Крупные производители титана. Мировой рынок диоксида титана

Титан и его сплавы являются ценными конструкционными сплавами. По сочетанию свойств они превосходят многие легированные стали и сплавы металлов. Получение металлического титана затрудняется его очень высокой химической активностью при повышенных температурах. Титан образует химические соединения и твердые растворы со многими элементами. Поэтому при производстве титана требуются особые условия, обеспечивающие достаточную чистоту производимого металла.

Для получения титана применяют магниетермический способ, который включает операции:

  • получение титановых концентратов;
  • производство титанового шлака;
  • производство четыреххлористого титана;
  • восстановление четыреххлористого титана магнием;
  • вакуумная сепарация реакционной массы;
  • плавка титановой губки в вакуумных печах.

Получение титановых концентратов

Титановые руды подвергают обогащению, в результате которого получают концентраты с повышенным содержанием TiO 2 . Наиболее распространенным сырьем для получения титана является титано-магнетитановые руды, из которых выделяют ильменитовый концентрат, содержащий 40 – 45% TiO 2 , 30% FeO, 20% Fe 2 O 3 и 5 – 7% пустой породы.

Производство титанового шлака

Основное назначение этого процесса – отделение оксидов железа от оксида титана. Для этого ильменитовый концентрат плавят в смеси с древесным углём и антрацитом в электропечах, где оксиды железа и часть титана восстанавливаются по реакции:

3(FeO·TiO 2) + 4C = 3Fe + Ti 3 O 5 + 4CO

Восстановленное железо науглероживается, образуя чугун, который собирается на дне ванны печи, отделяясь от остальной массы шлака вследствие различия их удельных весов. Чугун и шлак разливают отдельно в изложницы. Полученный титановый шлак содержит 80 – 90% TiO 2 .

Производство четырёххлористого титана

Для получения металлического титана используют хлорид титана, полученный путём хлорирования титанового шлака. Для этого титановый шлак измельчают, смешивают с углем и каменноугольным пеком, так как процесс хлорирования может проходить успешно только в присутствии восстановителя, и брикетируют при нагреве до 800 °С без доступа воздуха. Полученные брикеты подвергают хлорированию в специальных печах. В нижней части печи располагается угольная насадка, нагревающаяся при пропускании через неё электрического тока. В печь подают брикеты титанового шлака, а через фурмы – хлор.

При температуре 800 – 1250 °С в присутствии углерода образуются четыреххлористый титан по реакции:

TiO 2 + 2C + 2Cl 2 = TiCl 4 + 2CO

В качестве побочных продуктов получаются также хлориды других металлов (FeCl 2 , MnCl 2 , CrCl 3 CaCl 2 и др.).

Благодаря различию температур кипения образующихся хлоридов, четыреххлористый титан отделяется и очищается от остальных хлоридов методом ректификации в специальных установках.

Восстановление четыреххлористого титана магнием

Восстановление осуществляется в специальных реакторах при температуре 950 – 1000 °С. В реактор загружают чушковый магний и после откачки воздуха и заполнения полоти реактора аргоном внутрь его подают парообразный четыреххлористый титан. Процесс восстановления титана идёт по реакции:

TiCl 4 + 2Mg = Ti + 2MgCl 2

Металлический титан оседает на стенках, образуя губчатую массу, а хлористый магний в виде расплава выпускают через лётку реактора. В результате восстановления образуется реакционная масса, представляющая собой губку титана, пропитанную магнием и хлористым магнием, содержание которых достигает 35 – 40%.

Вакуумная сепарация реакционной массы

Сепарацию проводят с целью отделения титановой губки от магния и хлористого магния. Процесс отделения состоит в том, что реакционную массу нагревают до 900 – 950 °С в герметичном устройстве электронагревательной печи, в котором создаётся вакуум. При этом часть хлористого магния удаляется в жидком виде, а остальная часть хлористого магния и магний испаряются. Титановая губка после очистки направляется на плавку.

Плавка титановой губки в вакуумнодуговых печах. Плавка губки методом вакуумно-дугового переплава является основным способом переработки её в слитки. Вакуум печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана переплавляют вторично для удаления дефектов, используя как расходуемые электроды. После этого чистота титана составляет 99,6 – 99,7%. После вторичного переплава слитки используют для обработки давлением (ковка, штамповка, прокатка).

Титан отличается высокой механической прочностью, коррозионной стойкостью, жаропрочностью (Тпл = 1660 °С) и малой плотностью (4,51 г/см 3) . Его применяют как конструкционный материал в самолетостроении, а также при постройке сосудов, предназначенных для транспортирования концентрированной азотной и разбавленной серной кислот.

Применяют также диоксид TiO 2 для производства титановых белил и эмали. Наиболее распространенным сырьем для производства титана и диоксида Ti служит ильменитовый концентрат, выделяемый при обогащении титаномагнетитовых железных руд, в котором содержится, %: 40-60 TiO 2 , ~30 FeO, ~20 Fe 2 O 3 и 5-7 пустой породы (CaO, MgO, Al 2 O 3 , SiO 2), причем титан в виде минерала ильменита FeO TiO 2 .

