Статистические методы принятия решений монография. Вероятностно-статистические методы принятия решений

Аналитические методы основаны на работе руководителя с рядом аналитических зависимостей. Которые определяют соотношение между условиями выполняемой задачи и её результатом в виде формул, графиков и т.д.

Статистические методы, основаны на использовании информации о прошлом удачном опыте при разработке принятии УР. Эти методы реализуются путем сбора, обработки, анализа статистических материалов с помощью статического моделирования. Такие методы можно использовать как на этапе разработки так и на этапе выбора решения.

Математические методы, они позволяют рассчитать лучший вариант решения по оптимальным критериям. Для этого в комп вводится искомая ситуация, вводится цель и критерии. Компьютер на базе математического соотношения либо разрабатывает новое, либо подбирает подходящее.

18 Активизирующие методы принятия управленческих решений

"Мозговой штурм"- это метод группового обсуждения проблемы, основанный на неаналитическом мышлении.

1)Этап генерации идей отделяется от этапа критики;

2)На этапе генерации идей запрещена любая критика принимаются абсурдные идеи.

3) Все идеи фиксируются письменно;

4) На этом этапе критики отбирают 3-4 идеи которые могут рассматриваться как альтернативные варианты.

Метод "Вопросов и ответов" он основан на предварительном составлении набора вопросов, ответы на которые могут сформировать новый подход к решению проблемы.

Метод "5 почему"

Пять "почему?" – эффективный инструмент, использующий вопросы для изучения причинно-следственных связей, лежащих в основе конкретной проблемы, определения причинных факторов и выявления первопричины. Рассматривая логику в направлении "Почему?", мы постепенно раскрываем всю цепь последовательно связанных между собой причинных факторов, оказывающих влияние на проблему.

План действий

Определить конкретную проблему, которую необходимо решить.

Прийти к согласию относительно формулировки рассматриваемой проблемы.

При поиске решения проблемы следует начинать с конечного результата (проблемы) и идти в обратном направлении (в направлении возникновения первопричины), спрашивая, почему возникает проблема.

Ответ записать под проблемой.

Если ответ не выявляет первопричину проблемы, снова задать вопрос "Почему?" и новый ответ записать ниже.

Вопрос "Почему?" необходимо повторять до тех пор, пока первопричина проблемы не станет очевидной.

Если ответ решает проблему, и группа согласна с ним, принимается решение, использующее ответ.

"Теоретико-игровой метод" основан на создании человеко-машинной системы разработки решений. Предшественником были традиционные совещания. Обычно на таких совещаниях принимались эконом, социал. И специализированные решения. Интересы участников часто различны, а круг вопросов имеет широкий спектр. Качественным развитии методики совещаний стало внедрении процесса разработки УР, искусственного интеллекта в виде компьютерной модели.

Компьютерная модель организации включает:

1) Справочные данные (о поставщиках, потребителях);

2) Имитационные модели компании

3) Методики экономического расчета и прогнозирования

4) Информацию о решениях в аналогичных ситуациях.

В результате совещания более результативны. Такое совещание может в нескольких сеансах игры: где на 1 сеансе все участники вводят свои требования, после обработки комп. Выдает определенное решение которые могут обсуждаться и корректироваться еще раз. Это может длиться до выработки общего решения либо, до отказа о принятии данного решения.

Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности. Разъяснить процесс принятия решения в различных ситуациях. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода Рассматриваемые методы относятся к статистическим....


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 7

Тема. МЕТОДЫ СТАТИСТИЧЕСКИХ РЕШЕНИЙ

Цель. Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности.

Учебная. Разъяснить процесс принятия решения в различных ситуациях.

Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

Межпредметные связи:

Обеспечивающие: информатика, математика, вычислительная техника и МП , системы программирования.

Обеспечиваемые: Стажерская практика

Методическое обеспечение и оборудование:

Методическая разработка к занятию.

Учебный план.

Учебная программа

Рабочая программа.

Инструктаж по технике безопасности.

Технические средства обучения: персональный компьютер.

Обеспечение рабочих мест:

Рабочие тетради

Ход лекции.

Организационный момент.

Анализ и проверка домашней работы

Ответьте на вопросы:

  1. Что позволяет определить формула Байеса?
  2. В чем состоят основы метода Байеса? Приведите формулу. Дайте определение точного смысла всех входящих в эту формулу величин.
  3. Что означает, что реализация некоторого комплекса признаков K * является детерминирующей?
  4. Объясните принцип формирования диагностической матрицы.
  5. Что означает решающее правило принятия?
  6. Дайте определение методу последовательного анализа.
  7. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода?

