счет деформации пьезокристалла. Изменение размера капли осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка по чисто экономическим причинам не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером. Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей: при использовании цветных (пигментных) чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел. Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок, как высокая надежность и возможность изменения размеров капли, весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако, поскольку цены на термические струйные принтеры непрерывно снижаются, и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Пузырьково-струйная печать

Принцип пузырьково-струйной печати Canon Bubble-Jet, изобретённый в конце 70-х, до гениального прост. В каждой дюзе, тончайшем канале, в котором формируются капельки чернил, расположен микроскопический нагреватель. Электрические импульсы, подаваемые на него, заставляют чернила вскипать с образованием воздушных пузырьков, и эти пузырьки с каждым импульсом выталкивают равные объёмы чернил из дюзы. Нагрев прекращается, пузырёк исчезает, в дюзу втягивается новая порция чернил, и она готова к новому циклу!

Однако, понадобилось около 8 лет, чтобы первый пузырьково-струйный принтер стал доступен пользователям. В 1981 году перспективная технология Canon Bubble-Jet впервые была представлена на выставке Canon Grand Fair и сразу приковала к себе внимание специалистов. Но лишь в 1985-ом появилась первая коммерческая модель монохромного принтера Canon BJ-80, а первый полноцветный BJ-принтер BJC-440 (формата A2, с разрешением 400 точек на дюйм) появился в 1988 году.