Оптический кабель для чего он нужен. Пленка и полиэтиленовая оболочка

Оптоволокно

Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM , со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность , с помощью которой легко было бы передать всю необходимую информацию, в которой нуждается вся планета (около 100 терабит в секунду в одном оптоволокне.)

Оптоволокно - это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения . Волоконная оптика - раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи , которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков .

Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:

  • Одномодовые оптоволокна
  • Многомодовые оптоволокна
  • Оптоволокна с градиентным показателем преломления
  • Оптоволокна со ступенчатым профилем распределения показателей преломления.

Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей , в зависимости от того, где они будут использоваться.

Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории ( - гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.

Применение

Оптоволоконная связь

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети , вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или кварцевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из кварцевого стекла , из-за низкого оптического ослабления электромагнитного излучения . В связи используются многомодовые и одномодовые оптоволокна; многомодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно - на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонентов.

Оптоволоконный датчик

Оптоволокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, дает оптоволоконным датчикам преимущество перед традиционными электрическими в определенных областях.

Оптоволокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания лазерный микроскоп, работающий с лазером и оптоволокном .

Оптоволоконные датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Оптоволоконные датчики хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков (Оптоволоконное измерение температуры).

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Другое применение оптоволокна - в качестве датчика в лазерном гироскопе , который используется в Boeing 767 и в некоторых моделях машин (для навигации). Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна полученные при вращении заготовки с сильным встроеным двойным лучепреломлением.

Оптоволокно применяется в охранной сигнализации на особо важных объектах (например, ядерное оружие). Когда злоумышленик пытается переместить боеголовку, условия прохождения света через световод изменяются, и срабатывает сигнализация.

Другие применения оптоволокна

Оптоволокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптоволокна используются для обозначения маршрута с крыши в какую-нибудь часть здания. Оптоволоконное освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные ёлки.

Оптоволокно также используется для формирования изображения. Когерентный пучок, передаваемый оптоволокном, иногда используется совместно с линзами - например, в эндоскопе , который используется для просмотра объектов через маленькое отверстие.

Примечания

См. также

Литература

  • Gambling, W. A., «The Rise and Rise of Optical Fibers», IEEE Journal on Selected Topics in Quantum Electronics , Vol. 6, No. 6, pp. 1084–1093, Nov./Dec. 2000
  • Gowar, John, Optical Communication Systems , 2 ed., Prentice-Hall, Hempstead UK, 1993 (ISBN 0-13-638727-6)
  • Hecht, Jeff, City of Light, The Story of Fiber Optics , Oxford University Press, New York, 1999 (ISBN 0-19-510818-3)
  • Hecht, Jeff, Understanding Fiber Optics , 4th ed., Prentice-Hall, Upper Saddle River, NJ, USA 2002 (ISBN 0-13-027828-9)
  • Nagel S. R., MacChesney J. B., Walker K. L., «An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance», IEEE Journal of Quantum Mechanics , Vol. QE-18, No. 4, April 1982
  • Ramaswami, R., Sivarajan, K. N., Optical Networks: A Practical Perspective , Morgan Kaufmann Publishers, San Francisco, 1998 (ISBN 1-55860-445-6)

Ссылки

  • Физические характеристики полимерных оптических волокон
Накаливания: Лампа накаливания - Галогенные лампы - Флуоресцентные:

Волоконно-оптический кабель – представляет собой стеклянный пучок нитей, который может передавать оптические сигналы. Еще совсем недавно такой кабель стали применять для абонентских линий, а уже сейчас – это основная среда для того, чтоб передавать цифровую информацию на больших расстояниях.

Зачем нужен кабель ОКГ?

Кабель ОКГ разработали для того, чтоб заменить громоздкие кабеля из меди. Они могут выпускаться в таких модификациях как – одномодовые (получили свое применение в телефонии) и многомодовые (широко применяются в сетях). Различия между ними состоит в том, что одномодовые волокна могут передавать сигналы с волнами одной длинны, а многомодовые – волны с разной длинной.

Производство

Ранее уже было сказано, что ВОК – представляет собой стеклянные волокна. Изначально одно волокно – это стержень из стекла, диаметр которой от пяти до восьми сантиметров. Далее такой стержень загружается в специальную машину, которая путем плавки и протягивания превращает его в волокно. После этого такое волокно покрывается оболочкой с внутренними силовыми компонентами.

Прокладывается ВОК практически так же как и медный, но разница состоит в хрупкости, т.е. если ВОК чрезмерно изгибать или натягивать – он ломается.

Безопасность

Для работы с волокно-оптическими кабелями необходимо ни в коем случае не смотреть на торец без специального оборудования, т.к. практически невидимый кусок волокна может, попав в глаза нанести им непоправимый ущерб.