Технологический процесс производства титана из ильменитового концентрата состоит из следующих основных стадий:

  • получение титанового шлака восстановительной плавкой,
  • получение тетрахлорида титана хлорированием титановых шлаков,
  • производство титана (губки, порошка) восстановлением из тетрахлорида.

Восстановительная плавка ильменитового концентрата имеет целью перевести TiO 2 в шлак и отделить оксиды железа путем их восстановления . Плавку проводят в электро дуговых печах. Сначала загружают концентрат и восстановитель (кокс, антрацит), их нагревают до ~ 1650 °С. Основной реакцией является: FeO TiO 2 + С = Fe + TiO 2 + CO. Из восстановленного и науглероживающегося железа образуется чугун, а оксид титана переходит в шлак, который содержит 82-90% TiO 2 .

Получение тетрахлорида титана TiCl 4 осуществляют воздействием газообразного хлора на TiO 2 при температурах 700-900 °С, при этом протекает реакция:

TiO 2 + 2Cl 2 + 2С = TiCl 4 + 2СО.

Хлорирование осуществляют в шахтных хлораторах непрерывного действия или в солевых хлораторах. Шахтный хлоратор - это футерованный цилиндр диаметром до 2 и высотой до 10 м, в который сверху загружают брикеты из измельченного титанового шлака и снизу вдувают газ магниевых электролизеров, содержащий 65-70 % Cl 2 . Взаимодействие TiO 2 брикетов и хлора идет с выделением тепла, обеспечивающего необходимые для процесса температуры (~ 950 °С в зоне реагирования). Образующийся в хлораторе газообразный TiCl 4 отводят через верх, остаток шлака от хлорирования непрерывно выгружают снизу.

Солевой хлоратор представляет собой футерованную шамотом камеру, наполовину заполненную отработанным электролитом магниевых электролизеров, содержащим хлориды калия, натрия, магния и кальция. Сверху в расплав загружают измельченные титановый шлак и кокс, а снизу вдувают хлор. Температура 800-850 °С, необходимая для интенсивного протекания хлорирования титанового шлака в расплаве, обеспечивается за счет тепла протекающих экзотермических реакций хлорирования.

Газообразный TiCl 4 из верха хлоратора отводят на очистку от примесей, отработанный электролит периодически заменяют. Основное преимущество солевых хлораторов состоит в том, что не требуется дорогостоящее брикетирование шихты. Отводимый из хлораторов газообразный TiCl 4 содержит пыль и примеси газов - СО, СO 2 и различные хлориды, поэтому его подвергают сложной, проводимой в несколько стадий очистке.

Металлатермическое восстановление титана из тетрахлорида TiCl 4 проводят магнием или натрием. Для восстановления магнием служат аппараты, представляющие собой помещенную в печь герметичную реторту высотой 2-3 м из хромо-никелевых сталей. После ввода в разогретую до ~ 750 °С реторту магния в нее подают тетрахлорид титана
.

Восстановление титана магнием TiCl 4 + 2Mg = Ti + + 2MgCl 2 идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800-900 °С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл восстановления длительностью 30-50 ч получают 1-4 т титана в виде губки (твердые частицы титана спекаются в пористую массу - губку). Жидкий MgCl 2 из реторты периодически выпускают.

Титановая губка впитывает много MgCl 2 и магния, по-этому после окончания цикла восстановления проводят вакуумную отгонку примесей. Реторту после нагрева до ~ 1000 °С и создания в ней вакуума выдерживают в течение 35-50 ч; за это время примеси испаряются. Иногда отгонку примесей из губки проводят после ее извлечения из реторты.

Восстановление титана натрием проводят в аппаратах, схожих с применяемыми для магниетермического восстановления. В реторте после подачи TiCl 4 и жидкого натрия идет реакция восстановления титана: TiCl 4 + 4Na = Ti + 4NaCl. Температура в 800-880 °С поддерживается за счет выделяющегося при восстановлении тепла.

Полученную твердую массу, содержащую 17 % Ti и 83 % NaCl извлекают из реактора, измельчают и выщелачивают из нее NaCl водой, получая титановый порошок.
Рафинирование титана .
Для получения титана высокой чистоты применяют так называемый иодидный способ, при котором используется реакция Ti + 2I 2 = TiI 4 . При температуре 100-200 °С реакция протекает в направлении образования Til 4 , а при температуре 1300-1400 °С - в обратном направлении.

Титановую губку (порошок) загружают в специальную реторту, помещаемую в термостат, где температура должна быть на уровне 100-200 °С, и внутри нее спеиальным приспособлением разбивают ампулу с иодом. Через несколько натянутых в реторте титановых проволок пропускают ток, в результате чего они накаливаются до 1300-1400 °С. Пары иода реагируют с титаном губки по реакции Ti + 2I2 - TiI 4 .

Полученный TiI 4 разлагается на раскаленной титановой проволоке, образуя кристаллы чистого Ti и освобождая иод. Пары иода вновь вступают во взаимодействие с рафинируемым титаном, а на проволоке постепенно наращивается слой кристаллизующегося чистого титана. Процесс заканчивают при толщине получаемого прутка титана 25-30 мм. Получаемый металл содержит 99,9-99,99 % Ti, в одном аппарате получают ~ 10 кг чистого титана в сутки.

