Системный анализ. Основные принципы системного анализа в SEBoK

Методы системного анализа

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

· абстрагирование и конкретизация

· анализ и синтез, индукция и дедукция

· формализация и конкретизация

· композиция и декомпозиция

· линеаризация и выделение нелинейных составляющих

· структурирование и реструктурирование

· макетирование

· реинжиниринг

· алгоритмизация

· моделирование и эксперимент

· программное управление и регулирование

· распознавание и идентификация

· кластеризация и классификация

· экспертное оценивание и тестирование

· верификация

и другие методы и процедуры.

Следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

– проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину

влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

– определение реальных ресурсов такого взаимодействия;

– рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений – таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтактики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей , описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов – аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков – выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании как существа стоящих задач, так и средств их решения. Исследования в этой области включают:

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой

информации как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования.



АНАЛИТИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ МЕТОДЫ. Эти группы методов получили наибольшее распространение в практике проектирования и управления. Правда, для представления промежуточных и окончательных результатов моделирования широко используются графические представления (графики, диаграммы и т.п.). Однако последние являются вспомогательными; основу же модели, доказательства её адекватности составляют те или иные направления аналитических и статистических представлений. Поэтому, несмотря на то что по основным направлениям этих двух классов методов в вузах читаются самостоятельные курсы лекций, мы всё же кратко охарактеризуем их особенности, достоинства и недостатки с точки зрения возможности использования при моделировании систем.

Аналитическими в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой. Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т.д.).

Аналитические представления имеют многовековую историю развития, и для них характерно не только стремление к строгости терминологии, но и к закреплению за некоторыми специальными величинами определённых букв (например, удвоенное отношение площади круга к площади вписанного в него квадрата p » 3,14; основание натурального логарифма – е » 2,7 и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности – от аппарата классического математического анализа (методов исследования функций, их вида, способов представления, поиска экстремумов функций и т.п.) до таких новых разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и т.п.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры и т.п.).

Эти теоретические направления стали основой многих прикладных, в том числе теории автоматического управления, теории оптимальных решений и т.д.

При моделировании систем применяется широкий спектр символических представлений, использующих «язык» классической математики. Однако далеко не всегда эти символические представления адекватно отражают реальные сложные процессы, и их в этих случаях, вообще говоря, нельзя считать строгими математическими моделями.

Большинство из направлений математики не содержат средств постановки задачи и доказательства адекватности модели. Последняя доказывается экспериментом, который по мере усложнения проблем становится также всё более сложным, дорогостоящим, не всегда бесспорен и реализуем.

В то же время в состав этого класса методов входит относительно новое направление математики математическое программирование, которое содержит средства постановки задачи и расширяет возможности доказательства адекватности моделей.

Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Статистические отображения системы в общем случае (по аналогии с аналитическими) можно представить как бы в виде «размытой» точки (размытой области) в n-мерном пространстве, в которую переводит систему (её учитываемые в модели свойства) оператор Ф. «Размытую» точку следует понимать как некоторую область, характеризующую движение системы (её поведение); при этом границы области заданы с некоторой вероятностью p («размыты») и движение точки описывается некоторой случайной функцией.

Закрепляя все параметры этой области, кроме одного, можно получить срез по линии а – b, смысл которого – воздействие данного параметра на поведение системы, что можно описать статистическим распределением по этому параметру. Аналогично можно получить двумерную, трёхмерную и т.д. картины статистического распределения. Статистические закономерности можно представить в виде дискретных случайных величин и их вероятностей, или в виде непрерывных зависимостей распределения событий, процессов.

Для дискретных событий соотношение между возможными значениями случайной величины xi и их вероятностями pi, называют законом распределения.

Метод "мозговой атаки"

Группа исследователей (экспертов) разрабатывает способы решения поставленной задачи, при этом любой способ (любая мысль, высказанная вслух) включается в число рассматриваемых, чем больше идей - тем лучше. На предварительном этапе качество предложенных способов не учитывается, то есть предметом поиска является создание возможно большего количества вариантов решения задачи. Но для достижения успеха должны соблюдаться следующие условия:

· наличие вдохновителя идей;

· группа экспертов не превышает 5-6 человек;

· потенциал исследователей соизмерим;

· обстановка спокойная;

· соблюдены равные права, может быть предложено любое решение, критика идей не допускается;

· продолжительность работы не более 1 часа.

После того, как прекращается "поток идей", эксперты осуществляют критический отбор предложений, учитывая ограничения организационного и экономического характера. Отбор лучшей идеи может осуществляться по нескольким критериям.

Данный метод наиболее продуктивен на этапе разработки решения по реализации поставленной цели, при раскрытии механизма функционирования системы, при выборе критерия решения проблемы.

Метод "концентрации внимания на целях поставленной проблемы"

Этот метод состоит в том, что отбирается один из объектов (элементов, понятий), ассоциируемых с решаемой проблемой. При этом известно, что принятый к рассмотрению объект связан непосредственно с конечными целями этой проблемы. Затем исследуется связь между этим объектом и каким-либо другим, выбранным наугад. Далее отбирается третий элемент, точно также наугад, и исследуется его связь с первыми двумя и так далее. Таким образом создается некая цепь связанных между собой объектов, элементов или понятий. Если цепь обрывается, то процесс возобновляется, создается вторая цепочка и так далее. Таким образом происходит исследование системы.

Метод "входы-выходы системы"

Исследуемая система рассматривается обязательно совместно с окружающей средой. При этом особое внимание обращается на ограничения, которые накладывает внешняя среда на систему, а также ограничения, свойственные самой системе.

На первом этапе изучения системы рассматриваются возможные выходы системы и оцениваются результаты ее функционирования по изменениям окружающей среды. Затем исследуются возможные входы системы и их параметры, позволяющие системе функционировать в рамках принятых ограничений. И, в конце концов, на третьем этапе выбирают приемлемые входы, не нарушающие ограничения системы и не приводящие ее в рассогласование с целями окружающей среды.

Данный способ наиболее эффективен на этапах познания механизма функционирования системы и принятия решений.

Метод сценариев

Особенность метода состоит в том, что группа высококвалифицированных специалистов в описательной форме представляет возможный ход событий в той или иной системе - начиная от сложившейся ситуации и заканчивая некоторой результирующей ситуацией. При этом соблюдаются искусственно воздвигаемые, но возникающие в реальной жизни ограничения на вход и выход системы (по сырью, энергетическим ресурсам, финансам и так далее).

Основная идея данного метода - выявление связей различных элементов системы, которые проявляются при том или ином событии или ограничении. Результатом такого исследования является совокупность сценариев - возможных направлений решения проблемы, из которых путем сопоставления по какому-либо критерию можно было бы выбрать наиболее приемлемые.

Морфологический метод

Данный метод предусматривает поиск всех возможных решений проблемы путем исчерпывающей переписи этих решений. Например, Ф.Р.Матвеев выделяет шесть этапов претворения в жизнь этого метода:

· формулировка и определение ограничений проблемы;

· поиск возможных параметров решений и возможных вариаций этих параметров;

· нахождение всех возможных комбинаций этих параметров в получаемых решениях;

· сравнение решений с точки зрения преследуемых целей;

· выбор решений;

· углубленное изучение отобранных решений.

Методы моделирования

Модель представляет собой некоторую систему, созданную с целью представления в упрощенной и понятной форме сложной реальности, другими словами - модель представляет собой имитацию этой реальности.

Проблемы, решаемые при помощи моделей, многочисленны и разнообразны. Важнейшие из них:

· с помощью моделей исследователи пытаются лучше понять протекание сложного процесса;

· с помощью моделей осуществляют экспериментирование в том случае, когда это невозможно на реальном объекте;

· с помощью моделей оценивают возможность осуществления различных альтернативных решений.

Кроме того модели обладают такими ценными свойствами как:

· воспроизводимостью независимыми экспериментаторами;

· изменчивостью и возможностью совершенствования путем введения в модель новых данных или модификаций связей внутри модели.

Среди основных типов моделей следует отметить символические и математические модели.

Символические модели - схемы, диаграммы, графики, блок-схемы и так далее.

Математические модели - абстрактные построения, которые в математической форме описывают связи, отношения между элементами системы.

При построении моделей необходимо соблюдать следующие условия:

· иметь достаточно большой объем информации о поведении системы;

· стилизация механизмов функционирования системы должна происходить в таких пределах, чтобы имелась возможность достаточно точно отразить число и природу отношений и связей существующих в системе;

· использование методов автоматической обработки информации, особенно когда количество данных велико или природа взаимоотношений между элементами системы весьма сложна.