Сращивание

ВОК сращивают либо механически (благодаря специальному устройству концы кабеля полируются, а гель заполняет микро-полости) либо с помощью плавления (волокна плавятся и становятся одним целым).

В основном сращивают волокна механически, т.к. для этого необходим простой набор инструментов, которые предлагают практически все производители, а полировкой может заняться любой рабочий службы поддержки. Если же сращивать волокна методам плавления, то необходимо дорогое оборудование, и не каждый монтажник сможет это сделать.

Ремонт кабеля

Конструкция ВОК изначально совершенна и имеет достаточно каналов в своем резерве, что дает гарантию работы сети с потерями, сведенными к минимуму, если кабель был поврежден. Но в тоже время, если повреждение произошло, то для ремонта потребуется сделать как минимум 2 дополнительных стыка, что может привести к потере мощности. Для того, чтоб этого не произошло, следует заранее включить в кабельную систему ремонтно-восстановительные работы. Конечно, это потребует лишних средств, но поможет сэкономить если возникли какие-либо неполадки в кабеле.

Скоростной интернет, цифровое телевидение, мобильная связь возможны благодаря тонким стеклянным нитям, тянущимся по морскому дну между континентами. Если бы не оптоволокно, вы бы вряд ли читали эти строки.

Принципиальные основы этой технологии описаны еще в середине XIX века. Тогда в роли проводника сигнала пытались использовать воду – безуспешно. Подходящие для реализации смелой идеи материалы были разработаны только через сто с лишним лет.

Проводник для света

В обычном проводе сигнал передается по медной жиле. Информацию переносит поток электронов – электрический ток. Данные передаются зашифрованными в двоичном коде. Если импульс проходит – это обозначает единицу, не проходит – ноль.

В оптоволоконной линии связи принцип кодировки тот же, но информацию переносят фотоны или световые волны, точнее, и то, и другое одновременно. Ученые так долго спорили о природе света, что в конце концов объединили несовместимые теории. Но не нужно понимать квантово-волновой дуализм, чтобы разобраться, как свет используют для передачи информации в телекоммуникационных сетях.

Достаточно понять, как заставить свет течь по проводам на протяжении километров.

Первое, что приходит в голову, – зеркала. Сделайте металлическую трубку и покройте изнутри гладким слоем, например, из серебра.

Свет, попав внутрь с одной стороны, будет отражаться от стенок, пока не достигнет выхода с другой стороны. Неплохая идея, но она не будет работать.

Во-первых, изготовление такой трубки нужной длины – чрезвычайно сложная, а значит и дорогая задача.

Во-вторых, коэффициент отражения серебра – 99%, то есть попавший в трубку свет будет терять энергию и уже через 100 отражений совершенно погаснет.

Гораздо лучше обойтись и без зеркал. Как это сделать, подскажут основы геометрической оптики, заложенные в XIX веке.

Основную идею легко продемонстрировать на примере аквариума. Луч света от источника под водой проходит через границу воды и воздуха – двух сред с разными оптическими свойствами – и частично меняет направление движения, а частично отражается от границы двух сред как от зеркала.

Если угол падения луча уменьшать, в определенный момент свет перестанет выходить из воды вовсе и будет отражаться полностью, на 100%. Граница двух сред работает лучше всякого зеркала.

Как выяснилось, чтобы создать такую границу, вода не нужна. Подойдут любые два материала, по-разному пропускающие свет – имеющие разные коэффициенты преломления. Даже разницы в 1% достаточно для создания световода.

Стеклянные провода

В светильниках и игрушках световоды делают из пластмасс, но, чтобы получить пригодное для связи оптоволокно, необходимы более дорогие и более прозрачные материалы.

Ученые приспособили для этой цели кварцевое стекло. Сердцевину заготовки для оптоволокна чаще всего делают из чистого диоксида кремния. Внешний слой также создают из кварца, но с примесью бора или германия для снижения коэффициента преломления.

Раньше, чтобы получить такую заготовку, просто вставляли две стеклянные трубки друг в друга, но сегодня чаще поступают иначе. Полые трубки из чистого кварца наполняют смесью газов с высоким содержанием германия и медленно нагревают до тех пор, пока германий не осядет равномерным слоем на внутреннюю поверхность.

После того как на кварцевом стекле нарастет достаточно толстый слой оксида германия, трубу нагревают до размягчения и вытягивают до тех пор, пока полость внутри не схлопывается.

Так получается стержень диаметром от 1 до 10 сантиметров и длиной приблизительно 1 метр, уже содержащий в сердцевине кварц с добавкой германия, имеющий повышенный показатель преломления и оболочку из чистого кварца вокруг.