Для получения ковкого Ti в виде слитков губку переплавляют в вакуумной дуговой печи. Расходуемый (плавящийся) электрод получают прессованием губки и титановых отходов. Жидкий титан затвердевает в печи в водоохлаждаемом кристаллизаторе.

Мировые поставки титана увеличились в последние годы, после перерыва в сильном цикла роста с 2005 по 2008 год, когда производство титановой губки возросло с 104 тыс. тонн до 176 тысяч тонн. Рост с 2005 года в результате ввода новых и перезапуска законсервированных ранее предприятий, частично был обусловлен ростом спроса со стороны аэрокосмической отрасли, а также ростом спроса на титан на химических заводах в Китае. Китайское производство титановой губки увеличилось в пять раз между 2005 и 2008 годах.

В конце 2008 года глобальный экономический спад и задержки в производстве самолетов нового поколения, например, таких как A380 и B787, вызвали резкое снижение спроса на титан. В то же время, новые заводы по производству губки в США и Японии, заложенные во времена бума, начали производство. В 2009 и 2010 годах на мировом рынке титановой губки образовался излишек, и производители задерживали дальнейшее расширение мощностей, приостанавливая выпуск продукции и (в Китае) закрывая мелкие нерентабельные заводы. В 2010 году Китай был основным двигателем роста, и производство титановой губки в этой стране снова сильно увеличилось, так как несколько новых заводов были введены в строй.

В 2009 году производство титановой губки ограничивалось шестью странами, в порядке производства, Китаем, Японией, Россией, Казахстаном, США и Украиной. Многие из крупных производителей губки выпускали из нее титановые слитки и полуфабрикаты, а другие, играли важную роль в качестве поставщиков губки на рынок. В 2010 году казахстанская UTMK, один из ведущих поставщиков губки, начала выплавлять слитка на экспериментальной основе и заключила соглашение с Posco на строительство завода по выпуску титановых плит в восточном Казахстане.

По состоянию на 2010 год в мире насчитывалось 18 компаний, производящих титановую губку, девять из которых находятся в Китае, по сравнению со всего двумя заводами десять лет назад. Многие компании объявили о дальнейших планах расширения, хотя некоторые из них позже объявили о приостановке реализации своих планов. Если бы все компании реализовали задуманное, то совокупные мощности по производству титановой губки достигли бы 400 тысяч тонн в год к 2015 году, а при учете четырех новых проектов в Китае, вместе с расширениями в Японии и России, можно было бы добавить еще 85 тысяч тонн к общей сумме.

В 2010 году мировые мощности по производству титановых слитков составили 340 тысяч тонн, при этом 85% из них находилось в России, США, Японии и Китае. Мощности по выплавке слитков, по крайней мере, в два раза больше, чем производство губки, отчасти из-за практики двойного и тройного плавления, а отчасти из-за использования лома в сырье расплава. США доминируют в производстве проката для аэрокосмической промышленности, а производители в Японии и Китае сосредоточены на промышленных и потребительских сферах применения титана.

Мировой рынок титановых продуктов в 2009 году составлял 100 тысяч тонн по сравнению со 130 тысячами тонн в 2008 году, при этом спрос на прокат распределялся между аэрокосмической промышленностью (39%), другими отраслями промышленности (48%) и конечным потреблением (13%).

Вместе с тем, существуют значительные региональные различия. В США на аэрокосмическую промышленность приходится более 70% спроса, в то время как в Китае доминирует спрос со стороны других отраслей промышленности. Быстрый рост промышленных рынков титана в Китае сместил мировой баланс потребления от аэрокосмической к промышленной сфере, но спрос на высококачественную губку и слитки по-прежнему сильно зависит от цикличности в аэрокосмической промышленности.

Промышленное использование титана сосредоточено, в основном, на химических и нефтехимических заводах и в теплообменниках; этот сектор продемонстрировал очень высокие темпы роста в последние годы, почти полностью из-за быстрого увеличения строительства химических заводов и электростанций в Китае.

В связи с возобновлением производства больших пассажирских самолетов нового поколения A380 и A350 от Airbus и B787 от Boeing, в которых используется большое количество укрепленные углеродным волокном полимеры (CFRP), которые совместимы с титаном, а не с алюминием, позиции титана как ключевого материала в авиакосмической промышленности были гарантированы. Использование CFRP было одобрено авиакомпаниями, поскольку этот материал не имеет усталости и требует намного менее дорогостоящего времени простоя и обслуживания. В 2010 и 2011 годах, отсроченные программы строительства самолетов A380 и B787, а также нового A350, начали реализовываться, и спрос на титан космического сорта резко повысился. В то же время, возобновился устойчивый рост пользующегося спросом, главным образом в Китае, материала промышленного сорта. Это привело к расширению мирового рынка металлического титана на 60% к уровню 2009 года. В 2012 году размер рынка, согласно оценкам, выровнялся, однако аналитики предсказывали небольшой рост и в 2013 году. В то время как космические применения составляют половину спроса на титан в США, Европе и России, промышленное применение, особенно на химических заводах, доминирует в Азии. Эти дифференцированные рынки продолжат быть главными двигателями спроса и обусловят рост потребления металла на 4,6% ежегодно до 2018 года.