План лекции

Рассматриваемые методы относятся к статистическим. В методах статистических решений решающее правило выбирается исходя из некоторых условий оптимальности, например из условия минимума риска. Возникшие в математической статистике как методы проверки статистических гипотез (работы Неймана и Пирсона), рассматриваемые методы нашли широкое применение в радиолокации (обнаружение сигналов на фоне помех), радиотехнике, общей теории связи и других областях. Методы статистических решений успешно используются в задачах технической диагностики.

СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ОДНОГО ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА

Если состояние системы характеризуется одним параметром, то система имеет одномерное пространство признаков. Разделение производится на два класса (дифференциальная диагностика или дихотомия (раздвоенность, последовательное деление на две части, не связанные между собой. ) ).

Рис.1 Статистические распределения плотности вероятности диагностического параметра х для исправного D 1 и дефектного D 2 состояний

Существенно, что области исправного D 1 и дефектного D 2 состояний пересекаются и потому принципиально невозможно выбрать значение х 0 , при котором не было бы ошибочных решений. Задача состоит в том, чтобы выбор х 0 был в некотором смысле оптимальным, например давал наименьшее число ошибочных решений.

Ложная тревога и пропуск цели (дефекта). Эти встречавшиеся ранее термины явно связаны с радиолокационной техникой, но они легко интерпретируются в задачах диагностики.

Ложной тревогой называется случай, когда принимается решение о наличии дефекта, но в действительности система находится в исправном состоянии (вместо D 1 принимается D 2 ).

Пропуск цели (дефекта) — принятие решения об исправном состоянии, тогда как система содержит дефект (вместо D 2 принимается D 1 ).

В теории контроля эти ошибки называются риском поставщика и риском заказчика . Очевидно, что эти двоякого рода ошибки могут иметь различные последствия или различные целы.

Вероятность ложной тревоги равна вероятности произведения двух событий: наличие исправного состояния и значения х > х 0 .

Средний риск. Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта (математическое ожидание) риска.

Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги.

Метод минимального риска . Вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия т.е. проводится расчет минимального риска происхождения события при налички информации о максимально подобных событиях.

рис. 2. Точки экстремума среднего риска ошибочных решений

Рис. 3. Точки экстремума для двугорбых распределений

Отношение плотностей вероятностей распределения х при двух состояниях называется отношением правдоподобия.

Напомним, что диагноз D 1 соответствует исправному состоянию, D 2 — дефектному состоянию объекта; С 21 — цена ложной тревоги, С 12 — цена пропуска цели (первые индекс — принятое состояние, второй — действительное); С 11 < 0, С 22 < 0 — цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся.

Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, так как логарифмическая функция возрастает монотонно вместе со своим аргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Условие минимума риска можно получить из других соображений, которые окажутся важными в дальнейшем.

Метод минимального числа ошибочных решений .

Вероятность ошибочного решения для решающего правила

В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.) то применение метода вполне оправдано.

Метод минимакса предназначен для ситуации, когда отсутствуют предварительные статистические сведения о вероятности диагнозов D 1 и D 2 . Рассматривается «наихудший случай», т. е. наименее благоприятные значения Р 1 и Р 2 , приводящие к наибольшему значению (максимуму) риска.

Можно показать для одномодальных распределений, что величина риска становится минимаксной (т. е. минимальной среди максимальных значений, вызванных «неблагоприятной» величиной Pi ). Отметим, что при Р 1 = 0 и Р 1 = 1 риск принятия ошибочного решения отсутствует, так как ситуация не имеет неопределенности. При Р 1 = 0 (все изделия неисправны) вытекает х 0 → -оо и все объекты действительно признаются неисправными; при Р 1 = 1 и Р 2 = 0 х 0 → +оо и в соответствии с имеющейся ситуацией все объекты классифицируются как исправные.

Для промежуточных значений 0 < Pi < 1 риск возрастает и при P 1= P 1* становится максимальным. Рассматриваемым методом выбирают величину х 0 таким образом, чтобы при наименее благоприятных значениях Pi потери, связанные с ошибочными решениями, были бы минимальными.