Вместе с тем математические модели имеют некоторые недостатки:

· стремление отразить изучаемый процесс в форме условий приводит к модели, которая может быть понятна только ее разработчику;

· с другой стороны, упрощение ведет к ограничению числа факторов, включенных в модель; следовательно, появляется неточность в отражении действительности;

· автор, создав модель, "забывает", что не учитывает действие многочисленных, может быть малозначительных факторов. Но совместное воздействие этих факторов на систему бывает таково, что конечные результаты не могут быть достигнуты на данной модели.

С целью нивелирования указанных недостатков модель необходимо проверить:

· насколько она правдоподобно и удовлетворительно отражает реальный процесс;

· вызывает ли изменение параметров соответствующее изменение результатов.

Сложные системы, в силу наличия множества дискретно функционирующих подсистем, как правило не могут быть адекватно описаны с помощью только математических моделей, поэтому широкое распространение получило имитационное моделирование. Имитационные модели получили большое распространение по двум причинам: во-первых, данные модели позволяют использовать всю располагаемую информацию (графическую, словесную, математические модели…) и, во-вторых, потому, что эти модели не накладывают жестких ограничений на используемые исходные данные. Таким образом имитационные модели позволяют творчески использовать всю имеющеюся информацию об объекте исследования.

Лекция 1: Системный анализ как методология решения проблем

Необходимо уметь мыслить абстрактно, чтобы по-новому воспринимать окружающий нас мир.

Р.Фейнман

Одним из направлений перестройки в высшем образовании является преодоление недостатков узкой специализации, усиление междисциплинарных связей, развитие диалектического видения мира, системного мышления. В учебный план уже многих вузов введены общие и специальные курсы, реализующие эту тенденцию: для инженерных специальностей — «методы проектирования», «системотехника»; для военных и экономических специальностей — «иcследование операций»; в административном и политическом управлении — «политология», «футурология»; в прикладных научных исследованиях — «имитационное моделирование», «методология эксперимента» и т.д. К числу таких дисциплин принадлежит и курс системного анализа — типично меж- и наддисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем.

1.1 Системный анализ в структуре современных системных исследований

В настоящее время в развитии наук наблюдаются 2 противоположные тенденции:

  1. Дифференциации, когда при увеличении знаний и появлении новых проблем из более общих наук выделяются частные науки.
  2. 2. Интеграция, когда более общие науки возникают в результате обобщения и развития тех или иных разделов смежных наук и их методов.

В основе процессов дифференциации и интеграции лежат 2 фундаментальных принципа материалистической диалектики:

  1. принцип качественного своеобразия различных форм движения материи, опр. необходимость изучать отдельные аспекты материального мира;
  2. принцип материального единства мира, опр. необходимость получать целостное представление о каких-либо объектах материального мира.

В результате проявления интегративной тенденции появилась новая область научной деятельности: системные исследования, которые направлены на решение комплексных крупномасштабных проблем большой сложности.

В рамках системных исследований развиваются такие интеграционные науки, как: кибернетика, исследование операций, системотехника, системный анализ, искуственный интеллект и другие. Т.е. речь идет о создании ЭВМ 5 поколения (чтобы убрать всех посредников между ЭВМ и машиной. Пользователь неквалифицированный.), используется интеллектуальный интерфейс.

Системный анализ разрабатывает системную методологию решения сложных прикладных проблем, опираясь на принципы системного подхода и общей теории систем, развития и методологически обобщая концептуальный (идейный) и математический аппарат кибернетики, исследования операций и системотехники.

Системный анализ представляет собой новое научное направление интеграционного типа, которое разрабатывает системную методологию принятия решений и занимает определенное место в структуре современных системных исследований.

Рис.1.1 — Системный анализ

  1. системные исследования
  2. системный подход
  3. конкретные системные концепции
  4. общая теория систем (метатеория по отношению к конкретным системам)
  5. диалектический материализм (философские проблемы системных исследований)
  6. научные системные теории и модели (учение о биосфере земли; теория вероятностей; кибернетика и др.)
  7. технические системные теории и разработки — исследование операций; системотехника, системный анализ и др.
  8. частные теории системы.

1.2 Классификация проблем по степени их структуризации

Согласно классификации, предложенной Саймоном и Ньюэллом, все множество проблем в зависимости от глубины их познания подразделяется на 3 класса:

  1. хорошо структурированные или количественно выраженные проблемы, которые поддаются математической формализации и решаются с использованием формальных методов;
  2. неструктуризованные или качественно выраженные проблемы, которые описываются лишь на содержательном уровне и решаются с использованием неформальных процедур;
  3. слабоструктуризованные (смешанные проблемы), которые содержат количественные и качественные проблемы, причем качественные, малоизвестные и неопределенные стороны проблем имеют тенденцию доменирования.

Эти проблемы решаются на основе комплексного использования формальных методов и неформальных процедур. За основу классификации взята степень структуризации проблем, причем структура всей проблемы определяется 5-ю логическими элементами:

  1. цель или ряд целей;
  2. альтернативы достижения целей;
  3. ресурсы, расходуемые на реализацию альтернатив;
  4. модель или ряд моделей;
  5. 5.критерий выбора предпочтительной альтернативы.

Степень структуризации проблемы определяется тем, на сколько хорошо выделены и осознаны указанные элементы проблем.

Характерно, что одна и та же проблема может занимать различное место в таблице классификации. В процессе все более глубокого изучения, осмысления и анализа проблема может превратиться из неструктуризованной в слабоструктуризованную, а затем из слабоструктуризованной в структуризованную. При этом выбор метода решения проблемы определяется ее местом в таблице классификаций.

Рис.1.2 — Таблица классификаций

  1. выявление проблемы;
  2. постановка проблемы;
  3. решение проблемы;
  4. неструктуризованная проблема (может решаться с помощью эвристических методов);
  5. методы экспертных оценок;
  6. слабо структуризованная проблема;
  7. методы системного анализа;
  8. хорошо структуризованная проблема;
  9. методы исследования операций;
  10. принятие решения;
  11. реализация решения;
  12. оценка решения.

1.3 Принципы решения хорошо структуризованных проблем

Для решения проблем этого класса широко используются математические методы И.О. В операционном исследовании можно выделить основные этапы:

  1. Определение конкурирующих стратегий достижения цели.
  2. Построение математической модели операции.
  3. Оценка эффективностей конкурирующих стратегий.
  4. Выбор оптимальной стратегии достижения целей.

Математическая модель операции представляет собой функционал:

E = f(x∈x → , {α}, {β}) ⇒ extz

  • Е — критерий эффективности операций;
  • x — стратегия оперирующей стороны;
  • α — множество условий проведения операций;
  • β — множество условий внешней среды.

Модель позволяет оценить эффективность конкурирующих стратегий и выбрать из их числа оптимальную стратегию.

  1. постоянство проблемы
  2. ограничения
  3. критерий эффективности операций
  4. математическая модель операции
  5. параметры модели, но часть параметров, как правило, не известна, поэтому (6)
  6. прогнозирование информации (т.е. нужно предугадать ряд параметров)
  7. конкурирующие стратегии
  8. анализ и стратегии
  9. оптимальная стратегия
  10. утвержденная стратегия (более простая, но которая удовлетворяет еще ряду критериев)
  11. реализация решения
  12. корректировка модели

Критерий эффективности операции должен удовлетворять ряду требований:

  1. Представительность, т.е. критерий должен отражать основную, а не второстепенную цель операции.
  2. Критичность — т.е. критерий должен изменяться при изменении параметров операций.
  3. Единственность, так как только в этом случае возможно найти строгое математическое решение задачи оптимизации.
  4. Учет стохастичности, которая связана обычно со случайным характером некоторых параметров операций.
  5. Учет неопределенностей, которая связана с отсутствием какой-либо информации о некоторых параметров операций.
  6. Учет противодействия, которое вызывает часто сознательный противник, управляющий полными параметрами операций.
  7. Простая, т.к. простой критерий позволяет упростить математические выкладки при поиске opt. решения.

Приведем схему, которая иллюстрирует основные требования к критерию эффективности исследования операций.