Такую заготовку доставляют на вершину башни высотой до нескольких десятков метров. Там нижнюю часть заготовки вновь нагревают до полутора тысяч градусов — почти что до точки плавления, и вытягивают из нее тончайшую нить. По пути вниз стекло остывает и окунается в ванну с полимером, который формирует на поверхности кварца защитный слой. Таким методом из одной заготовки получается до 100 км стекловолокна. У основания башни остывшее волокно наматывается на бобину.

Да, именно наматывается: как ни странно, кварцевое волокно легко гнется.

Получившиеся волокна собираются в пучки по несколько штук и запаиваются в полиэтилен. Затем из этих пучков сплетаются кабели.

В каждом кабеле может быть от двух-трех и до нескольких сотен световодов. Снаружи они для прочности оплетаются полимерной нитью и получают еще одну защитную оболочку из полиэтилена.

Преимущества и недостатки оптоволокна

Все эти сложности оправданы потому, что свет – самое быстрое, что есть во Вселенной.

Благодаря этому свойству света оптоволокно обладает непревзойденной информационной емкостью. Витая пара, подобная телефонной линии, или коаксиальный кабель, проводник с экраном, пропускают 100 мегабит в секунду.

Самый распространенный для компьютерных сетей восьмижильный кабель из 4 скрученных пар пропускает до 1000 мегабит в секунду. Оптоволокно по одной жиле — в три раза больше, до 3000 мегабит в секунду, а при помощи различных экспериментальных ухищрений можно преодолеть и этот порог.

К тому же оптоволокно значительно легче меди. При толщине 9 микрон – тоньше человеческого волоса – нить из кварца длиной 100 км весит около 15 г.

Практически все современные магистральные линии передачи данных проложены из оптоволоконных кабелей. Они связывают континенты, страны и дата-центры.

В крупных городах «оптика» используется и при подключении многоквартирных домов к мировой сети, но волокно прокладывается между провайдером и домом, а по квартирам разводится обычная витая пара.

При такой схеме подключения максимальная скорость доступа к сети для абонента по-прежнему не превышает 100 Мбит/с. Для сравнения, проведя оптический кабель прямо в квартиру, можно получить канал в 1 Гбит/с, и все же потребитель редко сталкивается с оптоволоконным Интернетом.

Дело не только в том, что оптоволокно дорого в производстве. Проложить кабель – это лишь начало. Сигналы, идущие по линии связи, с расстоянием накапливают ошибки и в конце концов вовсе затухают. У витой пары это происходит через 1 км, у коаксиального кабеля примерно через 5 км. После сигнал приходится восстанавливать и усиливать – регенерировать.

У оптоволокна дистанция регенерации в разы больше, но, каким бы чистым ни было кварцевое стекло, в нем остаются примеси, например, миллионные доли процентов воды.

Длина волокна может составлять сотни тысяч километров, но через 100–200 км затухание оптического сигнала все же себя проявляет.

Поэтому на линиях оптоволоконной связи устанавливаются промежуточные усилители, которые восстанавливают амплитуду оптического сигнала, и регенераторы, удаляющие помехи. Такое оборудование значительно более дорогое, чем усилители на традиционных линиях связи, и требует квалифицированного обслуживания.

Но главное, на данный момент гигабитные каналы связи мало востребованы обычными людьми. Возможно, с появлением умных домов, носимых компьютеров, распространением стриминга видео в сверхвысоком разрешении потребность в них возрастет, но пока скорости, предоставляемой витой парой, среднему потребителю вполне достаточно.

Даже не соприкасаясь с этой технологией напрямую, каждый из нас пользуется ее преимуществами. Стабильность подключения, малая задержка прохождения сигнала до самых удаленных серверов и высокая скорость получения ответа от них, возможность снять деньги в любом банкомате и совершить звонок в любую страну мира – все это заслуга оптоволокна, и конкурентов у него нет и в проекте.

Оптоволокно - наиболее быстрая на сегодняшний день технология передачи информации в сети интернет. Структура оптического кабеля отличается определёнными особенностями: такой провод состоит из маленьких очень тонких проводков, ограждённых специальным покрытием, которое отделяет один проводок от другого.

По каждому проводку передаётся свет, который передаёт данные. Оптический кабель способен передавать одновременно данные, кроме интернет-соединения, также телевидения и стационарного телефона.

Потому оптоволоконная сеть позволяет пользователю совмещать все 3 услуги одного провайдера, подключая роутер, ПК, телевизор и телефон к единому кабелю.

Другое название оптоволоконного подключения - фиброоптическая связь. Такая связь даёт возможность передавать данные при помощи лазерных лучей на расстояния, измеряемые сотнями километров.

Оптический кабель состоит из мельчайших волокон, диаметр которых составляет тысячные доли сантиметра. Эти волокна передают оптические лучи, которые переносят данные, проходя через сердечник каждого волокна, состоящий из кремния.