рис . 4. Определение граничного значения диагностического параметра по методу минимакса

Метод Неймана—Пирсона . Как уже указывалось, оценки стоимости ошибок часто неизвестны и их достоверное определение связано с большими трудностями. Вместе с тем ясно, что во всех с л у чаях желательно при определенном (допустимом) уровне одной из ошибок минимизировать значение другой. Здесь центр проблемы переносится на обоснованный выбор допустимого уровня ошибок с помощью предыдущего опыта или интуитивных соображений.

По методу Неймана—Пирсона минимизируется вероятность пропуска цели при заданном допустимом уровне вероятности ложной тревоги. Таким образом, вероятность ложной тревоги

где А — заданный допустимый уровень вероятности ложной тревоги; Р 1 — вероятность исправного состояния.

Отметим, что обычно это условие относят к условной вероятности ложной тревоги (множитель Р 1 отсутствует). В задачах технической диагностики значения Р 1 и Р 2 в большинстве случаев известны по статистическим данным.

Таблица 1 Пример - Результаты расчета по методам статистических решений

№ п/п

Метод

Граничное значение

Вероятность ложной тревоги

Вероятность пропуска дефекта

Средний риск

Метод минимального риска

7,46

0,0984

0,0065

0,229

Метод минимального числа ошибок

9,79

0,0074

0,0229

0,467

Метод минимакса

Основной вариант

5,71

0,3235

0,0018

0,360

2 вариант

7,80

0,0727

0,0081

0,234

Метод Неймана—Пирсона

7,44

0,1000

0,0064

0,230

Метод наибольшего правдоподобия

8,14

0,0524

0,0098

0,249

Из сопоставления видно, что метод минимального числа ошибок дает неприемлемое решение, так как цены ошибок существенно различны. Граничное значение по этому методу приводит к значительной вероятности пропуска дефекта. Метод минимакса в основном варианте требует очень большого снятия с эксплуатации исследуемых устройств(примерно 32%), так как исходит из наименее благоприятного случая (вероятность неисправного состояния Р 2 = 0,39). Применение метода может быть оправданным, если отсутствуют даже косвенные оценки вероятности неисправного состояния. В рассматриваемом примере удовлетворительные результаты получаются по методу минимального риска.

  1. СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ПРИ НАЛИЧИИ ЗОНЫ НЕОПРЕДЕЛЕННОСТИ И ДРУГИЕ ОБОБЩЕНИЯ

Правило решения при наличии зоны неопределенности.

В некоторых случаях, когда требуется высокая надежность распознавания (большая стоимость ошибок пропуска цели и ложной тревоги), целесообразно ввести зону неопределенности (зону отказа от распознавания). Правило решения будет следующим

при отказ от распознавания.

Разумеется, отказ от распознавания является нежелательным событием. Он свидетельствует, что имеющейся информации недостаточно для принятия решения и нужны дополнительные сведения.

рис. 5. Статистические решения при наличии зоны неопределенности

Определение среднего риска . Величина среднего риска при наличии зоны отказа от распознавания может быть выражена следующим равенством

где C o — цена отказа от распознавания.

Отметим, что С о > 0, иначе задача теряет смысл («вознаграждение» за отказ от распознавания). Точно так же С 11 < 0, С 22 < 0, так как правильные решения не должны «штрафоваться».

Метод минимального риска при наличии зоны неопределенности . Определим границы области принятия решения, исходя из минимума среднего риска.

Если не поощрять правильные решения (С 11 = 0, С 22 = 0) и не платить за отказ от распознавания (С 0 = 0), то область неопределенности будет занимать всю область изменения параметра.

Наличие зоны неопределенности дает возможность обеспечить заданные уровни ошибок за счет отказа от распознавания в «сомнительных» случаях

Статистические решения для нескольких состояний. Выше были рассмотрены случаи, когда статистические решения принимались д ля различения двух состояний (дихотомия). Принципиально такая процедура позволяет провести разделение на n состояний, каждый раз объединяя результаты для состояния D 1 и D 2 . Здесь под D 1 понимаются любые состояния, соответствующие условию «не D 2 ». Однако в некоторых случаях представляет интерес рассмотреть вопрос и в прямой постановке — статистические решения для классификации n состояний.

Выше рассматривались случаи, когда состояние системы (изделия) характеризовалось одним параметром х и соответствующим (одномерным) распределением. Состояние системы характеризуется диагностическими параметрами х 1 х 2 , ..., х n или вектором х:

х= (х 1 х 2 ,...,х n ).

М етод минимального риска.