Рис. 1.4 — Схема, которая иллюстрирует требования к критерию эффективности исследования операций

  1. постановка проблемы (вытекают 2 и 4 (ограничения));
  2. критерий эффективности;
  3. задачи верхнего уровня
  4. ограничения (мы организуем вложенность моделей);
  5. связь с моделями верхнего уровня;
  6. представительность;
  7. критичность;
  8. единственность;
  9. учет стохастичности;
  10. учет неопределенности;
  11. учет противодействия (теория игр);
  12. простота;
  13. обязательные ограничения;
  14. дополнительные ограничения;
  15. искусственные ограничения;
  16. выбор главного критерия;
  17. перевод ограничений;
  18. построение обобщенного критерия;
  19. оценка математического отид-я;
  20. построение доверительных интервалов:
  21. анализ возможных вариантов (есть система; мы точно не знаем, какова интенсивность вх. потока; мы можем только с определенной вероятностью предположить ту или иную интенсивность; затем взвешиваем выходящие варианты).

Единственность — чтобы можно было решить задачу строго математическими методами.

Пункты 16, 17 и 18 — это способы, которые позволяют избавиться от многокритериальности.

Учет стохастичности — большая часть параметров имеет стохастическое значение. В ряде случаев стох. мы задаем в виде ф-и распределения, следовательно, сам критерий необходимо усреднить, т.е. применять математические ожидания, следовательно, п.19, 20, 21.

1.4 Принципы решения неструктуризованных проблем

Для решения проблем этого класса целесообразно использовать методы экспертных оценок.

Методы экспертных оценок применяются в тех случаях, когда математическая формализация проблем либо невозможна в силу их новизны и сложности, либо требует больших затрат времени и средств. Общим для всех методов экспертных оценок является обращение к опыту, указанию и интуиции специалистов, выполняющих функции экспертов. Давая ответы на поставленный вопрос, эксперты являются как бы датчиками информации, которая анализируется и обобщается. Можно утверждать, следовательно: если в диапазоне ответов имеется истинный ответ, то совокупность разразненных мнений может быть эффективно синтезирована в некоторое обобщенное мнение, близкое к реальности. Любой метод экспертных оценок представляет собой совокупность процедур, направленных на получение информации эвристического происхождения и обработку этой информации с помощью математико-статистических методов.

Процесс подготовки и проведения экспертизы включает следующие этапы:

  1. определение цепей экспертизы;
  2. формирование группы специалистов-аналитиков;
  3. формирование группы экспертов;
  4. разработка сценария и процедур экспертизы;
  5. сбор и анализ экспертной информации;
  6. обработка экспертной информации;
  7. анализ результатов экспертизы и принятия решений.

При формировании группы экспертов необходимо учитывать их индивидуальные х-ки, которые влияют на результаты экспертизы:

  • компетентность (уровень профессиональной подготовки)
  • креативность (творческие способности человека)
  • конструктивность мышления (не «летать» в облаках)
  • конформизм (подверженность влиянию авторитета)
  • отношение к экспертизе
  • коллективизм и самокритичность

Методы экспертных оценок применяются достаточно успешно в следующих ситуациях:

  • выбор целей и тематики научных исследований
  • выбор вариантов сложных технических и социально-экономических проектов и программ
  • построение и анализ моделей сложных объектов
  • построение критериев в задачах векторной оптимизации
  • классификация однородных объектов по степени выраженности какого-либо свойства
  • оценка качества продукции и новой техники
  • принятие решений в задачах управления производством
  • перспективное и текущее планирование производства, НИР и ОКР
  • научно-техническое и экономическое прогнозирование и т.д. и т.п.

1.5 Принципы решения слабоструктуризованных проблем

Для решения проблем этого класса целесообразно использовать методы системного анализа. Проблемы, решаемые с помощью системного анализа, имеют ряд характерных особенностей:

  1. принимаемое решение относится к будущему (завод, которого пока нет)
  2. имеется широкий диапазон альтернатив
  3. решения зависят от текущей неполноты технологических достижений
  4. принимаемые решения требуют больших вложений ресурсов и содержат элементы риска
  5. не полностью определены требования, относящиеся к стоимости и времени решения проблемы
  6. проблема внутренняя сложна в следствие того, что для ее решения необходимо комбинирование различных ресурсов.

Основные концепции системного анализа состоят в следующем:

  • процесс решения проблемы должен начинаться с выявления и обоснования конечной цели, которой хотят достичь в той или иной области и уже на этом основании определяются промежуточные цели и задачи
  • к любой проблеме необходимо подходить, как к сложной системе, выявляя при этом все возможные подроблемы и взаимосвязи, а также последствия тех или иных решений
  • в процессе решения проблемы осуществляется формирование множества альтернатив достижения цели; оценка этих альтернатив с помощью соответствующих критериев и выбор предпочтительной альтернативы
  • организационная структура механизма решения проблемы должна подчиняться цели или ряду целей, а не наоборот.

Системный анализ представляет собой многошаговый итеративный процесс, причем исходным моментов этого процесса является формулировка проблемы в некоторой первоначальной форме. При формулировке проблемы необходимо учитывать 2 противоречивых требования:

  1. проблема должна формулироваться достаточно широко, чтобы ничего существенного не упустить;
  2. проблема должна формироваться т.о., чтобы она была обозримой и могла быть структуризована. В ходе системного анализа степень структуризации проблемы повышается, т.е. проблема формулируется все более четко и исчерпывающе.

Рис. 1.5 — Один шаг системного анализа

  1. постановка проблемы
  2. обоснование цели
  3. формирование альтернатив
  4. исследование ресурса
  5. построение модели
  6. оценка альтернатив
  7. принятие решения (выбор одного решения)
  8. анализ чувствительности
  9. проверка исходных данных
  10. уточнение конечной цели
  11. поиск новых альтернатив
  12. анализ ресурсов и критериев

1.6 Основные этапы и методы СА

СА предусматривает: разработку системного метода решения проблемы, т.е. логически и процедурно организованную последовательность операций, направленных на выбор предпочтительной альтернативы решения. СА реализуется практически в несколько этапов, однако в отношении их числа и содержании пока еще нет единства, т.к. Э большое разнообразие прикладных проблем.

Приведем таблицу, которая иллюстрирует основные закономерности СА з-х различных научных школ.

Основные этапы системного анализа
По Ф. Хансману
ФРГ, 1978 год
По Д. Джеферсу
США, 1981 год
По В. В. Дружинину
СССР, 1988 год
  1. Общая ориентация в проблеме (эскизная постановка проблемы)
  2. Выбор соответствующих критериев
  3. Формирование альтернативных решений
  4. Выделение существенных факторов внешней среды
  5. Построение модели и ее проверка
  6. Оценка и прогноз параметров модели
  7. Получение информации на основе модели
  8. Подготовка к выбору решения
  9. Реализация и контроль
  1. Выбор проблемы
  2. Постановка задачи и ограничение степени ее сложности
  3. Установление иерархии, целей и задач
  4. Выбор путей решения задачи
  5. Моделирование
  6. Оценка возможных стратегий
  7. Внедрение результатов
  1. Выделение проблемы
  2. Описание
  3. Установление критериев
  4. Идеализация (предельное упрощение, попытка построения модели)
  5. Декомпозиция (разбивка по частям, нахождения решений по частям)
  6. Композиция («склеивание» частей вместе)
  7. Принятие наилучшего решения

В научный инструментарий СА входят следующие методы:

  • метод сценариев (пытаются дать описание системы)
  • метод дерева целей (есть конечная цель, она разбивается на подцели, подцели на проблемы и т.д., т.е. декомпозиция до задач, которые мы можем решить)
  • метод морфологического анализа (для изобретений)
  • методы экспертных оценок
  • вероятностно-статистические методы (теория МО, игр и т.д.)
  • кибернетические методы (объект в виде черного ящика)
  • методы ИО (скалярная opt)
  • методы векторной оптимизации
  • методы имитационного моделирования (например, GPSS)
  • сетевые методы
  • матричные методы
  • методы экономического анализа и др.

В процессе СА на разных его уровнях применяются различные методы, в которых эвристика сочетается с формализмом. СА выполняет роль методологического каркаса, объединяющего все необходимые методы, исследовательские приемы, мероприятия и ресурсы для решения проблем.

1.7 Система предпочтений ЛПР и системный подход к процессу принятия решений.

Процесс принятия решения состоит в выборе рационального решения из некоторого множества альтернативных решений с учетом системы предпочтений ЛПР. Как и всякий процесс, в котором участвует человек, имеет 2 стороны: объективную и субъективную.

Объективная сторона — это то, что реально вне сознания человека, а субъективная — это то, что находит отражение в сознании человека, т.е. объективное в сознании человека. Объективное отражается в сознании человека не всегда достаточно адекватно, однако от сюда не следует, что не может быть правильных решений. Практически верным считается такое решение, которое в главных чертах правильно отражает обстановку и соответствует поставленной задаче.