Оптические волокна дают возможность установить соединение не только между городами, но и между странами и континентами. Связь по интернету между разными материками поддерживается через оптоволоконные кабели, проложенные по океанскому дну.

Оптоволоконный интернет

Благодаря оптическому кабелю можно настраивать высокоскоростное интернет-соединение, которое играет огромную роль в сегодняшнем мире. Оптоволоконный провод является самой прогрессивной технологией передачи данных по сети.

Плюсы оптического кабеля:

  • Долговечность, высокая пропускная способность, способствующая быстрой передаче данных.
  • Безопасность передачи данных - оптоволокно даёт возможность программам моментально обнаруживать несанкционированный доступ к данным, поэтому доступ к ним для злоумышленников почти исключён.
  • Высокая защищённость от помех, хорошее подавление шума.
  • Особенности строения оптического кабеля делают скорость передачи данных через него в несколько раз выше, чем скорость передачи данных через коаксиальный кабель. Прежде всего это относится к видеофайлам и аудиофайлам.
  • При подключении оптоволокна можно организовать систему, реализующую некоторые дополнительные опции, например, видеонаблюдение.

Однако самым главным достоинством оптоволоконного кабеля является его способность установить соединение объектов, удалённых друг от друга на огромное расстояние. Это возможно благодаря тому, что у оптического кабеля отсутствуют ограничения по длине каналов.

Подключение интернета с помощью оптоволокна

Самый распространённый в РФ интернет, сеть которого функционирует на основе оптоволокна, предоставляется провайдером Ростелеком. Как подключить оптоволоконный интернет?

Сначала следует просто убедиться в том, что оптический кабель подведён к дому. Затем нужно заказать подключение к интернету у провайдера. Последний должен сообщить данные, обеспечивающие подключение. Потом нужно выполнить настройку оборудования.

Она осуществляется так:


Терминал оборудован специальным гнездом, позволяющим соединяться с компьютером и соединять роутер с интернетом.

Волоконно-оптический кабель активно используется для прокладки линий связи и считается наиболее современным и эффективным проводником информации на сегодняшний день. Всё время растущие запросы человечества в сфере коммуникаций подталкивают разработчиков изобретать новые и новые способы передачи информации на максимально возможных скоростях. И все новейшие решения в области интернета и телефонии не обходятся без использования оптического кабеля.

Волоконно-оптический кабель представляет собой конструкцию, основой которой являются тончайшие волокна из чистого кварцевого стекла, облаченные в специальные изолирующие материалы и внешнюю оболочку. На рынке телекоммуникационного оборудования и кабельно-проводниковой продукции оптические кабели связи представлены широчайшей линейкой моделей с различными техническими параметрами, структурой и функционалом. Но все эти модели объединяет принцип передачи сигнала: по сути, оптическое волокно является световой трубкой, в которой световая волна распространяется согласно законам оптики.

Для чего нужен оптический кабель и почему нельзя обойтись имеющимися медножильными проводниками? Дело в том, что за последнее десятилетие многократно возрос спор на высокоскоростной интернет и качественную мобильную связь. Зачастую медные кабели связи просто не в состоянии отвечать всё время растущим аппетитам абонентов. Возможности же волоконно-оптического кабеля безграничны. Малогабаритные оптические кабели способны заменить громоздкие медные аналоги при этом значительно улучшая качество и скорость передачи данных.

Оптоволоконные технологии применимы как в промышленности, так и в быту. Помимо возможности передачи информации на высоких скоростях при использовании современных оптических решений, волоконно-оптический кабель является диэлектриком, что делает его наиболее безопасным для применения на различных объектах промышленности.

Оптические кабели способны передавать информацию на длинные расстояния, при этом сохраняя максимально возможное качество передачи данных. Широкая линейка модификаций оптического кабеля позволяет подбирать модели идеально подходящие для построения конкретной кабельной трассы при сохранении параметров передачи.

Оптический кабель необходим в тех случаях, когда высок уровень электромагнитных помех, т.к. оптоволокно вовсе нечувствительно к внешним электромагнитным влияниям.
Также стоит отметить, что сам материал проводника, стекло, химически устойчиво к процессам коррозии, что увеличивает срок службы изделия.

Оптические технологии - это принципиально новый подход к передаче информации. Соответственно, пока что построение оптических линий связи обходится дороже работ с медножильными аналогами. Цена на оптический кабель всё же выше стоимости медных кабелей связи. И на сегодняшний день применение оптоволокна оправдано, скорее, на больших расстояниях.

На сайте компании «Вионет» представлен широчайший ассортимент оптического кабеля проверенных заводов-производителей по выгодным ценам. Мы предлагаем