Наиболее просто обобщаются на многомерные системы методы минимального риска и его частные случаи (метод минимального числа ошибочных решений, метод наибольшего правдоподобия). В случаях, когда в методе статистического решения требуется определение границ области принятия решения, расчетная сторона задачи существенно осложняется (методы Неймана—Пирсона и минимакса).

Домашнее задание: § конспект.

Закрепление материала:

Ответьте на вопросы:

  1. Что называют ложной тревогой?
  2. Что подразумевает пропуск цели (дефекта)?
  3. Дайте объяснение риску поставщика и риску заказчика.
  4. Приведите формулу метода минимального числа ошибочных решений. Дайте определение неосторожного решения.
  5. Для каких случаев предназначен метод минимакса?
  6. Метод Неймана—Пирсона. Объясните его принцип.
  7. Для каких целей применяется зона неопределенности?

Литература:

Амренов С. А. «Методы контроля и диагностики систем и сетей связи» КОНСПЕКТ ЛЕКЦИЙ -: Астана, Казахский государственный агротехнический университет, 2005 г.

И.Г. Бакланов Тестирование и диагностика систем связи. - М.: Эко-Трендз, 2001.

Биргер И. А. Техническая диагностика.— М.: «Машиностроение», 1978.—240,с, ил.

АРИПОВ М.Н, ДЖУРАЕВ Р.Х., ДЖАББАРОВ Ш.Ю. «ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЦИФРОВЫХ СИСТЕМ» -Ташкент, ТЭИС, 2005

Платонов Ю. М., Уткин Ю. Г. Диагностика, ремонт и профилактика персональных компьютеров. -М.: Горячая линия - Телеком, 2003.-312 с: ил.

М.Е.Бушуева, В.В.Беляков Диагностика сложных технических систем Труды 1-го совещания по проекту НАТО SfP-973799 Semiconductors . Нижний Новгород, 2001

Малышенко Ю.В. ТЕХНИЧЕСКАЯ ДИАГНОСТИКА часть I конспект лекций

Платонов Ю. М., Уткин Ю. Г. Диагностика зависания и неисправностей компьютера/Серия «Техномир». Ростов-на-Дону: «Феникс», 2001. — 320 с.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

21092. Экономические методы принятия предпринимательских решений на примере ТОО «Норма- 2005» 127.94 KB
Управленческие решения: сущность требования механизм разработки. Свою управленческую деятельность руководитель реализует через решения. Достижение поставленной цели исследования потребовало решения следующих задач: теоретического обоснования экономических методов принятия решений в системе предпринимательства; структуризации и внутреннего управленческого обследования на основе анализа внешней и внутренней среды исследуемого предприятия; анализа использования информации экономических результатов...
15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
2611. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ 128.56 KB
Например гипотеза простая; а гипотеза: где –сложная гипотеза потому что она состоит из бесконечного множества простых гипотез. Классический метод проверки гипотез В соответствии с поставленной задачей и на основании выборочных данных формулируется выдвигается гипотеза которая называется основной или нулевой. Одновременно с выдвинутой гипотезой рассматривается противоположная ей гипотеза которая называется конкурирующей или альтернативной. Поскольку гипотеза для генеральной совокупности...
7827. Тестирование статистических гипотез 14.29 KB
Для тестирования гипотезы существует два способа сбора данных – наблюдение и эксперимент. Думаю определить какое из данных наблюдений является научным не составит труда. Шаг третий: сохранение результатов Как я уже упоминала в лекции первой один из языков на которых говорит биология – это язык баз данных. Из этого вытекает то какой собственно база данных должна быть и какой задаче она отвечает.
5969. Статистическое исследование и обработка статистических данных 766.04 KB
В курсовой рассматривается следующие темы: статистическое наблюдение, статистическая сводка и группировка, формы выражения статистических показателей, выборочное наблюдение, статистическое изучение взаимосвязи социально-экономических явлений и динамики социально-экономических явлений, экономические индексы.
19036. 2.03 MB
13116. Система сбора и обработки статистических данных «Метеонаблюдения» 2.04 MB
Работы с базами данных и СУБД позволяют значительно качественнее организовать работу сотрудников. Простота в эксплуатации и надежность хранения данных позволяют практически совсем отказаться от ведения бумажного учета. Значительно ускоряется работа с отчетной и статистической информацией калькуляцией данных.
2175. Анализ области решений 317.39 KB
9й вид UML диаграмм диаграммы вариантов использования см. В этом курсе мы не будем разбирать диаграммы UML в деталях а ограничимся обзором их основных элементов необходимым для общего понимания смысла того что изображено на таких диаграммах. Диаграммы UML делятся на две группы статические и динамические диаграммы. Статические диаграммы Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними либо суммарную информацию о сущностях и связях либо сущности и связи существующие в какойто...
1828. Критерий принятия решений 116.95 KB
Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
10569. Классификация управленческих решений 266.22 KB
Классификация управленческих решений. Разработка управленческого решения. Особенности управленческих решений Обыденные и управленческие решения. Обыденные решения это решения принимаемые людьми в повседневной жизни.