После падения до 123,5 тысяч тонн в 2009 году, глобальные поставки титановой губки увеличивались в среднем на 26,5% в год в период с 2010 по 2012 год, достигнув 241 тысяч тонн; образовав излишек на рынке приблизительно в 20 тысяч тонн по отношению к потреблению. Производство, как ожидается, упадет приблизительно до 230 тысяч тонн в 2013 году из-за растущих материальных запасов и замедляющегося роста спроса. Мировые мощности по производству губки титана составляют 330 тысяч тонн в год, что намного больше объема спроса и предложения. Большая часть излишка производственных мощностей находится в Китае и эти мощности предназначены для производства материала промышленного сорта, хотя мощности по производству губки космического сорта, главным образом, в Японии, России, США и Казахстане, более, чем достаточны, чтобы удовлетворить спрос. Тем не менее, новые предприятия, вероятно, начнут функционировать в США, Китае и Украине. Поставки губки, как прогнозируется, будут расти на 5% в год до 2018 года.


По данным Roskill, на импорт США приходится в последние годы более половины мировой торговли губкой. Американские производители титана также "полагаются" на поставки из Японии и Казахстана, хотя роль последней страны сокращается по мере все большего производства собственной губки.

Титан, продающийся для промышленного применения более "чувствительный к цене", чем для аэрокосмической, поскольку промышленные спецификации не являются жесткими, как в аэрокосмической и есть конкуренция на промышленном рынке от других металлов, отмечают в Roskill. Эта чувствительность цены "более очевидна" в Северной Америке и Европе, чем в Китае, где титан часто предпочитают менее дорогостоящим материалам, и теперь на страну приходится половина промышленного спроса.

После падения в 2012 году, мировой спрос на титановый прокат возобновил рост в 2013 году и будет расти на 4 до 5 процентов в год до 2018 года, хотя избыток губчатого титана на рынке будет сохраняться.

Roskill отмечает, что в то время как спрос на прокат - на основе видимого потребления - достиг рекордных 165 тысяч тонн (363,8 млн. фунтов) в 2011 году в результате быстрого восстановления после резкого спада в 2008 году, рост "застопорился" в 2012 году, едва увеличившись от уровня предыдущего года.

Roskill сообщил, что мировое производство проката составило около 152,5 тыс. тонн (336,2 млн. фунтов) в 2012 году, увеличившись на 3 процента со 148 тыс. тонн (326,3 млн. фунтов) в предыдущем году, при этом на долю Китая пришлось примерно 38 процентов мирового производства титановой продукции.

Хотя титан используется в различных областях, Roskill отмечает, что аэрокосмическая промышленность остался крупнейшим рынком с объемом потребления в 60 тыс. тонн (132,3 млн. фунтов стерлингов) в виде титановых продуктов в покупной массе самолета в 2012 году. Рост в аэрокосмической был также обусловлен расширением использования композиционных материалов из углепластика, которые "совместимы с титаном, но не с алюминием", в последнем поколении авиалайнеров, таких как Боинг 787 Dreamliner чикагской компании Boeing Co. и A380 и A350 французской компании Airbus SAS, которые помогают обеспечивать будущую роль титана, сообщает Roskill. Российская компания ВСМПО-Ависма, крупнейший в мире производитель титановых продуктов для аэрокосмической промышленности, поставил более 20 тысяч тонн (44,1 млн. фунтов) в 2012 году.

Между тем, в соответствии с обстоятельствами, загрузка мощностей по производству титана в Питтсбурге у компании RTI International Metals Inc. резко упала с начала 2013 года. Перед тем как новая электронно-лучевая (EB) печь компании RTI вступила в строй, "мы работали почти на полную мощность", отметила вице-председатель, президент и главный исполнительный директор Дауни С. Хиктон (Dawne С. Hickton). "Теперь, когда мы ее запустили, мы, очевидно, имеем больше возможностей", сказала она по поводу новой печи плавильного подразделения RTI в Кантоне, штат Огайо.

Хиктон оценивает, что общая загрузка производственных мощностей RTI находится в пределах 60-70 процентов с учетом новой печи, указывая на то, что компанией RTI было произведено 0,45 тыс. тонн (1 миллион фунтов) титановых продуктов в печи EB по состоянию на конец июня 2013 года при годовой мощности в 3,6 тыс. тонн (8 млн. фунтов).

Компания имеет мощности по производству титановой продукции в 10,0-10,5 тыс. тонн (22-23 млн. фунтов) в год на своем заводе Niles в штате Огайо, где осуществляется вакуумно-дуговая плавка; и 6,4 тыс. тонн (14 млн. фунтов) в год на заводе в Martinsville в штате Вирджиния, стоимостью $135 млн., где компания начала коммерческое производство в 2012 году.