Система предпочтений ЛПР определяется многими факторами:

  • понимание проблемы и перспектив развития;
  • текущая информация о состоянии некоторой операции и внешние условия ее протекания;
  • директивы от вышестоящих инстанций и различного рода ограничений;
  • юридические, экономические, социальные, психологические факторы, традиции и др.

Рис. 1.6 — Система предпочтений ЛПР

  1. директивы от вышестоящих инстанций о целях и задачах операций (тех. процессы, прогнозирование)
  2. ограничения по ресурсам, степени самостоятельности и др.
  3. переработка информации
  4. операция
  5. внешние условия (внешняя среда), а) детерминирование; б) стохастические (ЭВМ отказывает через случайный интервал t); в) организованное противодействие
  6. информация о внешних условиях
  7. рациональное решение
  8. синтез управления (зависит от системы)

Находясь в этих тисках, ЛПР должен нормировать множество потенциально возможных решений из них. Из них отобрать 4-5 лучших и из них — 1 решение.

Системный подход к процессу принятия решений состоит в реализации 3-х взаимосвязанных процедур:

  1. Выделяется множество потенциально возможных решений.
  2. Из их числа отбирается множество конкурирующих решений.
  3. Выбирается рациональное решение с учетом системы предпочтений ЛПР.

Рис. 1.7 — Системный подход к процессу принятия решений

  1. возможные решения
  2. конкурирующие решения
  3. рациональное решение
  4. цель и задачи операции
  5. информация о состоянии операции
  6. информация о внешних условиях
    1. стохастические
    2. организованное противодействие
  7. ограничение по ресурсам
  8. ограничение по степени самостоятельности
  9. дополнительные ограничения и условия
    1. юридические факторы
    2. экономические факторы
    3. социологические факторы
    4. психологические факторы
    5. традиции и другое
  10. критерий эффективности

Современный системный анализ является прикладной наукой, нацеленной на выяснение причин реальных сложностей, возникших перед «обладателем проблемы» и на выработку вариантов их устранения. В наиболее развитой форме системный анализ включает и непосредственное, практическое улучшающее вмешательство в проблемную ситуацию.

Системность не должна казаться неким нововведением, последним достижением науки. Системность есть всеобщее свойство материи, форма ее существования, а значит, и неотъемлемое свойство человеческой практики, включая мышление. Всякая деятельность может быть менее или более системной. Появление проблемы — признак недостаточной системности; решение проблемы — результат повышения системности. Теоретическая мысль на разных уровнях абстракции отражала системность мира вообще и системность человеческого познания и практики. На философском уровне — это диалектический материализм, на общенаучном — системология и общая теория систем, теория организации; на естественно-научном — кибернетика. С развитием вычислительной техники возникли информатика и искусственный интеллект.

В начале 80-х годов стало очевидным, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение». Системность становится не только теоретической категорией, но и осознанным аспектом практической деятельности. Поскольку большие и сложные системы по необходимости стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования систем и методов воздействия на них. Должна была возникнуть некая прикладная наука, являющаяся «мостом» между абстрактными теориями системности и живой системной практикой. Она и возникла — сначала, как мы отмечали, в различных областях и под разными названиями, а в последние годы сформировалась в науку, которая получила название «системный анализ».

Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к использованию всех современных средств научных исследований — математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

В ходе исследования реальной системы обычно приходится сталкиваться с самыми разнообразными проблемами; быть профессионалом в каждой из них невозможно одному человеку. Выход видится в том, чтобы тот, кто берется осуществлять системный анализ, имел образование и опыт, необходимые для опознания и классификации конкретных проблем, для определения того, к каким специалистам следует обратиться для продолжения анализа. Это предъявляет особые требования к специалистам-системщикам: они должны обладать широкой эрудицией, раскованностью мышления, умением привлекать людей к работе, организовывать коллективную деятельность.

Прослушав настоящий курс лекций, или прочитав несколько книг по данной теме нельзя стать специалистом по системному анализу. Как выразился У.Шекспир: «Если бы делать было бы столь легко, как знать, что надо делать — часовни были бы соборами, хижины — дворцами». Профессионализм приобретается в практике.

Рассмотрим любопытный прогноз наиболее быстро расширяющихся сфер занятости в США: Динамика в % 1990-2000гг.

  • средний медицинский персонал — 70%
  • специалисты по радиационным технологиям — 66%
  • агенты бюро путешествий — 54%
  • аналитики компьютерных систем — 53%
  • программисты — 48%
  • инженеры-электронщики — 40%

Развитие системных представлений

Что означает само слово «система» или «большая система», что означает «действовать системно»? Ответы на эти вопросы мы будем получать постепенно, повышая уровень системности наших знаний, в чем и состоит цель данного курса лекций. Пока же нам достаточно тех ассоциаций, которые возникают при употреблении в обычной речи слова «система» в сочетании со словами «общественно-политическая», «Солнечная», «нервная», «отопительная» или «уравнений», «показателей», «взглядов и убеждений». Впоследствии мы будем подробно и всесторонне рассматривать признаки системности, а сейчас отметим только самые очевидные и обязательные из них:

  • структурированность системы;
  • взаимосвязанность составляющих ее частей;
  • подчиненность организации всей системы определенной цели.

Системность практической деятельности

По отношению, например, к человеческой деятельности указанные признаки очевидны, поскольку каждый из нас легко обнаружит их в своей собственной практической деятельности. Всякое наше осознанное действие преследует вполне определенную цель; во всяком действии легко увидеть его составные части, более мелкие действия. При этом составные части выполняются не в произвольном порядке, а в определенной их последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Системность и алгоритмичность

Другое название для такого построения деятельности — алгоритмичность. Понятие алгоритма возникло вначале в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами. В последние годы начинает осознаваться алгоритмичность любой деятельности. Уже говорят не только об алгоритмах принятия управленческих решений, об алгоритмах обучения, алгоритмах игры в шахматы, но и об алгоритмах изобретательства, алгоритмах композиции музыки. Подчеркнем, что при этом делается отход от математического понимания алгоритма: сохраняя логическую последовательность действий, допускается, что в алгоритме могут присутствовать неформализованные действия. Таким образом, явная алгоритмизация любой практической деятельности является важным свойством ее развития.

Системность познавательной деятельности

Одна из особенностей познания — наличие аналитического и синтетического образов мышления. Суть анализа состоит в разделении целого на части, в представлении сложного в виде совокупности более простых компонент. Но чтобы познать целое, сложное, необходим и обратный процесс — синтез. Это относится не только к индивидуальному мышлению, но и к общечеловеческому знанию. Скажем так, расчлененность мышления на анализ и синтез и взаимосвязанность этих частей являются важнейшим признаком системности познания.

Системность как всеобщее свойство материи

Здесь нам важно выделить ту мысль, что системность — это не только свойство человеческой практики, включающей и внешнюю активную деятельность, и мышление, но свойство всей материи. Системность нашего мышления вытекает из системности мира. Современные научные данные и современные системные представления позволяют говорить о мире как о бесконечной иерархической системе систем, находящихся в развитии и на разных стадиях развития, на разных уровнях системной иерархии.

Подведем итог

В заключении, в качестве информации к размышлению, приведем схему изображающую связь вопросов, рассмотренных выше.

Рис 1.8 — Связь вопросов рассмотренных выше

  • Перевод

Системный анализ обеспечивает строгий подход к технике принятия решений. Он используется для исследования альтернатив и включает моделирование и имитацию, анализ затрат, анализ технических рисков и анализ эффективности.

В отличие от SWEBoK , SEBoK распространен в России намного меньше. По крайней мере при подготовке учебного курса для магистратуры, найти хоть каких-то переводов его статей мне не удалось. А тем не менее, книга структурирует очень полезные и пока что разрозненные знания в области разработки больших систем и, в том числе, системного анализа.

Так как мой курс касался именно системного анализа, под катом будет перевод этой главы SEBoK… Но это всего несколько глав одного из 7 разделов книги.

P.S. Буду благодарен за комментарии и Ваше мнение об этой статье (качестве, необходимости) и об интересе к системному анализу и системной инженерии.