Методы принятия решений в условиях риска разрабатываются и обосновываются также и в рамках так называемой теории статистических решений. Теория статистических решений является теорией проведения статистических наблюдений, обработки этих наблюдений и их использования. Как известно, задачей экономического исследования является уяснение природы экономического объекта, раскрытие механизма взаимосвязи между важнейшими его переменными. Такое понимание позволяет разработать и осуществить необходимые меры по управлению данным объектом, или экономическую политику. Для этого нужны адекватные задаче методы, учитывающие природу и специфику экономических данных, служащих основой для качественных и количественных утверждений об изучаемом экономическом объекте или явлении.

Любые экономические данные представляют собой количественные характеристики каких-либо экономических объектов. Они формируются под действием множества факторов, не все из которых доступны внешнему контролю. Неконтролируемые факторы могут принимать случайные значения из некоторого множества значений и тем самым обуславливать случайность данных, которые они определяют. Стохастическая природа экономических данных обуславливает необходимость применения специальных адекватных им статистических методов для их анализа и обработки.

Количественная оценка предпринимательского риска вне зависимости от содержания конкретной задачи возможна, как правило, с помощью методов математической статистки. Главные инструменты данного метода оценки - дисперсия, стандартное отклонение, коэффициент вариации.

В приложениях широко применяют типовые конструкции, основанные на показателях изменчивости или вероятности сопряженных с риском состояний. Так, финансовые риски, вызванные колебаниями результата вокруг ожидаемого значения, например, эффективности, оценивают с помощью дисперсии или ожидаемого абсолютного уклонения от средней. В задачах управления капиталом распространенным измерителем степени риска является вероятность возникновения убытков или недополучения доходов по сравнению с прогнозируемым вариантом.

Для оценки величины риска (степени риска) остановимся на следующих критериях:

  • 1) среднее ожидаемое значение;
  • 2) колеблемость (изменчивость) возможного результата.

Для статистической выборки

где Xj - ожидаемое значение для каждою случая наблюдения (/" = 1, 2,...), л, - число случаев наблюдения (частота) значения л:, х=Е - среднее ожидаемое значение, ст - дисперсия,

V - коэффициент вариации, имеем:

Рассмотрим задачу об оценке риска по хозяйственным контрактам. ООО «Интерпродукт» решает заключить договор на поставку продуктов питания с одной из трех баз. Собрав данные о сроках оплаты товара этими базами (табл. 6.7), нужно, оценив риск, выбрать ту базу, которая оплачивает товар в наименьшие сроки при заключении договора поставки продукции.

Таблица 6.7

Сроки оплаты в днях

Число случаев наблюдения п

хп

(х-х)

(х-х ) 2

(х-х) 2 п

Для первой базы, исходя из формул (6.4.1):

Для второй базы

Для третьей базы

Коэффициент вариации для первой базы наименьший, что говорит о целесообразности заключить договор поставки продукции с этой базой.

Рассмотренные примеры показывают, что риск имеет математически выраженную вероятность наступления потери, которая опирается на статистические данные и может быть рассчитана с достаточно высокой степенью точности. При выборе наиболее приемлемого решения было использовано правило оптимальной вероятности результата, которое состоит в том, что из возможных решений выбирается то, при котором вероятность результата является приемлемой для предпринимателя.

На практике применение правила оптимальной вероятности результата обычно сочетается с правилом оптимальной колеблемости результата.

Как известно, колеблемость показателей выражается их дисперсией, средним квадратическим отклонением и коэффициентом вариации. Сущность правила оптимальной колеблемости результата заключается в том, что из возможных решений выбирается то, при котором вероятности выигрыша и проигрыша для одного и того же рискового вложения капитала имеют небольшой разрыв, т.е. наименьшую величину дисперсии, среднего квадратического отклонения вариации. В рассматриваемых задачах выбор оптимальных решений был сделан с использованием этих двух правил.