В настоящее время в мире продолжаются исследования, направленные на создание новых технологий непрерывного производства, позволяющих обеспечить восстановление металлического титана по более низкой стоимости, однако к середине 2013 года в мире функционировало только одно предприятие (мощностью 2 тысячи тонн в год), которое не использовало процесс Кролла.

Рынок губки, необработанного металла и проката характеризуется наличием долгосрочных договоров на поставку между крупнейшими производителями и потребителями, без участия трейдеров. Тем не менее, нехватка губки в 2006 году привела к большей активности на спотовом рынке и цены на губку, которые исторически колебалась вокруг 7 долл./кг, поднялись до 30 долларов США к концу этого года. По мере увеличения мощностей по производству губки рынок начал падать и в 2010 году цены на губку опустились ниже 10 долл./кг. Цены на слитки и прокат также были значительно ниже максимальных значений, достигнутых в 2006 и 2007 годах. Цены на металлолом, с другой стороны, укрепились в 2010 году, после сокращения поставок.

Тем не менее, цены на титановую губку, по мнению аналитиков Roskill, останутся "относительно низкими" в течение ближайших лет, несмотря на растущий спрос со стороны Китая.

Спрос на диоксид титана - важный продукт для лакокрасочной промышленности, производства пластмасс и бумаги - на российском рынке составляет 67-82 тыс. т/год, в то время как собственное производство диоксида титана до 2014 г. в России отсутствовало.

Диоксид титана, незаменимый пигмент в лакокрасочной, полимерной, целлюлозно-бумажной и других отраслях, представляет собой порошок белого цвета без запаха и вкуса, практически не растворимый в воде и минеральных кислотах (кроме плавиковой и концентрированной серной кислот).

Диоксид титана производится в двух формах: рутильной и анатазной (октаэдрит). Рутильный диоксид титана примерно на 30% лучше рассеивает свет, чем анатазный, обладает лучшей укрывистостью (укрывистость - способность диоксида титана перекрывать цвет окрашиваемой поверхности). Анатазная форма является менее атмосферостойкой, чем рутильная, и хуже защищает от УФ-воздействия. Рутильный диоксид титана предпочтительнее при производстве лакокрасочных материалов, пластмасс, косметики. Анатазные пигменты находят свое применение при выпуске бумаги, резины и мыла. Традиционно подавляющая часть всего диоксида титана применяется в производстве лакокрасочных материалов. При этом основной функцией диоксида титана в лакокрасочной промышленности является придание краскам белого цвета, яркости, а также улучшение укрывистости, защита покрытий от вредных ультрафиолетовых лучей, предотвращение старения пленки и пожелтения покрашенных поверхностей.

Исходным сырьем для производства диоксида титана является титансодержащий ильменитовый концентрат (FeTiO 3) - продукция горно-обогатительных предприятий. Ильменит - это руда, которая с химической точки зрения представляет собой смесь оксидов, большую часть из которых составляют оксиды титана и железа.

Существует два промышленных способа получения диоксида титана (рутильной и анатазной модификаций):

1. Сульфатный, или сернокислотный (из титансодержащего концентрата ).

Метод основан на обработке ильменитового концентрата серной кислотой с последующими выделением и гидролизом титанилсульфата с прокаливанием продукта гидролиза титанилсульфата (метатитановая к-та) до диоксида титана. Побочный продукт сульфатной технологии производства диоксида титана - железный купорос. Сульфатный способ был внедрен в промышленность в 1931 г. для производства анатазной формы диоксида титана, и позже, в 1941 г., рутильной формы.

2. Хлорный, или хлоридный (из тетрахлорида титана ).

Хлорный способ был изобретен компанией DuPont в 1950 г. для производства рутильного диоксида титана. Этот способ включает в себя высокотемпературные фазовые реакции. Титансодержащая руда вступает в реакцию с хлорным газом при пониженном давлении, в результате чего образуется тетрахлорид титана (TiCl 4) и примеси хлоридов металлов, которые затем удаляются. Высокочистый тетрахлорид титана (TiCl 4) подвергается окислению под действием высокой температуры для получения диоксида титана с высокой яркостью.

Мировые мощности по производству диоксида титана хлорным способом превышают мощности сульфатного способа и продолжают расти.

Сульфатная технология проще хлоридной и позволяет использовать более бедные и дешевые руды, но она обычно сопряжена с большими издержками производства.

Учитывая особенности обоих процессов, основными критериями выбора между ними являются возможность обеспечения производства сырьем соответствующего качества и проблемы, связанные с экологией. Сульфатный способ характеризуется наиболее высокими показателями загрязнения окружающей среды.

Общие мировые мощности по производству пигментного диоксида титана оцениваются примерно в 7,2 млн. т, причем около 85-90% приходится на рутильную форму и примерно 10-15% - на анатазную.

Рис. 1. Сферы потребления диоксида титана

Страна, обладающая самым большим производственным потенциалом по диоксиду титана, - Китай (около 3 млн. т/год). Крупнейшими в мире его производителями являются следующие компании: DuPont Titaniun Technologies (США), National Titanium Dioxide Co., Ltd. Cristal (Саудовская Аравия), Huntsman Pigments (США), Tronox, Inc. (США), Kronos Worldwide, Inc. (США), Sachtleben Chemie GmbH (Германия; 100% акций принадлежат Rockwood Holding), Ishihara Sangyo Kaisha, Ltd. (Япония).