Основные принципы системного анализа

Одна из основных задач системной инженерии является оценка результатов, полученных в результате ее процессов. Сравнение, проведение оценки – это центральный объект системного анализа, обеспечивающего необходимые техники и средства для:
  • Определения критериев сравнения на основе системных требований;
  • Оценки предполагаемых свойств каждого альтернативного решений в сравнении с выбранными критериями;
  • Сводной оценки каждого варианта и ее объяснения;
  • Выбора наиболее подходящего решения.

Процесс анализа и выбора между альтернативными решениями выявленной проблемы/возможности описывается во 2 разделе SEBoK (глава Системный подход в проектировании систем). Определим основные принципы системного анализа:

  • Системный анализ – итеративный процесс, состоящий из оценки альтернативных решений, полученных в процессе синтеза системы.
  • Системный анализ основывается на критериях оценки, основанных на описании проблемы или возможности системы;
    • Критерии основываются на базе идеального описания системы;
    • Критерии должны учитывать требуемое поведение и свойства системы в итоговом решении, во всех возможных более широких контекстах;
    • Критерии должны включать нефункциональные вопросы, например: безопасность и защищенность системы и т.д. (подробнее описывается в главе «Системная инженерия и специальное проектирование»).
    • «Идеальная» система может поддерживать «нестрогое» описание, из которого могут быть определены «нечеткие» критерии. Например, стейкхолдеры выступают за или против некоторых видов решений, соответствующие социальные, политические или культурные условности должны также учитываться и т.д.
  • Критерии сравнения должны включать, как минимум, ограничения по расходам и времени, приемлемые для стейхолдеров.
  • Системный анализ предоставляет отдельный механизм исследования компромиссов для анализа альтернативных решений
    • Исследование компромиссов – междисциплинарный подход для поиска наиболее сбалансированного решения среди множества предполагаемых жизнеспособных вариантов.
    • При исследовании рассматривается весь набор критериев оценки, с учетом их ограничений и взаимосвязей. Создается «система критериев оценки».
    • При сравнении альтернатив придется иметь дело одновременно с объективными и субъективными критериями. Необходимо особо внимательно относиться к определению влияния каждого критерия на общую оценку (чувствительность общей оценки).
Примечание: «Мягкое»/«нестрогое» и «строгое» описание системы отличается возможностью четко определить цели, задачи и миссию системы (для «мягких» систем это зачастую сделать крайне сложно).

Исследование компромиссов

Примечание: В нашей литературе чаще встречается термин «Анализ альтернатив» или «Оценка альтернатив»
В контексте описания системы, исследование компромиссов состоит из сравнения характеристик каждого элемента системы и каждого варианта архитектуры систем для определения решения, в целом наиболее подходящего по оцениваемым критериям. Анализ различных характеристик выполняется в процессах анализа затрат, анализа рисков, и анализа эффективности. С точки зрения системной инженерии эти три процесса будут рассматриваться более подробно.

Все методы анализа должны использовать общие правила:

  • Критерии оценки используются для классификации различных вариантов решения. Они могут быть относительные или абсолютные. Например, максимальная цена на единицу продукции – в рублях, снижение затрата - %, повышение эффекивности - %, снижение риска так же в %.
  • Определяются допустимые границы критериев оценки, которые применяется во время анализа (например, вид издержек, которые необходимо принять во внимание; приемлемые технические риски и т.д.);
  • Для сравнения количественных характеристик используются шкалы оценки. Их описание должно включать максимальный и минимальный предел, а также порядок изменения характеристики в этих пределах (линейная, логарифмическая и т.д.).
  • Оценочный балл присваивается каждому варианту решения по всем критериям. Цель исследования компромиссов – обеспечить количественное сравнение по трем направлениям (и их декомпозиции на отдельные критерии) для каждого варианта решения: затраты, риск и эффективность. Эта операция как правило сложна и требует создания моделей.
  • Оптимизация характеристик или свойств улучшает оценку наиболее интересных решений.
Процесс принятия решений – это не точная наука, поэтому исследование альтернатив имеет свои ограничения. Необходимо принимать во внимание следующие проблемы:
  • Субъективные критерии оценки – персональное мнение аналитика. Например, если компонент должен быть красивым, то что собой представляет критерий «красивый»?
  • Неопределенные данные. Например, инфляция должна быть учтена при расчете затрат на обслуживание для полного жизненного цикла системы. Как системный инженер может прогнозировать развитие инфляции в следующие пять лет?
  • Анализ чувствительности. Общая оценка, выставляемая каждому альтернативному решению, не абсолютна; поэтому рекомендуется проводить анализ чувствительности, который учитывает небольшие изменения «весов» каждого критерия оценки. Оценка считается надежной, если изменение «весов» не изменяет существенно саму оценку.

Тщательно проведенное исследование компромиссов определяет допустимые значения результатов.

Анализ эффективности

Анализ эффективности отталкивается от контекста использования системы или проблемы.

Эффективность решения определяется исходя из выполнения основных и дополнительных функций системы, которые выявляются исходя удовлетворения требований стейкхолдеров. Для продуктов, это будет набор общих нефункциональных качеств, например: безопасность, защищенность, надежность, ремонтопригодность, удобство использования и т.д. Эти критерии часто точно описаны в смежных технических дисциплинах и сферах. Для услуг или организаций, критерии могут быть больше связаны с определением потребностей пользователей или целей организации. Типичные характеристики таких систем включают устойчивость, гибкость, возможность развития и т.д.

В дополнение к оценке абсолютной эффективности решения, необходимо также учитывать ограничения по затратам и времени реализации. В целом, роль системного анализа сводится к выявлению решений, которые могут обеспечить эффективность в какой-то мере с учетом затрат и времени выделенных для каждой заданной итерации.

Если ни одно из решений не может предоставить уровень эффективности, оправдывающий предполагаемые инвестиции, тогда необходимо вернуться к первоначальному состоянию проблемы. Если хотя бы один из вариантов показывает достаточную эффективность, тогда может выполняться выбор.

Эффективность решения включает несколько существенных характеристик (но не ограничивается): производительность, удобство использования, надежность, производство, обслуживание и поддержку, и т.д. Анализ в каждом из этих направлений выделяет предложенные решения с точки зрения различных аспектов.

Важно установить классификацию важности аспектов для анализа эффективности, т.н. ключевые показатели производительности. Основная сложность анализа эффективности – правильно отсортировать и выбрать набор аспектов, в точки зрения которых оценивается эффективность. Например, если продукт выпускается для одноразового использования, ремонтопригодность не будет подходящим критерием.

Анализ затрат

Анализ затрат рассматривает затраты полного жизненного цикла. Базовый набор типовых расходов может изменяться для конкретного проекта и системы. В структуру затрат могут входить как трудовые затраты (на оплату труда), так и не трудовые.
Тип Описание и пример
Разработка Проектирование, разработка инструментов (оборудование и программное обеспечение), управление проектом, тестирование, макетирование и прототипирование, обучение и т.д.
Производство продукта или оказание услуги Сырье и поставки, запасные части и складской запас, необходимые для работы ресурсы (вода, электричество и т.д.), риски, эвакуация, переработка и хранение отходов или брака, административные расходы (на налоги, администрацию, документооборот, контроль качества, уборку, контроль и т.д.), упаковка и хранение, необходимая документация.
Продажи и постпродажное обслуживание Расходы на сеть продаж (филиалы, магазины, сервисные центры, дистрибьюторов, получение информации и т.д.), работу с жалобами и обеспечение гарантии и т.д.
Использование у клиентов Налоги, установка (у заказчика), необходимые для работы ресурсы (вода, топливо и т.д.), финансовые риски и т.д.
Поставки Транспортировка и доставка
Обслуживание Сервисные центры и выезды, профилактика, контроль, запасный части, затраты на гарантийное обслуживание и т.д.
Удаление Сворачивание, демонтаж, транспорт, уничтожение отходов и т.д.

Методы определения стоимости затрат описываются в разделе «Планирование» (раздел 3).

Анализ технических рисков

Риск – потенциальная неспособность к достижению целей в рамках определенных затрат, графика и технических ограничений. Состоит из двух частей:
  1. Вероятность реализации (вероятность того, что риск оправдается, и цели не будут достигнуты);
  2. Степень влияния или последствия реализации.
Каждый риск имеет вероятность больше 0 и меньше 1, степень влияния больше 0 и сроки в будущем. В случае, если вероятность равна 0 – риска нет, если равна 1 – это уже факт, а не риск; если степень влияния равна 0 - риска нет, т.к. нет никаких последствий его возникновения (можно игнорировать); если сроки не в будущем – значит это уже свершившийся факт.