Как упоминалось выше, основные потребляющие диоксид титана отрасли в мире - это лакокрасочная промышленность, производство пластмасс и бумаги (рис. 1). Большую часть в мировом потреблении диоксида титана занимает Китай. На втором и на третьем местах - Западная Европа и США соответственно.


Рис. 2. Структура потребления диоксида титана на российском рынке в 2015 г

Как следует из представленной на рис.2 структуры потребления диоксида титана на российском рынке, почти 95,1% этого продукта, поступающего на отечественный рынок, потребляется лакокрасочной отраслью. При этом больше всего (55,8%) диоксида титана используется в изготовлении красок водоэмульсионных и водно-дисперсионных, 31,3% потребляется на производство ЛКМ неводных, а 8,0% диоксида титана идет на прочие ЛКМ.

Спрос на диоксид титана на российском рынке за последние шесть лет колебался в пределах 67,2-82,9 тыс. т/год и до 2014 г. удовлетворялся исключительно за счет импорта.

Собственное производство диоксида титана до 2014 г. в России отсутствовало. Рассматривая ретроспективу, необходимо отметить, что до 2009 г. в ОАО «Соликамский магниевый завод» (г. Соликамск, Пермская обл.) диоксид титана производился в промышленных масштабах, но с 2009 г. после запуска производства титановой губки производство пигмента прекращено.


Рис. 3. Импорт диоксида титана в Россию в 2010-2015 гг., тыс. т

Небольшой объем диоксида титана до 2010 г. выпускался в ныне несуществующем Волгоградском ОАО «Химпром».

С середины 2014 г. на территории Российской Федерации диоксид титана производится в Армянском филиале ООО «Титановые инвестиции», зарегистрированного в Москве. В свою очередь, ЧАО «Юкрейниан Кемикал Продактс» (бывшее ЧАО «Крымский Титан»), зарегистрированное в Киеве, остается украинским предприятием, сдающим в долгосрочную аренду свой имущественный комплекс ООО «Титановые инвестиции». Такая комбинация позволила предприятию обеспечить бесперебойные поставки сырья, ввозимого из Украины, и сохранить европейские рынки сбыта, несмотря на санкции в отношении Крыма.


Рис. 4. Структура импорта диоксида титана в Россию в 2014 г. (по странам происхождения), тыс. т

Объем выпуска диоксида титана в Армянском филиале ООО «Титановые инвестиции» в июле-декабре 2014 г. составил 47,732 тыс. т, а в 2015 г. - 77,796 тыс. т.

Тем не менее уровень импорта в 2014 и 2015 гг. оставался высоким и составлял 80,3 и 67,6 тыс. т соответственно.

В 2014 г. более 30% российского рынка занимала Украина, представленная предприятиями ПАО «Сумыхимпром» (Украина, г. Сумы) и ЧАО «Крымский титан» (ныне ЧАО «Юкрейниан Кемикал Продактс», Республика Крым, г. Армянск). Более 18% поставок пришлось на США, представленные в основном компанией DuPont.


Рис. 5. Структура импорта диоксида титана в Россию в 2015 г. (по странам происхождения), тыс. т

В 2015 г. структура импорта несколько изменилась. Импорт диоксида титана из Украины возрос до 28,0 тыс. т и составил 41,4% всего импорта продукта в Россию.

Ввоз товара из Соединенных Штатов, напротив, снизился и составил 9,1 тыс. т (13,4% всего импорта).

Экспорт диоксида титана из России в 2010-2014 гг. осуществлялся почти полностью в страны Таможенного союза, был низким и составлял 0,1-0,4 тыс. т.


Рис. 6. Структура экспорта диоксида титана в Россию в 2015 г. (по странам происхождения), тыс. т

В 2015 г. в данной сфере внешнеторговой деятельности наблюдалась интересная картина: экспорт диоксида титана из России составил 74,56 тыс. т, причем 88,1% экспортируемого товара пришлось на Украину (рис. 6).

Таблица 1. Средние импортные цены на диоксид титана в 2014-2015 гг. (по странам происхождения, без НДС), долл./т

Страна-импортер

2014 г.

2015 г.

Германия

Финляндия

Великобритания

Саудовская Аравия

В 2014-2015 гг. американский диоксид титана, производимый хлоридным методом, соответствующий высоким техническим показателям и сравнительно невысокой ценой, был наиболее конкурентоспособен на российском рынке, о чем говорит значительная величина его продаж на российском рынке, несмотря на географическую отдаленность поставщиков от потребителей. Продукция ООО «Титановые инвестиции» и украинского ПАО «Сумыхимпром», несмотря на то, то производится сульфатным методом, также обладает хорошими техническими характеристиками и, пожалуй, самым оптимальным соотношением цена/качество для российского потребителя (табл. 1).

Ниже приведены характеристики диоксида титана производства некоторых компаний, ввозящих в Россию свою продукцию (табл. 2-5).

Таблица 2. Качественные характеристики диоксида титана ПАО «Сумыхимпром»

Показатель

SumTitan

SumTitan

SumTitan

SumTitan

Не менее

Массовая доля рутильной формы,%, не менее

Массовая доля веществ, растворимых в воде, %, не более

pH водной суспензии

Маслоемкость, г/100 пигмента, не более

Таблица 3. Качественные характеристики диоксида титана ООО «Титановые инвестиции»

Показатель

Массовая доля рутильной формы, %, не менее

Массовая доля летучих веществ, %, не более

Массовая доля водорастворимых веществ, %, не более

pH водной суспензии

Остаток на сите с сеткой 0045,%, не более

Разбеливающая способность, условные единицы, не менее

Укрывистость, г/м 2 , не более

Диспергируемость, мкм, не более

Белизна, условные единицы, не менее

Таблица 4. Качественные характеристики марок диоксида титана американской компании DuPont

Показатель

R-706 (для водных систем)

Структурная модификация

Рутильная

Рутильная

Рутильная

Рутильная

Массовая доля диоксида титана, %,

Массовая доля алюминия,%

Массовая доля аморфного диоксида кремния,%

Удельный вес, г/см 3

Насыпной объем, л/кг

Белизна, условные единицы

pH водной суспензии

Средний размер частицы, мкм

Маслоемкость, г/100 г пигмента, не более

Сопротивление при 30ºC (кОм)

Таблица 5. Качественные характеристики марок диоксида титана финской компании Sachtleben Pigments OY , предназначенных для применения в производстве ЛКМ

Показатель

Sachtleben RD3

Sachtleben R660

Sachtleben R-FD-I

Sachtleben 8700

Структурная модификация

Рутильная

Рутильная

Рутильная

Рутильно-анатазная, содержа-ние рутильной формы - min / 60%

Массовая доля диоксида титана, %,

Дополнительные компоненты

Al 2 O 3 , ZrO 3

Al 2 O 3 , ZrO 3

Удельный вес, г/см 3

Насыпная плотность, кг/м 3

Насыпная плотность утрамбованного продукта, кг/м 3

pH водной суспензии

Остаток на сите с сеткой 0,0044, %, не более

Средний размер частиц, мкм

Относительная разбеливающая способность, не менее

Маслоемкость (г/100 г пигмента)

Поверхностная обработка органическими веществами

Как видно из приведенных в табл. 2-5 данных, продукция ООО «Титановые инвестиции» незначительно уступает в качестве американской и европейской продукции, причем стоит существенно дешевле ее.

Учитывая интенсивное развитие лакокрасочной и полимерной промышленности, можно оценить, что к 2030 г. потребность в диоксиде титана на российском рынке будет достигать 220-260 тыс. т.

Из данного предположения следует, что существует необходимость создания и наращивания в России производственного потенциала по диоксиду титана.

Россия обладает хорошей сырьевой базой титансодержащего сырья в Республике Коми, в Читинской, Мурманской, Челябинской, Амурской, Тамбовской, Томской, Нижегородской, Омской, Тюменской областях, в Красноярском и Ставропольском краях. Наличие такой сырьевой базы позволяет организовать производство диоксида титана как сульфатным, так и хлоридным способом. Пока основным фактором, сдерживающим организацию этого производства, являются относительно низкие цены на диоксид титана и сравнительно невысокая рентабельность производства.


Рис. 7. Основные титановые месторождения в РФ

Крупнейшими месторождениями являются Ярегское (Республика Коми), Чинейское, Кручининское (Читинская обл.), Медведевское (Челябинская обл.) и Центральное (Тамбовская обл.) и др. (рис. 7). Необходимо отметить, что, помимо разведанных балансовых запасов титансодержащего сырья, Россия располагает огромными прогнозными ресурсами.

Поскольку потребность в диоксиде титана в России очень велика и отнюдь не полностью покрывается за счет внутреннего производства, а существующие на территории РФ технологии производства данного продукта являются далеко не совершенными, производство диоксида титана является интереснейшей сферой для научно-технических разработок и внедрения инноваций.

Так, в Томском политехническом университете (ТПУ) была разработана экономичная и экологичная технология производства диоксида титана, которая подразумевает применение в качестве основного реагента фторида аммония, более безопасного, чем серная кислота. Кроме того, данный реагент может использоваться повторно, что приводит к минимизации стоков. Новая технология способствует снижению до небольших объемов (от 20 тыс. т) пределов рентабельности, позволяя создать сеть небольших производств и, таким образом, снижая логистические расходы. Минусом фторидной технологии является лишь то, что в данном случае получает более грубодисперсный порошок пигмента, чем хлорным методом. Запуск производства мощностью 100 тыс. т/год оценивается разработчиками из Томского политехнического университета в 1,5 млрд. руб., тогда как по оценкам специалистов компании Kronos Worldwide Inc. на создание производства мощностью 150 тыс. т/год с использованием хлоридной технологии требуется не менее 1 млрд. долл. Срок создания производства по новой технологии оценивается специалистами из ТПУ в один-два года.