Анализ рисков в любой сфере основан на трех факторах:

  1. Анализ наличия потенциальных угроз или нежелательных событий и вероятности их возникновения.
  2. Анализ последствий выявленных угроз и их классификация по шкале тяжести.
  3. Снижение вероятности угроз или уровня их воздействия до приемлемых значений.
Технические риски реализуются, когда система перестает удовлетворять требованиям к ней. Причины этого находятся либо в требованиях, либо в самом решении. Они выражаются в виде недостаточной эффективности и могут иметь несколько причин:
  • Неправильная оценка технологических возможностей;
  • Переоценка технической готовности элемента системы;
  • Аварии из-за износа или устаревания оборудования, комплектующих или ПО,
  • Зависимость от поставщика (несовместимые детали, задержка поставки и т.д.);
  • Человеческий фактор (недостаточное обучение, неправильные настройки, недостаточная обработка ошибок, выполнение несоответствующих процедур, злой умысел) и т.д.
Технические риски не должны смешиваться с проектными рисками, хотя и методы управления ими совпадают. Не смотря на то, что технические риски могут приводить к проектным рискам, они ориентированы на саму систему, а не на процесс ее разработки (подробнее описано в главе «Управление рисками» раздела 3).

Процессный подход

Цель и принципы подхода

Процесс системного анализа используется для:
  1. Обеспечения строгого подхода к принятию решений, разрешения конфликта требований, и оценке альтернативных физических решений (отдельных элементов и всей архитектуры);
  2. Определения уровня удовлетворения требований;
  3. Поддержки управления рисками;
  4. Подтверждения, что решения принимаются только после расчета затрат, сроков, производительности и влияния рисков на проектирование или перепроектирование системы.
Этот процесс был также назван процессом анализа решений (NASA, 2007) и использовался для оценки технических задач, альтернативных решений и их неопределенности для принятия решений. Подробнее в главе «Управление решениями» (раздел 3).
Системный анализ поддерживает другие процессы описания системы:
  • Процессы описания требований стейкхолдеров и описания требований системы используют системный анализ для решения конфликтов между требованиями; в частности связанными с затратами, техническими рисками и эффективностью. Системные требования, подверженные высоким рискам или требующие существенных изменений архитектуры – дополнительно обсуждаются.
  • Процессы разработки логической и физической архитектуры используют системный анализ для оценки характеристик или разработки свойств вариантов архитектуры, получения обоснования для выбора наиболее эффективного варианта с точки зрения затрат, технических рисков и эффективности.
Как и любой процесс описания системы, системный анализ – повторяющийся. Каждая операция выполняется несколько раз, каждый шаг улучшает точность анализа.

Задачи в рамках процесса

Основные виды деятельности и задачи в рамках этого процесса включают:
  • Планирование изучения альтернатив:
    • Определение количества альтернативных вариантов для анализа, используемых методов и процедур, ожидаемых результатов (примеры объектов для выбора: поведенческий сценарий, физическая архитектура, элемент системы и т.д.), и обоснование.
    • Создание графика анализа согласно наличию моделей, технических данных (системные требования, описание свойств системы), квалификации персонала и выбранных процедур.
  • Определение критериев выбора модели:
    • Выбор критериев оценки из нефункциональных требований (производительность, условия эксплуатации, ограничения и т.д.) и/или описания свойств.
    • Сортировка и упорядочивание критериев;
    • Определение шкалы сравнения для каждого оценочного критерия, и определение веса каждого критерия в соответствии с его уровнем важности относительно других критериев.
  • Определение вариантов решений, связанных с ними моделей и данных.
  • Оценка вариантов с использованием ранее определенных методов и процедур:
    • Выполнение анализа затрат, анализа технических рисков и анализа эффективности, размещая все альтернативные варианты на шкале для каждого критерия оценки.
    • Оценить все альтернативные варианты по общей шкале оценок.
  • Предоставление результатов инициировавшему процессу: критериев оценки, выбор оценок, шкалы сравнения, результаты оценки для всех вариантов, и возможные рекомендации с обоснованием.

Артефакты и терминология процесса

В рамках процесса создаются такие артефакты, как:
  • Модель критериев выбора (список, шкалы оценки, веса);
  • Отчеты по анализу затрат, рисков, эффективности;
  • Отчет с обоснованием выбора.

В процессе используются термины, перечисленные в таблице ниже.

Термин Описание
Критерий оценки В контексте системного анализа, критерий оценки – характеристика, используемая для сравнения элементов системы, физической архитектуры, функциональных сценариев и других элементов, которые могут сравниваться.
Включает: идентификатор, название, описание, вес.
Оценочный выбор Управление элементами системы, на основе оценочного балла, который объясняет выбор элементов системы, физической архитектуры или сценария использования.
Оценочный балл (оценка) Оценочный балл получают элементы системы, физической архитектуры, функциональных сценариев используя набор критериев оценки.
Включает: идентификатор, название, описание, значение.
Затраты Значение в выбранной валюте, связанное со значением элемента системы и т.д.
Включает: идентификатор, название, описание, сумма, тип затрат (разработка, производство, использование, обслуживание, утилизация), метод оценки, период действия.
Риск Событие, которое может произойти и повлиять на цели системы или ее отдельные характеристики (технические риски).
Включает: идентификатор, название, описание, статус.

Проверка правильности системного анализа

Для получения проверенных результатов, необходимо обеспечить выполнение следующих пунктов:
  • Соответствие моделей и данных в контексте использования системы;
  • Соответствие критериев оценки относительно контекста использования системы;
  • Воспроизводимость результатов моделирования и расчетов;
  • Достаточный уровень точности шкал сравнения;
  • Доверие к оценкам;
  • Достаточный уровень чувствительности полученных баллов относительно весов критериев оценки.

Принципы использования моделей

  • Использование общих моделей. Различные типы моделей могут быть использованы в контексте системного анализа.
    • Физические модели – масштабные модели, позволяющие экспериментировать с физическими явлениями. Специфичны для каждой дисциплины; например: макеты, испытательные стенды, прототипы, вибростолы, декомпрессионные камеры, воздушные тоннели и т.д.
    • Модели представлений в основном используются для моделирования поведения системы. Например, диаграммы состояний и т.д.
    • Аналитические модели используются для установления значения оценок. Используют уравнения или диаграммы для описания реальной работы системы. Они могут быть как очень простые (сложение элементов), так и невероятно сложные (вероятностное распределение с несколькими переменными).
  • Использование необходимых моделей. На каждом этапе проекта должны использоваться соответствующие модели:
    • В начале проекта используются простые инструменты, позволяющие получить грубые приближения без особых затрат и усилий. Такого приближения бывает достаточно, чтобы сразу определить нереальные варианты решений.
    • По мере продвижения проекта необходимо повышать точность данных для сравнения еще конкурирующих вариантов. Работа будет сложнее при высоком уровне инноваций в проекте.
    • Системный инженер сам по себе не может моделировать сложную систему, для этого ему помогает эксперты из соответствующих предметных областей.
  • Экспертиза предметными экспертами: когда значение критерия оценки не может быть установлено объективно и точно. Экспертиза проводится в 4 этапа:
    1. Выбор респондентов для получения квалифицированных мнений по рассматриваемому вопросу.
    2. Создание проекта анкеты. Анкеты с точными вопросами проще оценивать, но если она слишком закрыта – есть риск упустить существенные пункты.
    3. Проведение интервью со специалистами по анкете, включая проведение углубленного обсуждения проблемы для получения более точного мнения.
    4. Анализ полученных результатов с несколькими разными людьми, сравнивая их отзывы до тех пор, пока соглашение классификации критериев оценки или вариантов решения не будет достигнуто.

    Наиболее часто используемые аналитические модели в рамках системного анализа приведены в таблице.

    Тип модели Описание
    Детерминированные (определенные) модели Детерминированной называется модель, которая не зависит от теории вероятности.
    • К этой категории относятся модели, основанные на статистике. Принцип состоит в создании модели на основании значительного количества данных и результатов прежних проектов. Могут применяться только к тем компонентам системы, технология которых уже известна.
    • Модели «по аналогии» также используют предыдущие проекты. Изучаемый элемент сравнивается с уже существующим элементом, с известными характеристиками. Затем эти характеристики уточняются на основе опыта специалистов.
    • Кривые обучения позволяют предвидеть изменение характеристики или технологии. Один из примеров: «Каждый раз, когда число произведенных модулей удваивается, стоимость этого модуля уменьшается на определенную, постоянную, долю».
    Стохастические (вероятностные) модели Если в модели среди величин имеются случайные, т.е. определяемые лишь некоторыми вероятностными характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы.
    Теория вероятности позволяет классифицировать возможные решения как следствие множества событий. Эти модели применимы для ограниченного числа событий с простыми комбинациями возможных вариантов.
    Многокритериальные модели Если критериев больше 10, рекомендуется использовать многокритериальные модели. Они получаются в результате следующих действий:
    • Построить иерархию критериев;
    • Связать с каждым критерием каждой ветви дерева с его «весом» относительно критериев того же уровня.
    • Вычисляется вес для каждого «листа» критериев для каждой ветви умножением на все веса ветки.
    • Оценить каждый альтернативный вариант решения по листьям критериев, суммировать оценки и сравнить между собой.
    • С использованием компьютера можно провести анализ чувствительности для получения точного результата.
    Основные «подводные камни» и успешные практики системного анализа описаны в двух разделах ниже.

    Подводные камни

    Подводный камень Описание
    Аналитическое моделирование – не инструмент принятия решений Аналитическая модель предоставляет аналитический результат из анализированных данных. Ее следует рассматривать как помощь, но не как инструмент принятия решений.
    Модели и уровни декомпозиции системы Модель может быть хорошо адаптирована для энного уровня декомпозиции системы и несовместима с моделью более высокого уровня, которая использует данные дочерних уровней. Важно, чтобы системный инженер обеспечивал согласованность моделей на различных уровнях.
    Оптимизация – это не сумма оптимизированных элементов Общая оптимизация исследуемой системы – это не сумма оптимизации каждой ее части.

    Проверенные методики

    Методика Описание
    Оставаться в оперативном поле Модели никогда не смогут показать все поведение и реакцию системы: они работают в ограниченном пространстве с узким набором переменных. Используя модель, всегда необходимо убедиться, что входные данные и параметры являются частью операционного поля. Иначе есть высокий риск неправильных результатов.
    Развивайте модели Модели должны развиваться на протяжении проекта: путем изменения настроек параметров, вводя новые данные (изменение критериев оценки, выполняемых функций, требований и т.д.), и путем использования новых инструментов, когда предыдущие достигают предела своих возможностей.
    Используйте несколько типов моделей Рекомендуется одновременно использовать несколько различных типов моделей для сравнения результатов и учета других аспектов системы.
    Поддерживайте согласованность элементов контекста Результаты моделирования всегда получаются в рамках контекста моделирования: используемых инструментов, допущений, введенных параметров и данных, и разброса выходных значений.

Щего права» (а нормы права тем более!) мы ставим права и свободы человека, гражданина или меры и формы свободы индивида, то нам, хотим мы того или не хотим, при анализе структуры нормы права (да и права!) никак не обойтись без этого человека, гражда­нина, индивида. В гипотезе, диспозиции и санкции его «не видно, он где-то там просто спрятан...», а тем более права и свободы.

Это, однако, плохо увязывается с идеями демократического, гу­манного общества и правового государства, не говоря о свободе че­ловека, личности. Более того, если придерживаться концепции ры­ночного правопонимания, то в качестве субъектов в структуре норм права могут выступать разные участники общественных отношений (и не только субъекты, о которых упоминает Г.О. Петров). Нужно иметь в виду и то, что правовая норма часто адресована кругу лиц, определенных видовыми признаками (граждане, родители, супруги, налоговая инспекция, судебный пристав и т.д.).

В отличие от распоряжения, адресованного точно обозначенным субъектам и действующего до его исполнения (решения о строи­тельстве здания, передаче точно определенного имущества, выплате премии, об увольнении), норма права не исчерпывается исполне­нием. Она обращена в будущее в том смысле, что рассчитана не только на данный, наличный случай, но и на вид, неопределенное число определенных в общей форме случаев и отношений (заклю­чение договора, передача имущества, вступление в брак, рождение ребенка) и реализуется каждый раз, когда возникают предусмот­ренные ею обстоятельства и ситуации.

Применительно к процессуальным нормам, как показала Р.В. Ша-гиева, очень важен субъект. Он характеризуется многими специфиче­скими чертами и моментами. В частности, процессуальное состояние может быть связано и с естественными свойствами неодушевлен­ных предметов. Опираясь на естественные свойства вещей, законо­датель строит нормирование связанного с этими вещами поведения субъектов. К таким состояниям относятся хранение вещественных источников доказательств и различных предметов, ценностей, де­нег. Аналогичное состояние возникает и в связи с избранием меры пресечения в виде залога: залог в денежном выражении или в виде ценностей вносится в депозит суда обвиняемым, подозреваемым или другим лицом и хранится судом, пока не отпадет надобность в этой мере пресечения. Оно встречается и при применении такой меры обеспечения иска, как наложение ареста на имущество или денежные суммы, принадлежащие ответчику.

Такой возможный элемент процессуально-правовой нормы, как указание на субъект, часто фигурирует в законодательстве потому, что процессуальные нормы почти всегда рассчитаны не на любых, а лишь на определенных лиц (субъектов), которые могут оказаться


в сфере юридического процесса. Это суд, избранный в порядке, ус­тановленном законом, прокурор, следователь, арбитраж, комиссия по трудовым спорам, администрация организации и т.д. Однако это касается и участников процесса (например, лица, владеющего язы­ками, знание которых необходимо по делу, и назначенного органом дознания, следователем, прокурором в качестве переводчика). При­чем большинство процессуальных норм адресованы не к каждому, а лишь к вполне определенному участнику регулируемых ими об­щественных отношений (суду, истцу, ответчику, защитнику и т.д.), потому указание в них на субъектный состав часто бывает необхо­димым. Содержанием субъектного состава процессуальных норм выступает обычно описание качества субъекта, приобретенного им в силу рождения или производного от каких-либо действий (граж­данство, брак, нетрудоспособность, стаж, родство, специальность).

В силу специфики деятельности те или иные лица не могут (а под­час и не хотят) реализовать свои процессуальные права и обязанно­сти без вмешательства специально на то уполномоченных предста­вителей власти, без проявления их властных полномочий. Так, лицо, которому преступлением причинен моральный, физический или имущественный вред, вовлекается в уголовный процесс лишь после того, как лицо, производящее дознание, следователь и судья вынесет постановление о признании его потерпевшим. Все это ска­зывается на структуре процессуальных норм, предполагая необхо­димость четкого указания на их субъектный состав.

Указание на адресатов уголовно-правовой нормы иногда фор­мулируются не только в положительной, но и в негативной форме. Процессуальный закон содержит большое число статей, посвящен­ных условиям, исключающим возможность и необходимость уча­стия субъектов в процессуальных действиях. Так, переводчик не только должен владеть требуемым языком, но и не иметь прямой или косвенный заинтересованности в исходе дела (по закону). Большую роль в определении субъектного состава играют институ­ты отвода, замены ненадлежащей стороны (в гражданском процессе) и т.д. Не очень часто в процессуальном законодательстве встречает­ся указание на непосредственную цель процессуальных действий. Известно, что следственный эксперимент проводится «в целях про­верки и уточнения данных, имеющих значение для дела».

Субъекты в современных условиях необходимо включать в струк­туру любой нормы права или во всяком случае их необходимо всегда иметь в виду, рассматривать, вводить в действие и т.д., а не отрицать или делать вид, что их просто нет. Причем в каждой норме, ситуации и т.д. субъект будет свой, со своим набором черт, прав, обязанностей, линией поведения и пр. Субъект - важнейший элемент нормы пра-

III. Проблемы теории права


Ва. Но как же быть с другими звеньями нормы права? С той же ги­потезой, диспозицией и санкцией? Без них мы тоже никогда не по­лучили бы полной нормы (при одном звене, двух или трех, не важ­но). Гипотеза, диспозиция и санкция составляют сердцевину любой нормы права, базу логического строения любой правовой нормы.

Гипотеза, как и прежде, выступает как часть нормы, указываю­щая на жизненные обстоятельства, наступление которых повлечет «включение» действия той или иной правовой нормы. Ими могут быть события (например, сильное наводнение), конкретный ре­зультат действия (сдача рукописи в издательство), возрастной факт (60 лет - у мужчин появляется возможность ставить вопрос о на­значении пенсии), время, место и т.п. Гипотезы будут либо про­стыми (одно условие, одно обстоятельство), либо сложными (не­сколько обстоятельств, необходимых для действия нормы).

Диспозиция выступает как «корневая» часть нормы права, со­держащая само правило поведения, которому должны следовать субъекты регулируемого этой нормой отношения. В диспозиции чаще всего указываются права и обязанности субъектов, содержать­ся предписания (указание), как должны действовать те, кто будет подпадать под него, т.е. дается эталон желательного поведения.