В октябре 2015 г. государственная корпорация «Росатом» одобрила проект АО «Сибирский химический комбинат» (АО «СХК») по созданию производства диоксида титана по фторидной технологии мощностью 20 тыс. т/год. Было решено выделить на изготовление первой партии продукции и маркетинговые исследования 3,6 млн. руб. После того как качество первых образцов продукции, произведенной в ТПУ по заказу АО «СХК», было одобрено на нескольких заводах-потребителях, руководство АО «Сибирский химический комбинат» заявило, что в 2017 г. запустит опытно-промышленное производство объемом 5 тыс. т/год, а в 2019 г. - промышленное - на 20 тыс. т/год. Развернется производство на площадках АО «СХК».

Кроме планируемого создания нового производства в Томской области, новшества и вводы готовятся и в Крымском федеральном округе: в частности, ООО «Титановые инвестиции» к 2018 г. намечает расширение мощностей по производству диоксида титана на 19 тыс. т (до 120 тыс. т/год).

Таким образом, есть надежда, что к 2018-2019 гг. в России суммарные мощности по производству диоксида титана достигнут 140 тыс. т/год, однако будет ли на него спрос на российском рынке полностью удовлетворен за счет внутреннего производства, учитывая что ООО «Титановые инвестиции» является экспортоориентированным предприятием, остается серьезным вопросом.

На Западе основными потребителями титанового сырья являются производители двуокиси, на их долю приходится около 95% спроса. В России картина совершенно другая: по оценкам западных аналитиков, около 65% концентрата идёт на производство титановой губки. Что же касается пигмента, то Сумский и Крымский заводы, построенные в СССР для его производства, перешли Украине. Попытки наладить промышленное производство пигмента в РФ (на волгоградском ОАО «Химпром», «Ависме», Соликамском магниевом заводе) пока носят скорее экспериментальный характер - вырабатывается всего несколько тысяч тонн двуокиси титана в год. И хотя российский спрос на этот продукт, утверждают эксперты, должен в ближайшем будущем резко возрасти, видимо, удовлетворяться он так и будет в основном за счёт импорта (и сегодня вся автомобильная краска поступает в Россию с запада). Советская титановая промышленность много лет ориентировалась на производство титановой губки для дальнейшей переработки в металлический титан и сплавы, использовавшиеся оборонкой.

Титановая губка является полуфабрикатом, т.е. она полностью предназначена для использования в производстве титановых слитков, проката, сплавов, изделий из титана. Поэтому объём мирового производства губчатого титана полностью зависит от объёма потребления предприятиями - производителями титановой продукции.

Производство титана можно отнести к стандартизированной продукции, производимой в условиях олигополии, в виду того, что на этом товарном рынке находится относительно малое число фирм-производителей. Одной из основных причин немногочисленности фирм является эффект масштаба производства. Эффект масштаба является трудноодолимым барьером для вступления в данную отрасль производства. Рынок титана является одним из самых сложных рынков металлов в мире. Сложности эти обуславливаются многочисленными макро- и микрофакторами.

Прежде всего необходимо отметить критическое падение потребления титана в последние годы во всём мире. Изменение военно-политической ситуации после распада СССР сказалось на рынке титана коренным образом: не только в России, но и в США пришлось пересматривать военный бюджет. В результате в США строительство военных самолётов и двигателей с использованием титана уменьшилось примерно на 50% по сравнению с периодом «холодной» войны. Европейским производителям военной авиационной техники не осталось ничего другого, как последовать примеру США. В результате ёмкость рынка, на который приходилось 40% мирового потребления титана, сократилась вдвое. Потребление титановой губки в 1997 году составляет около 6096 от уровня 1992 года. Если в Союзе производство и потребление металлического титана вплотную приближалось к 10 тыс. тонн в год, то сегодня внутренний спрос в России, по различным данным, составляет от 2 до 5 тыс. тонн.

Другой важнейший фактор, обусловивший падение потребления титана - общий экономический спад, как в странах СНГ, так и на Западе. В СНГ из-за практически полного разрушения хозяйственных связей между предприятиями и болезненного перехода к рынку, создалось крайне тяжёлое положение на внутреннем рынке титана. Общий спад потребления титана, постоянно растущие внутренние цены на сырьё, электроэнергию, услуги и т.д. свели реальное потребление продукта к ничтожному уровню. За отсутствием стабильного внутреннего потребителя титановой продукции единственным реальным рынком сбыта становится мировой рынок. ОАО "АВИСМА " также ориентирует сбытовую политику на экспорт (в Советском Союзе вся продукция комбината потреблялась на внутреннем рынке.).

Как и для большинства российских предприятий, большой проблемой для комбината являются налоговые платежи. Натянутые отношения с Государственной налоговой инспекцией по поводу погашения задолженности заставляют комбинат балансировать на грани ареста счетов. Однако, благодаря умелому управлению финансовой деятельностью комбината и личным качествам высших должностных лиц общества, предприятию удаётся не только выходить из трудного положения но и без задержек выплачивать заработную плату.

Также проблемой, обусловленной августовско-сентябрьским кризисом в России, стала блокада и упадок многих российских банков, в том числе Менатепа. На счёте в Менатепе «висят» замороженные деньги «Ависмы», их будущая судьба неизвестна и мало обнадёживает.