Санкция определяет вид и меру последствий, наступающих в ре­зультате соблюдения или несоблюдения диспозиции. С санкцией нормы права связываются прежде всего вид и мера принуждения, применяемого к субъектам - нарушителям этой нормы. Однако есть определенное число санкций, предусматривающих положительный результат (получение премии, благодарности, награды) за совершение каких-либо особых, значительных действий в соответствии с предпи­санием правовой нормы. При этом санкция будет выступать также как предусматривающая прежде всего вид и меру принудительных мер, отрицательных, не желательных для субъекта последствий.

В санкциях предусматриваются следующие возможности:

Лишение субъекта определенных материальных ценностей;

Лишение субъекта (физического или юридического) принад­
лежащих ему благ или непредоставление тех благ, которыми
пользуются другие субъекты права (тюремное заключение, за­
прещение выпуска нестандартной продукции, перевод в осо­
бый режим кредитования и т.п.);

Умаление чести и достоинства субъекта (объявление выгово­
ра, увольнение со службы);

Признание недействительным актов субъекта (физического
или юридического), направленных на достижение определен­
ных юридических результатов (признание сделки недействи­
тельной, отмена принятого в нарушение компетенции право­
вого акта и т.п.).


Иногда ученые ошибочно отождествляют санкцию с юридиче­ской ответственностью. Однако санкция - элемент правовой нор­мы, реализуемый лишь при правонарушении. Он существует всегда, а ответственность наступает лишь при реальном нарушении этой нормы. Санкция как бы предваряет ответственность, предусматри­вая заранее, указывая правоприменительным органам вид и объем ответственности, которые можно применить к субъекту (гражданину) за совершенное им правонарушение. Субъекту-правонарушителю, в свою очередь, санкция указывает методы, к которым могут при­бегнуть соответствующие органы государства, порядок, предел мер взыскания, принудительные и карательные методы воздействия. Общепризнано, что санкции являются юридической основой всех видов ответственности.

Логическая структура нормы имеет большое значение для со­вершенствования практики применения правовых норм. Систем­ность права, неразрывная связь и согласованность норм, элементы которых содержатся в различных нормативных актах (или статьях, разделах закона), требуют при решении любого юридического дела тщательно изучить все те положения законодательства, которые связаны с применяемым правоположением.

Достоинством четырех элементной схемы как раз и является то, что эта схема побуждает ученых-юристов, практических работников не только к всестороннему анализу нормативного материала во всем его объеме, определению условий применения правовой нор­мы, ее содержания, последствий ее нарушения, но и к анализу про­блем субъекта, человека, гражданина и др. в демократическом обще­стве, его прав и свобод, защите этих прав и свобод, их выдвижению. Такой ориентации не дает ни дву- и не трехэлементная схема, отго­раживающая некой стеной право, права и свободы от человека, гражданина, индивида.

Права и свободы человека и гражданина в России признаются высшей ценностью (ст. 2 Конституции РФ). Получается, что эту высшую ценность субъекта (человека, гражданина) нельзя игнориро­вать в структуре нормы права как в исходном элементе права, а ее надо ставить на первое место в сравнении со всеми прочими эле­ментами этой нормы. При этом права и свободы человека и граж­данина и их меры важно учитывать и в комплексном исследовании внутренней и внешней формы права.

Однако внутренняя и внешняя форма норм часто не совпадают. Очень редко встречаются такие статьи законов, которые содержат в себе все составные части нормы права (субъекта, гипотезу, диспо­зицию, санкцию). Чаще всего встречаются статьи, в которых со­держатся диспозиция и санкция, а гипотеза должна либо подразу­меваться, либо содержаться в другой статье. Точно так же может

III. Проблемы теории права


10. Системный анализ норм права

Оказаться, что диспозиция содержится в одной статье, санкция - во второй, а субъект - в третьей. Так, в соответствии с УПК «при предъявлении обвинения следователь обязан разъяснить обвиняе­мому его права, предусмотренные законом, о чем делается отметка на постановлении о привлечении в качестве обвиняемого, которая удостоверяется подписью обвиняемого» (ст. 149).

В этой статье есть субъект - «обвиняемый», «его права», гипо­теза - «при предъявлении обвинения (обстоятельства)», есть дис­позиция - правило: «обязан разъяснить права и сделать отметку в постановлении». Однако отсутствует санкция, которая содержится в ст. 213-214 УПК: когда прокурор, утверждая обвинительное за­ключение, обнаружит, что не выполнены требования этой статьи, он не утвердит заключение, а, возвратив следователю, заставит по­следнего устранить это нарушение. Возврат дела на доследование и есть санкция.

В процессе правотворчества выработалась практика изложения норм права в статьях нормативных актов, состоящая в его многова­риантности, когда одна статья нормативного акта соответствует од­ной норме права (статья и норма совпадают), т.е. в одной статье имеются субъект, гипотеза, диспозиция, санкция. Это изложение правовой нормы встречается редко. Одна статья нормативного акта содержит только одну часть нормы права, например диспозицию; одна статья нормативного акта содержит несколько норм права; одна статья нормативного акта содержит две части нормы права, например гипотезу и санкцию (или гипотезу и диспозицию).

Наиболее распространен вариант изложения норм права, когда одна норма располагается в нескольких статьях нормативного акта и даже в нескольких нормативных актах, например субъект - в од­ном, гипотеза - во втором, а диспозиция - в третьем нормативном акте. Это связано с требованиями (правилами) законодательной техники, предполагающими краткость и компактность издания нормативного акта. В противном случае кодексы превратились бы из удобных для использования компактных изданий в пухлые, не­подъемные тома, которыми было бы очень сложно пользоваться.

Системный, комплексный анализ норм права требует выработки научно обоснованной классификации норм права, которые играют большую роль для правоприменительной практики государственных органов и иных субъектов. Теоретики государства и права часто на­чинают с дифференциации норм по отраслевому критерию (исходя из отраслей права). Потом они анализируют нормы материального и процессуального права, затем разграничивают нормы по форме предписания (на обязывающие, управомочивающие и запретитель­ные) и наконец характеризуют основные (программные нормы, нормы-правила поведения и общие нормы).


Классификацию норм, если придерживаться концепции циви-литарного права, необходимо начинать с программных, исходных норм права. Именно с них и начинается все «правовое начало» вся­кого демократического государства, весь (а не с отраслей) процесс общего познания, осмысления и в дальнейшем - построения всей нормативно-правовой системы демократического государства. Это программные, основные (исходные) нормы, нормы правила-поведения и общие нормы.

Программные, исходные нормы - это нормы-принципы, нор­мы-дефиниции, служащие отправным исходным началом для пра­вотворческих органов демократического государства. Ими необхо­димо руководствоваться всем субъектам, принимая все иные нормы. Это своего рода указатель, ориентир и одновременно требо­вание для законодателя. Такие нормы содержатся в основном в кон­ституциях. В конституционном праве содержится много программ­ных идей, которые важны для установления порядка во многих сферах общественных отношений, но не путем возникновения кон­кретных правовых отношений, а путем провозглашения самых об­щих правил и принципов, которые направлены на создание кон­кретных норм.

Примером может служить норма, содержащаяся в ст. 2 Консти­туции РФ: «Права и свободы человека в Российской Федерации яв­ляются высшей ценностью», или в ч. 1 ст. 68: «Государственным языком Российской Федерации на всей ее территории является рус­ский язык». Такой же нормой будет установленное ч. 1 ст. 129 по­ложение о том, что «прокуратура Российской Федерации составляет единую централизованную систему с подчинением нижестоящих прокуроров вышестоящим и Генеральному прокурору Российской Федерации».

Нормы - правила поведения - это основная масса правовых норм. Именно такие правила составляют большинство во всех от­раслях права. Среди них наиболее распространены регулятивные и охранительные нормы.

Общие нормы - это нормы, распространяющие свое действие не на оду отрасль или институт права, а на несколько отраслей и институтов. Наиболее очевиден такой вид норм в общих частях той или иной отрасли права (уголовного, административного, уго­ловно-исполнительного и др.). Общие нормы охватывают комплекс регулируемых ими отношений в качестве общего правила для их участников. К программным, исходным нормам могут примыкать нормы по способам воздействия на поведение субъектов.

Эта классификация правовых норм несет на себе следы первона­чального образования права. В период становления прав его источ-


Похожая информация.